A new algorithm namely the interval sampling method, applicable to the analysisof steady-state simulation output is proposed. This algorithm uses the time series analysisto carry out conrrelation analysis of the stead...A new algorithm namely the interval sampling method, applicable to the analysisof steady-state simulation output is proposed. This algorithm uses the time series analysisto carry out conrrelation analysis of the steady-state simulation output so as to obtain theobservation data which are actually uncorrelated in nature. On the basis of theseuncorrelated data gathered, some satisfactory deductions cam be made on the data under re search. A comparison between batch means method and the interval sampling method hasbeen performed by taking the M/M/l queuing system as an example. The results attestedthat the interval sampling method is mere accurate than the batch means method.展开更多
BACKGROUND Orthopaedic surgical education has traditionally depended on the apprenticeship model of“see one,do one,teach one”.However,reduced operative exposure,stricter work-hour regulations,medicolegal constraints...BACKGROUND Orthopaedic surgical education has traditionally depended on the apprenticeship model of“see one,do one,teach one”.However,reduced operative exposure,stricter work-hour regulations,medicolegal constraints,and patient safety concerns have constrained its practicality.Simulation-based training has become a reliable,safe,and cost-efficient alternative.Dry lab techniques,especially virtual and augmented reality,make up 78%of current dry lab research,whereas wet labs still set the standard for anatomical realism.AIM To evaluate the effectiveness,limitations,and future directions of wet and dry lab simulation in orthopaedic training.METHODS A scoping review was carried out across four databases-PubMed,Cochrane Library,Web of Science,and EBSCOhost-up to 2025.Medical Subject Headings included:"Orthopaedic Education","Wet Lab","Dry Lab","Simulation Training","Virtual Reality",and"Surgical Procedure".Eligible studies focused on orthopaedic or spinal surgical education,employed wet or dry lab techniques,and assessed training effectiveness.Exclusion criteria consisted of non-English publications,abstracts only,non-orthopaedic research,and studies unrelated to simulation.Two reviewers independently screened titles,abstracts,and full texts,resolving discrepancies with a third reviewer.RESULTS From 1851 records,101 studies met inclusion:78 on dry labs,7 on wet labs,4 on both.Virtual reality(VR)simulations were most common,with AI increasingly used for feedback and assessment.Cadaveric training remains the gold standard for accuracy and tactile feedback,while dry labs-especially VR-offer scalability,lower cost(40%-60%savings in five studies),and accessibility for novices.Senior residents prefer wet labs for complex tasks;juniors favour dry labs for basics.Challenges include limited transferability data,lack of standard outcome metrics,and ethical concerns about cadaver use and AI assessment.CONCLUSION Wet and dry labs each have unique strengths in orthopaedic training.A hybrid approach combining both,supported by standardised assessments and outcome studies,is most effective.Future efforts should aim for uniform reporting,integrating new technologies,and policy support for hybrid curricula to enhance skills and patient care.展开更多
This study introduces a new ocean surface friction velocity scheme and a modified Thompson cloud microphysics parameterization scheme into the CMA-TYM model.The impact of these two parameterization schemes on the pred...This study introduces a new ocean surface friction velocity scheme and a modified Thompson cloud microphysics parameterization scheme into the CMA-TYM model.The impact of these two parameterization schemes on the prediction of the movement track and intensity of Typhoon Kompasu in 2021 is examined.Additionally,the possible reasons for their effects on tropical cyclone(TC)intensity prediction are analyzed.Statistical results show that both parameterization schemes improve the predictions of Typhoon Kompasu’s track and intensity.The influence on track prediction becomes evident after 60 h of model integration,while the significant positive impact on intensity prediction is observed after 66 h.Further analysis reveals that these two schemes affect the timing and magnitude of extreme TC intensity values by influencing the evolution of the TC’s warm-core structure.展开更多
Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The t...Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.展开更多
Analysis of the environmental and economic performance of fishing vessels has received limited attention compared with other ship types despite their notable contribution to global greenhouse gas(GHG)emissions.This st...Analysis of the environmental and economic performance of fishing vessels has received limited attention compared with other ship types despite their notable contribution to global greenhouse gas(GHG)emissions.This study evaluates the carbon footprint(CF)and economic viability of a liquefied natural gas(LNG)-fueled fishing vessel,using real engine operation simulations to provide precise and dynamic evaluation of fuel consumption and GHG emissions.Operational profiles are obtained through the utilization of onboard monitoring systems,whereas engine performance is simulated using the 1D/0D AVL Boost^(TM)model.Life cycle assessment(LCA)is conducted to quantify the environmental impact,whereas life cycle cost assessment(LCCA)is performed to analyze the profitability of LNG as an alternative fuel.The potential impact of the future fuel price uncertainties is addressed using Monte Carlo simulations.The LCA findings indicate that LNG has the potential to reduce the CF of the vessel by 14%to 16%,in comparison to a diesel power system configuration that serves as the baseline scenario.The LCCA results further indicate that the total cost of an LNG-powered ship is lower by 9.5%-13.8%,depending on the share of LNG and pilot fuels.This finding highlights the potential of LNG to produce considerable environmental benefits while addressing economic challenges under diverse operational and fuel price conditions.展开更多
Accurate simulation of water distillation system for oxygen-18(18O) isotope separation is necessary to guide industrial practice, since both deuterium(D) and oxygen-18 isotope get enriched and interfere with each othe...Accurate simulation of water distillation system for oxygen-18(18O) isotope separation is necessary to guide industrial practice, since both deuterium(D) and oxygen-18 isotope get enriched and interfere with each other. In the present work, steady-state and dynamic distillation models are established based on a classic method and a cascade distillation system with 5 towers is introduced to test the models. The theoretical expressions of separation factor αH/Dfor protium/deuterium and separation factor α^(16)O/^(18) O.for oxygen-16/oxygen-18 were derived,with the existence of deuterium and oxygen-18, respectively. The results of the steady-state simulation by the classical method proposed in the present work agreed well with the results of the lumping method. The dynamic process could be divided into 5 stages. Impressively, a peak value of product withdraw was observed before the final steady state, which was resulted from the change of ^(16)O/^(18) O separation factor and isotope distribution. An interesting low concentration zone in the towers of T2–T5 existed at the beginning of the dynamic process and it required industrial evidence.展开更多
Unsteady-state operation has been widely applied in chemical engineering, such as optimizing a process, increasing yield and saving energy, etc. But the knowledge of the flow characteristics in bubble column reactors(...Unsteady-state operation has been widely applied in chemical engineering, such as optimizing a process, increasing yield and saving energy, etc. But the knowledge of the flow characteristics in bubble column reactors(BCRs) under unsteady state control is far from enough. In order to study the flow structures in this operation, the volume of fluid (VOF) model and the standard k-ε model to simulate the evolution of gas-liquid flow in BCRs under the start-up state are combined. For both the symmetry and asymmetry flow, the layout of the gas-inlets, the gas-in velocity, the liquid viscosity and the aspect ratio of the BCR all have effects on the liquid velocity distribution. The simulation results could provide some information for the design and scale-up of the BCRs.展开更多
Power system simulations that extend over a time period of minutes,hours,or even longer are called extendedterm simulations.As power systems evolve into complex systems with increasing interdependencies and richer dyn...Power system simulations that extend over a time period of minutes,hours,or even longer are called extendedterm simulations.As power systems evolve into complex systems with increasing interdependencies and richer dynamic behaviors across a wide range of timescales,extendedterm simulation is needed for many power system analysis tasks(e.g.,resilience analysis,renewable energy integration,cascading failures),and there is an urgent need for efficient and robust extendedterm simulation approaches.The conventional approaches are insufficient for dealing with the extendedterm simulation of multitimescale processes.This paper proposes an extendedterm simulation approach based on the semianalytical simulation(SAS)methodology.Its accuracy and computational efficiency are backed by SAS's high accuracy in eventdriven simulation,larger and adaptive time steps,and flexible switching between fulldynamic and quasisteadystate(QSS)models.We used this proposed extendedterm simulation approach to evaluate bulk power system restoration plans,and it demonstrates satisfactory accuracy and efficiency in this complex simulation task.展开更多
An ensemble Monte Carlosimulation is used to compare high field electron transport in bulk InAs, InP and GaAs. In particular, velocity overshoot and electron transit times are examined. For all materials, we find that...An ensemble Monte Carlosimulation is used to compare high field electron transport in bulk InAs, InP and GaAs. In particular, velocity overshoot and electron transit times are examined. For all materials, we find that electron velocity overshoot only occurs when the electric field is increased to a value above a certain critical field, unique to each material. This critical field is strongly dependent on the material, about 3 kV/cm for InAs, 10 kV/cm for InP and 5 kV/cm for the case of GaAs, We find that InAs exhibits the highest peak overshoot velocity and that this velocity overshoot lasts over the longest distances when compared with GaAs and InP. Finally, we estimate the minimum transit time across a 1 μm InAs sample to be about 2 ps. Similar calculations for InP and GaAs yield 6.6 and 5.4 ps, respectively. We find that the optimal cutoff frequency for an ideal InAs based device ranges from around 79 GHz when the device thickness is set to 1 μm. We thus suggest that indium arsenide offers great promise for future high-speed device applications. The steady-state and transient velocity overshoot characteristics are in fair agreement with other recent calculations.展开更多
The parameter dependence of transition between electrostatic instabilities is studied using gyrokinetic simulation based on a real discharge of steady-state scenario in the Experimental Advanced Superconducting Tokama...The parameter dependence of transition between electrostatic instabilities is studied using gyrokinetic simulation based on a real discharge of steady-state scenario in the Experimental Advanced Superconducting Tokamak.The scan of radial locations shows that trapped electron mode(TEM)dominates around the core while the ion temperature gradient mode(ITG)simultaneously dominates outside.The maximum growth rate of TEM appears aroundρ=0.24,where the maximum electron temperature gradient R/LTelocates,ρis the normalized poloidal flux.Effects of the parameters on the transition between TEM and ITG instability are studied atρ=0.24.It is found that TEM dominates in the scanning with individually changing R/LTe from 2.50 to 25.02 or the density gradient R/L_(n)from 1.38 to 13.76.Meanwhile,the electron-ion temperature ratio T_(e)/T_(i)is found to destabilize TEM,the effect of Teis more sensitive than that of T_(i).The dominant instability diagrams in the(R/L_(Te),R/L_(Ti))plane at different T_(e)/T_(i)and R/Lnare numerically obtained,which clearly show the parameter range of the dominant TEM or dominant ITG instability region.It is found that the dominant TEM region becomes narrower in the plane by decreasing R/L_(n)when T_(e)/T_(i)>0.5.展开更多
The present paper deals with both the steady-state and dynamic simulation of a plate heat exchanger, in counter-flow arrangement. A CFD (computational fluid dynamics) program FLUENT has been used to predict the temp...The present paper deals with both the steady-state and dynamic simulation of a plate heat exchanger, in counter-flow arrangement. A CFD (computational fluid dynamics) program FLUENT has been used to predict the temperature distribution in steady-state conditions in plate heat exchanger as well as fluid temperatures at exit of flow channels in transient condition. The results are presented for the heat exchanger, which is simulated according to the configuration of the plate heat exchanger used in the experiment. The simulated results obtained by the CFD model have been compared with the experimental data from the literature, which shows that the CFD model developed in this study is capable of predicting the steady-state and transient performance of the plate heat exchangers satisfactorily.展开更多
The steady-state and transient electron transport properties ofβ-(Al_(x)Ga_(1-x))_(2)O_(3)/Ga_(2)O_(3)heterostructures were investigated by Monte Carlo simulation with the classic three-valley model.In particular,the...The steady-state and transient electron transport properties ofβ-(Al_(x)Ga_(1-x))_(2)O_(3)/Ga_(2)O_(3)heterostructures were investigated by Monte Carlo simulation with the classic three-valley model.In particular,the electronic band structures were acquired by first-principles calculations,which could provide precise parameters for calculating the transport properties of the two-dimensional electron gas(2DEG),and the quantization effect was considered in theΓvalley with the five lowest subbands.Wave functions and energy eigenvalues were obtained by iteration of the Schrödinger–Poisson equations to calculate the 2DEG scattering rates with five main scattering mechanisms considered.The simulated low-field electron mobilities agree well with the experimental results,thus confirming the effectiveness of our models.The results show that the room temperature electron mobility of theβ-(Al_(0.188)Ga_(0.812))_(2)O_(3)/Ga_(2)O_(3)heterostructure at 10 k V·cm^(-1)is approximately153.669 cm^(2)·V^(-1)·s^(-1),and polar optical phonon scattering would have a significant impact on the mobility properties at this time.The region of negative differential mobility,overshoot of the transient electron velocity and negative diffusion coefficients are also observed when the electric field increases to the corresponding threshold value or even exceeds it.This work offers significant parameters for theβ-(Al_(x)Ga_(1-x))_(2)O_(3)/Ga_(2)O_(3)heterostructure that may benefit the design of high-performanceβ-(Al_(x)Ga_(1-x))_(2)O_(3)/Ga_(2)O_(3)heterostructure-based devices.展开更多
Actuator faults can be critical in turbofan engines as they can lead to stall,surge,loss of thrust and failure of speed control.Thus,fault diagnosis of gas turbine actuators has attracted considerable attention,from b...Actuator faults can be critical in turbofan engines as they can lead to stall,surge,loss of thrust and failure of speed control.Thus,fault diagnosis of gas turbine actuators has attracted considerable attention,from both academia and industry.However,the extensive literature that exists on this topic does not address identifying the severity of actuator faults and focuses mainly on actuator fault detection and isolation.In addition,previous studies of actuator fault identification have not dealt with multiple concurrent faults in real time,especially when these are accompanied by sudden failures under dynamic conditions.This study develops component-level models for fault identification in four typical actuators used in high-bypass ratio turbofan engines under both dynamic and steady-state conditions and these are then integrated with the engine performance model developed by the authors.The research results reported here present a novel method of quantifying actuator faults using dynamic effect compensation.The maximum error for each actuator is less than0.06%and 0.07%,with average computational time of less than 0.0058 s and 0.0086 s for steady-state and transient cases,respectively.These results confirm that the proposed method can accurately and efficiently identify concurrent actuator fault for an engine operating under either transient or steady-state conditions,even in the case of a sudden malfunction.The research results emonstrate the potential benefit to emergency response capabilities by introducing this method of monitoring the health of aero engines.展开更多
文摘A new algorithm namely the interval sampling method, applicable to the analysisof steady-state simulation output is proposed. This algorithm uses the time series analysisto carry out conrrelation analysis of the steady-state simulation output so as to obtain theobservation data which are actually uncorrelated in nature. On the basis of theseuncorrelated data gathered, some satisfactory deductions cam be made on the data under re search. A comparison between batch means method and the interval sampling method hasbeen performed by taking the M/M/l queuing system as an example. The results attestedthat the interval sampling method is mere accurate than the batch means method.
文摘BACKGROUND Orthopaedic surgical education has traditionally depended on the apprenticeship model of“see one,do one,teach one”.However,reduced operative exposure,stricter work-hour regulations,medicolegal constraints,and patient safety concerns have constrained its practicality.Simulation-based training has become a reliable,safe,and cost-efficient alternative.Dry lab techniques,especially virtual and augmented reality,make up 78%of current dry lab research,whereas wet labs still set the standard for anatomical realism.AIM To evaluate the effectiveness,limitations,and future directions of wet and dry lab simulation in orthopaedic training.METHODS A scoping review was carried out across four databases-PubMed,Cochrane Library,Web of Science,and EBSCOhost-up to 2025.Medical Subject Headings included:"Orthopaedic Education","Wet Lab","Dry Lab","Simulation Training","Virtual Reality",and"Surgical Procedure".Eligible studies focused on orthopaedic or spinal surgical education,employed wet or dry lab techniques,and assessed training effectiveness.Exclusion criteria consisted of non-English publications,abstracts only,non-orthopaedic research,and studies unrelated to simulation.Two reviewers independently screened titles,abstracts,and full texts,resolving discrepancies with a third reviewer.RESULTS From 1851 records,101 studies met inclusion:78 on dry labs,7 on wet labs,4 on both.Virtual reality(VR)simulations were most common,with AI increasingly used for feedback and assessment.Cadaveric training remains the gold standard for accuracy and tactile feedback,while dry labs-especially VR-offer scalability,lower cost(40%-60%savings in five studies),and accessibility for novices.Senior residents prefer wet labs for complex tasks;juniors favour dry labs for basics.Challenges include limited transferability data,lack of standard outcome metrics,and ethical concerns about cadaver use and AI assessment.CONCLUSION Wet and dry labs each have unique strengths in orthopaedic training.A hybrid approach combining both,supported by standardised assessments and outcome studies,is most effective.Future efforts should aim for uniform reporting,integrating new technologies,and policy support for hybrid curricula to enhance skills and patient care.
基金supported by the National Key R&D Program of China[grant number 2023YFC3008004]。
文摘This study introduces a new ocean surface friction velocity scheme and a modified Thompson cloud microphysics parameterization scheme into the CMA-TYM model.The impact of these two parameterization schemes on the prediction of the movement track and intensity of Typhoon Kompasu in 2021 is examined.Additionally,the possible reasons for their effects on tropical cyclone(TC)intensity prediction are analyzed.Statistical results show that both parameterization schemes improve the predictions of Typhoon Kompasu’s track and intensity.The influence on track prediction becomes evident after 60 h of model integration,while the significant positive impact on intensity prediction is observed after 66 h.Further analysis reveals that these two schemes affect the timing and magnitude of extreme TC intensity values by influencing the evolution of the TC’s warm-core structure.
基金Supported by the National Natural Science Foundation of China under Grant No.51975138the High-Tech Ship Scientific Research Project from the Ministry of Industry and Information Technology under Grant No.CJ05N20the National Defense Basic Research Project under Grant No.JCKY2023604C006.
文摘Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.
文摘Analysis of the environmental and economic performance of fishing vessels has received limited attention compared with other ship types despite their notable contribution to global greenhouse gas(GHG)emissions.This study evaluates the carbon footprint(CF)and economic viability of a liquefied natural gas(LNG)-fueled fishing vessel,using real engine operation simulations to provide precise and dynamic evaluation of fuel consumption and GHG emissions.Operational profiles are obtained through the utilization of onboard monitoring systems,whereas engine performance is simulated using the 1D/0D AVL Boost^(TM)model.Life cycle assessment(LCA)is conducted to quantify the environmental impact,whereas life cycle cost assessment(LCCA)is performed to analyze the profitability of LNG as an alternative fuel.The potential impact of the future fuel price uncertainties is addressed using Monte Carlo simulations.The LCA findings indicate that LNG has the potential to reduce the CF of the vessel by 14%to 16%,in comparison to a diesel power system configuration that serves as the baseline scenario.The LCCA results further indicate that the total cost of an LNG-powered ship is lower by 9.5%-13.8%,depending on the share of LNG and pilot fuels.This finding highlights the potential of LNG to produce considerable environmental benefits while addressing economic challenges under diverse operational and fuel price conditions.
基金Supported by the Jiangsu Province Transformation of Sci-tech Achievements Project(BA2012080)
文摘Accurate simulation of water distillation system for oxygen-18(18O) isotope separation is necessary to guide industrial practice, since both deuterium(D) and oxygen-18 isotope get enriched and interfere with each other. In the present work, steady-state and dynamic distillation models are established based on a classic method and a cascade distillation system with 5 towers is introduced to test the models. The theoretical expressions of separation factor αH/Dfor protium/deuterium and separation factor α^(16)O/^(18) O.for oxygen-16/oxygen-18 were derived,with the existence of deuterium and oxygen-18, respectively. The results of the steady-state simulation by the classical method proposed in the present work agreed well with the results of the lumping method. The dynamic process could be divided into 5 stages. Impressively, a peak value of product withdraw was observed before the final steady state, which was resulted from the change of ^(16)O/^(18) O separation factor and isotope distribution. An interesting low concentration zone in the towers of T2–T5 existed at the beginning of the dynamic process and it required industrial evidence.
文摘Unsteady-state operation has been widely applied in chemical engineering, such as optimizing a process, increasing yield and saving energy, etc. But the knowledge of the flow characteristics in bubble column reactors(BCRs) under unsteady state control is far from enough. In order to study the flow structures in this operation, the volume of fluid (VOF) model and the standard k-ε model to simulate the evolution of gas-liquid flow in BCRs under the start-up state are combined. For both the symmetry and asymmetry flow, the layout of the gas-inlets, the gas-in velocity, the liquid viscosity and the aspect ratio of the BCR all have effects on the liquid velocity distribution. The simulation results could provide some information for the design and scale-up of the BCRs.
基金supported by the lab-directed research&develop-ment(LDRD)program of Argonne National Laboratory and U.S.DOE Advanced Grid Modeling Program grant DE-OE0000875.
文摘Power system simulations that extend over a time period of minutes,hours,or even longer are called extendedterm simulations.As power systems evolve into complex systems with increasing interdependencies and richer dynamic behaviors across a wide range of timescales,extendedterm simulation is needed for many power system analysis tasks(e.g.,resilience analysis,renewable energy integration,cascading failures),and there is an urgent need for efficient and robust extendedterm simulation approaches.The conventional approaches are insufficient for dealing with the extendedterm simulation of multitimescale processes.This paper proposes an extendedterm simulation approach based on the semianalytical simulation(SAS)methodology.Its accuracy and computational efficiency are backed by SAS's high accuracy in eventdriven simulation,larger and adaptive time steps,and flexible switching between fulldynamic and quasisteadystate(QSS)models.We used this proposed extendedterm simulation approach to evaluate bulk power system restoration plans,and it demonstrates satisfactory accuracy and efficiency in this complex simulation task.
文摘An ensemble Monte Carlosimulation is used to compare high field electron transport in bulk InAs, InP and GaAs. In particular, velocity overshoot and electron transit times are examined. For all materials, we find that electron velocity overshoot only occurs when the electric field is increased to a value above a certain critical field, unique to each material. This critical field is strongly dependent on the material, about 3 kV/cm for InAs, 10 kV/cm for InP and 5 kV/cm for the case of GaAs, We find that InAs exhibits the highest peak overshoot velocity and that this velocity overshoot lasts over the longest distances when compared with GaAs and InP. Finally, we estimate the minimum transit time across a 1 μm InAs sample to be about 2 ps. Similar calculations for InP and GaAs yield 6.6 and 5.4 ps, respectively. We find that the optimal cutoff frequency for an ideal InAs based device ranges from around 79 GHz when the device thickness is set to 1 μm. We thus suggest that indium arsenide offers great promise for future high-speed device applications. The steady-state and transient velocity overshoot characteristics are in fair agreement with other recent calculations.
基金supported by the National MCF Energy R&D Program of China(Nos.2019YFE03060000,2019YFE03050000 and 2019YFE03020004)National Natural Science Foundation of China(Nos.12005063 and 11875131)+1 种基金Users with Excellence Program of Hefei Science Center CAS(Nos.2020HSC-UE011 and 2021HSC-UE015)Anhui Provincial Natural Science Foundation(No.2008085Jo4)。
文摘The parameter dependence of transition between electrostatic instabilities is studied using gyrokinetic simulation based on a real discharge of steady-state scenario in the Experimental Advanced Superconducting Tokamak.The scan of radial locations shows that trapped electron mode(TEM)dominates around the core while the ion temperature gradient mode(ITG)simultaneously dominates outside.The maximum growth rate of TEM appears aroundρ=0.24,where the maximum electron temperature gradient R/LTelocates,ρis the normalized poloidal flux.Effects of the parameters on the transition between TEM and ITG instability are studied atρ=0.24.It is found that TEM dominates in the scanning with individually changing R/LTe from 2.50 to 25.02 or the density gradient R/L_(n)from 1.38 to 13.76.Meanwhile,the electron-ion temperature ratio T_(e)/T_(i)is found to destabilize TEM,the effect of Teis more sensitive than that of T_(i).The dominant instability diagrams in the(R/L_(Te),R/L_(Ti))plane at different T_(e)/T_(i)and R/Lnare numerically obtained,which clearly show the parameter range of the dominant TEM or dominant ITG instability region.It is found that the dominant TEM region becomes narrower in the plane by decreasing R/L_(n)when T_(e)/T_(i)>0.5.
文摘The present paper deals with both the steady-state and dynamic simulation of a plate heat exchanger, in counter-flow arrangement. A CFD (computational fluid dynamics) program FLUENT has been used to predict the temperature distribution in steady-state conditions in plate heat exchanger as well as fluid temperatures at exit of flow channels in transient condition. The results are presented for the heat exchanger, which is simulated according to the configuration of the plate heat exchanger used in the experiment. The simulated results obtained by the CFD model have been compared with the experimental data from the literature, which shows that the CFD model developed in this study is capable of predicting the steady-state and transient performance of the plate heat exchangers satisfactorily.
基金Project supported by the National Natural Science Foundation of China(Grant No.61474090)the Key Research and Development Program of Shaanxi Province of China(Grant No.2017ZDXM-GY-052)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.20109205456)the Innovation Fund of Xidian University。
文摘The steady-state and transient electron transport properties ofβ-(Al_(x)Ga_(1-x))_(2)O_(3)/Ga_(2)O_(3)heterostructures were investigated by Monte Carlo simulation with the classic three-valley model.In particular,the electronic band structures were acquired by first-principles calculations,which could provide precise parameters for calculating the transport properties of the two-dimensional electron gas(2DEG),and the quantization effect was considered in theΓvalley with the five lowest subbands.Wave functions and energy eigenvalues were obtained by iteration of the Schrödinger–Poisson equations to calculate the 2DEG scattering rates with five main scattering mechanisms considered.The simulated low-field electron mobilities agree well with the experimental results,thus confirming the effectiveness of our models.The results show that the room temperature electron mobility of theβ-(Al_(0.188)Ga_(0.812))_(2)O_(3)/Ga_(2)O_(3)heterostructure at 10 k V·cm^(-1)is approximately153.669 cm^(2)·V^(-1)·s^(-1),and polar optical phonon scattering would have a significant impact on the mobility properties at this time.The region of negative differential mobility,overshoot of the transient electron velocity and negative diffusion coefficients are also observed when the electric field increases to the corresponding threshold value or even exceeds it.This work offers significant parameters for theβ-(Al_(x)Ga_(1-x))_(2)O_(3)/Ga_(2)O_(3)heterostructure that may benefit the design of high-performanceβ-(Al_(x)Ga_(1-x))_(2)O_(3)/Ga_(2)O_(3)heterostructure-based devices.
基金support by the National Natural Science Foundation of China(Grant No.52402520)。
文摘Actuator faults can be critical in turbofan engines as they can lead to stall,surge,loss of thrust and failure of speed control.Thus,fault diagnosis of gas turbine actuators has attracted considerable attention,from both academia and industry.However,the extensive literature that exists on this topic does not address identifying the severity of actuator faults and focuses mainly on actuator fault detection and isolation.In addition,previous studies of actuator fault identification have not dealt with multiple concurrent faults in real time,especially when these are accompanied by sudden failures under dynamic conditions.This study develops component-level models for fault identification in four typical actuators used in high-bypass ratio turbofan engines under both dynamic and steady-state conditions and these are then integrated with the engine performance model developed by the authors.The research results reported here present a novel method of quantifying actuator faults using dynamic effect compensation.The maximum error for each actuator is less than0.06%and 0.07%,with average computational time of less than 0.0058 s and 0.0086 s for steady-state and transient cases,respectively.These results confirm that the proposed method can accurately and efficiently identify concurrent actuator fault for an engine operating under either transient or steady-state conditions,even in the case of a sudden malfunction.The research results emonstrate the potential benefit to emergency response capabilities by introducing this method of monitoring the health of aero engines.