Multivariate statistical process monitoring and control (MSPM&C) methods for chemical process monitoring with statistical projection techniques such as principal component analysis (PCA) and partial least squares ...Multivariate statistical process monitoring and control (MSPM&C) methods for chemical process monitoring with statistical projection techniques such as principal component analysis (PCA) and partial least squares (PLS) are surveyed in this paper. The four-step procedure of performing MSPM&C for chemical process, modeling of processes, detecting abnormal events or faults, identifying the variable(s) responsible for the faults and diagnosing the source cause for the abnormal behavior, is analyzed. Several main research directions of MSPM&C reported in the literature are discussed, such as multi-way principal component analysis (MPCA) for batch process, statistical monitoring and control for nonlinear process, dynamic PCA and dynamic PLS, and on-line quality control by inferential models. Industrial applications of MSPM&C to several typical chemical processes, such as chemical reactor, distillation column, polymerization process, petroleum refinery units, are summarized. Finally, some concluding remarks and future considerations are made.展开更多
Abstract Data-driven tools, such as principal component analysis (PCA) and independent component analysis (ICA) have been applied to different benchmarks as process monitoring methods. The difference between the t...Abstract Data-driven tools, such as principal component analysis (PCA) and independent component analysis (ICA) have been applied to different benchmarks as process monitoring methods. The difference between the two methods is that the components of PCA are still dependent while ICA has no orthogonality constraint and its latentvariables are independent. Process monitoring with PCA often supposes that process data or principal components is Gaussian distribution. However, this kind of constraint cannot be satisfied by several practical processes. To ex-tend the use of PCA, a nonparametric method is added to PCA to overcome the difficulty, and kernel density estimation (KDE) is rather a good choice. Though ICA is based on non-Gaussian distribution intormation, .KDE can help in the close monitoring of the data. Methods, such as PCA, ICA, PCA.with .KDE(KPCA), and ICA with KDE,(KICA), are demonstrated and. compared by applying them to a practical industnal Spheripol craft polypropylene catalyzer reactor instead of a laboratory emulator.展开更多
The kernel principal component analysis (KPCA) method employs the first several kernel principal components (KPCs), which indicate the most variance information of normal observations for process monitoring, but m...The kernel principal component analysis (KPCA) method employs the first several kernel principal components (KPCs), which indicate the most variance information of normal observations for process monitoring, but may not reflect the fault information. In this study, sensitive kernel principal component analysis (SKPCA) is proposed to improve process monitoring performance, i.e., to deal with the discordance of T2 statistic and squared prediction error SVE statistic and reduce missed detection rates. T2 statistic can be used to measure the variation di rectly along each KPC and analyze the detection performance as well as capture the most useful information in a process. With the calculation of the change rate of T2 statistic along each KPC, SKPCA selects the sensitive kernel principal components for process monitoring. A simulated simple system and Tennessee Eastman process are employed to demonstrate the efficiency of SKPCA on online monitoring. The results indicate that the monitoring performance is improved significantly.展开更多
Profile monitoring is used to check the stability of the quality of a product over time when the product quality is best represented by a function at each time point.However,most previous monitoring approaches have no...Profile monitoring is used to check the stability of the quality of a product over time when the product quality is best represented by a function at each time point.However,most previous monitoring approaches have not considered that the argument values may vary from profile to profile,which is common in practice.A novel nonparametric control scheme based on profile error is proposed for monitoring nonlinear profiles with varied argument values.The proposed scheme uses the metrics of profile error as the statistics to construct the control charts.More details about the design of this nonparametric scheme are also discussed.The monitoring performance of the combined control scheme is compared with that of alternative nonparametric methods via simulation.Simulation studies show that the combined scheme is effective in detecting parameter error and is sensitive to small shifts in the process.In addition,due to the properties of the charting statistics,the out-of-control signal can provide diagnostic information for the users.Finally,the implementation steps of the proposed monitoring scheme are given and applied for monitoring the blade manufacturing process.With the application in blade manufacturing of aircraft engines,the proposed nonparametric control scheme is effective,interpretable,and easy to apply.展开更多
Chemical process variables are always driven by random noise and disturbances. The closed-loop con-trol yields process measurements that are auto and cross correlated. The influence of auto and cross correlations on s...Chemical process variables are always driven by random noise and disturbances. The closed-loop con-trol yields process measurements that are auto and cross correlated. The influence of auto and cross correlations on statistical process control (SPC) is investigated in detail by Monte Carlo experiments. It is revealed that in the sense of average performance, the false alarms rates (FAR) of principal component analysis (PCA), dynamic PCA are not affected by the time-series structures of process variables. Nevertheless, non-independent identical distribution will cause the actual FAR to deviate from its theoretic value apparently and result in unexpected consecutive false alarms for normal operating process. Dynamic PCA and ARMA-PCA are demonstrated to be inefficient to remove the influences of auto and cross correlations. Subspace identification-based PCA (SI-PCA) is proposed to improve the monitoring of dynamic processes. Through state space modeling, SI-PCA can remove the auto and cross corre-lations efficiently and avoid consecutive false alarms. Synthetic Monte Carlo experiments and the application in Tennessee Eastman challenge process illustrate the advantages of the proposed approach.展开更多
From a regulatory perspective,drug quality consistency evaluation must concern different processes used for the same drug.In this study,an assessment strategy based on quality by design(QbD)was developed for populatio...From a regulatory perspective,drug quality consistency evaluation must concern different processes used for the same drug.In this study,an assessment strategy based on quality by design(QbD)was developed for population pharmaceutical quality evaluation.A descriptive analysis method based on QbD concept was first established to characterize the process by critical evaluation attributes(CEAs).Then quantitative analysis method based on an improved statistical process control(SPC)method was established to investigate the process indicators(PIs)in the process population,such as mean distribution,batch-to-batch difference and abnormal quality probability.After that rules for risk assessment were established based on the SPC limitations and parameters.Both the SPC parameters of the CEAs and the risk of PIs were visualized according to the interaction test results to obtain a better understanding of the population pharmaceutical quality.Finally,an assessment strategy was built and applied to generic drug consistency assessment,process risk assessment and quality trend tracking.The strategy demonstrated in this study could help reveal quality consistency from the perspective of process control and process risk,and further show the recent development status of domestic pharmaceutical production processes.In addition,a process risk assessment and population quality trend tracking provide databased information for approval.Not only can this information serve as a further basis for decisionmaking by the regulatory authority regarding early warnings,but it can also reduce some avoidable adverse reactions.With continuous addition of data,dynamic population pharmaceutical quality is meaningful for emergencies and decision-making regarding drug regulation.展开更多
In order to reduce the variations of the product quality in batch processes, multivariate statistical process control methods according to multi-way principal component analysis (MPCA) or multi-way projection to laten...In order to reduce the variations of the product quality in batch processes, multivariate statistical process control methods according to multi-way principal component analysis (MPCA) or multi-way projection to latent structure (MPLS) were proposed for on-line batch process monitoring. However, they are based on the decomposition of relative covariance matrix and strongly affected by outlying observations. In this paper, in view of an efficient projection pursuit algorithm, a robust statistical batch process monitoring (RSBPM) framework,which is resistant to outliers, is proposed to reduce the high demand for modeling data. The construction of robust normal operating condition model and robust control limits are discussed in detail. It is evaluated on monitoring an industrial streptomycin fermentation process and compared with the conventional MPCA. The results show that the RSBPM framework is resistant to possible outliers and the robustness is confirmed.展开更多
Building energy consumption accounts for nearly 40% of global energy consumption, HVAC (Heating, Ventilating, and Air Conditioning) systems are the major building energy consumers, and as one type of HVAC systems, t...Building energy consumption accounts for nearly 40% of global energy consumption, HVAC (Heating, Ventilating, and Air Conditioning) systems are the major building energy consumers, and as one type of HVAC systems, the heat pump air conditioning system, which is more energy-efficient compared to the traditional air conditioning system, is being more widely used to save energy. However, in northern China, extreme climatic conditions increase the cooling and heating load of the heat pump air conditioning system and accelerate the aging of the equipment, and the sensor may detect drifted parameters owing to climate change. This non-linear drifted parameter increases the false alarm rate of the fault detection and the need for unnecessary troubleshooting. In order to overcome the impact of the device aging and the drifted parameter, a Kalman filter and SPC (statistical process control) fault detection method are introduced in this paper. In this method, the model parameter and its standard variance can he estimated by Kalman filter based on the gray model and the real-time data of the air conditioning system. Further, by using SPC to construct the dynamic control limits, false alarm rate is reduced. And this paper mainly focuses on the cold machine failure in the component failure and its soft fault detection. This approach has been tested on a simulation model of the "Sino-German Energy Conservation Demonstration Center" building heat pump air-conditioning system in Shenyang, China, and the results show that the Kalman filter and SPC fault detection method is simple and highly efficient with a low false alarm rate, and it can deal with the difficulties caused by the extreme environment and the non-linear influence of the parameters, and what's more, it provides a good foundation for dynamic fault diagnosis and fault prediction analysis.展开更多
The purpose of the present study is to investigate the presence of multi-fractal behaviours in the traffic time series not only by statistical approaches but also by geometrical approaches. The pointwisc Hǒlder expon...The purpose of the present study is to investigate the presence of multi-fractal behaviours in the traffic time series not only by statistical approaches but also by geometrical approaches. The pointwisc Hǒlder exponent of a function is calculated by developing an algorithm for the numerical evaluation of HSlder exponent of time series. The traffic time series observed on the Beijing Yuquanying highway are analysed. The results from all these methods indicate that the traffic data exhibit the multi-fractal behaviour.展开更多
To monitor the quality characteristics of a process, appropriate graphical and statistical tools must be used. These tools are capable of showing the evolution over time of the behavior of the quality characteristics ...To monitor the quality characteristics of a process, appropriate graphical and statistical tools must be used. These tools are capable of showing the evolution over time of the behavior of the quality characteristics (measurable or countable) and detecting situations that seem to present certain anomalies. The control chart is one of these tools widely used in quality management. In the process of managing the COVID-19 pandemic, this tool will make it possible to know at all times whether the parameters monitored such as the positivity rate, the recovery rate, and the mortality rate, are under control and to act accordingly. Monitoring cure and mortality rates will also show us the effectiveness of the treatments used.展开更多
For aircraft manufacturing industries, the analyses and prediction of part machining error during machining process are very important to control and improve part machining quality. In order to effectively control mac...For aircraft manufacturing industries, the analyses and prediction of part machining error during machining process are very important to control and improve part machining quality. In order to effectively control machining error, the method of integrating multivariate statistical process control (MSPC) and stream of variations (SoV) is proposed. Firstly, machining error is modeled by multi-operation approaches for part machining process. SoV is adopted to establish the mathematic model of the relationship between the error of upstream operations and the error of downstream operations. Here error sources not only include the influence of upstream operations but also include many of other error sources. The standard model and the predicted model about SoV are built respectively by whether the operation is done or not to satisfy different requests during part machining process. Secondly, the method of one-step ahead forecast error (OSFE) is used to eliminate autocorrelativity of the sample data from the SoV model, and the T2 control chart in MSPC is built to realize machining error detection according to the data characteristics of the above error model, which can judge whether the operation is out of control or not. If it is, then feedback is sent to the operations. The error model is modified by adjusting the operation out of control, and continually it is used to monitor operations. Finally, a machining instance containing two operations demonstrates the effectiveness of the machining error control method presented in this paper.展开更多
Traditional studies on integrated statistical process control and engineering process control (SPC-EPC) are based on linear autoregressive integrated moving average (ARIMA) time series models to describe the dynamic n...Traditional studies on integrated statistical process control and engineering process control (SPC-EPC) are based on linear autoregressive integrated moving average (ARIMA) time series models to describe the dynamic noise of the system.However,linear models sometimes are unable to model complex nonlinear autocorrelation.To solve this problem,this paper presents an integrated SPC-EPC method based on smooth transition autoregressive (STAR) time series model,and builds a minimum mean squared error (MMSE) controller as well as an integrated SPC-EPC control system.The performance of this method for checking the trend and sustained shift is analyzed.The simulation results indicate that this integrated SPC-EPC control method based on STAR model is effective in controlling complex nonlinear systems.展开更多
A new method using discriminant analysis and control charts is proposed for monitoring multivariate process operations more reliably.Fisher discriminant analysis (FDA) is used to derive a feature discriminant direct...A new method using discriminant analysis and control charts is proposed for monitoring multivariate process operations more reliably.Fisher discriminant analysis (FDA) is used to derive a feature discriminant direction (FDD) between each normal and fault operations,and each FDD thus decided constructs the feature space of each fault operation.Individuals control charts (XmR charts) are used to monitor multivariate processes using the process data projected onto feature spaces.Upper control limit (UCL) and lower control limit (LCL) on each feature space from normal process operation are calculated for XmR charts,and are used to distinguish fault from normal.A variation trend on an XmR chart reveals the type of relevant fault operation.Applications to Tennessee Eastman simulation processes show that this proposed method can result in better monitoring performance than principal component analysis (PCA)-based methods and can better identify step type faults on XmR charts.展开更多
To overcome the large time-delay in measuring the hardness of mixed rubber, rheological parameters were used to predict the hardness. A novel Q-based model updating strategy was proposed as a universal platform to tra...To overcome the large time-delay in measuring the hardness of mixed rubber, rheological parameters were used to predict the hardness. A novel Q-based model updating strategy was proposed as a universal platform to track time-varying properties. Using a few selected support samples to update the model, the strategy could dramat- ically save the storage cost and overcome the adverse influence of low signal-to-noise ratio samples. Moreover, it could be applied to any statistical process monitoring system without drastic changes to them, which is practical for industrial practices. As examples, the Q-based strategy was integrated with three popular algorithms (partial least squares (PIE), recursive PIE (RPLS), and kernel PIE (KPIE)) to form novel regression ones, QPLS, QRPIE and QKPLS, respectively. The applications for predicting mixed rubber hardness on a large-scale tire plant in east China prove the theoretical considerations.展开更多
Virtual testability demonstration test has many advantages,such as low cost,high efficiency,low risk and few restrictions.It brings new requirements to the fault sample generation.A fault sample simulation approach fo...Virtual testability demonstration test has many advantages,such as low cost,high efficiency,low risk and few restrictions.It brings new requirements to the fault sample generation.A fault sample simulation approach for virtual testability demonstration test based on stochastic process theory is proposed.First,the similarities and differences of fault sample generation between physical testability demonstration test and virtual testability demonstration test are discussed.Second,it is pointed out that the fault occurrence process subject to perfect repair is renewal process.Third,the interarrival time distribution function of the next fault event is given.Steps and flowcharts of fault sample generation are introduced.The number of faults and their occurrence time are obtained by statistical simulation.Finally,experiments are carried out on a stable tracking platform.Because a variety of types of life distributions and maintenance modes are considered and some assumptions are removed,the sample size and structure of fault sample simulation results are more similar to the actual results and more reasonable.The proposed method can effectively guide the fault injection in virtual testability demonstration test.展开更多
Rectisol process is more efficient in comparison with other physical or chemical absorption methods for gas purification. To implement a real time simulation of Rectisol process, thermodynamic model and simulation str...Rectisol process is more efficient in comparison with other physical or chemical absorption methods for gas purification. To implement a real time simulation of Rectisol process, thermodynamic model and simulation strategy are needed. In this paper, a method of modified statistical associated fluid theory with perturbation theory is used to predict thermodynamic behavior of process. As Rectisol process is a highly heat-integrated process with many loops, a method of equation oriented strategy, sequential quadratic programming, is used as the solver and the process converges perfectly. Then analyses are conducted with this simulator.展开更多
Much research effort has been devoted to economic design of X & S control charts,however,there are some problems in usual methods.On the one hand,it is difficult to estimate the relationship between costs and other m...Much research effort has been devoted to economic design of X & S control charts,however,there are some problems in usual methods.On the one hand,it is difficult to estimate the relationship between costs and other model parameters,so the economic design method is often not effective in producing charts that can quickly detect small shifts before substantial losses occur;on the other hand,in many cases,only one type of process shift or only one pair of process shifts are taken into consideration,which may not correctly reflect the actual process conditions.To improve the behavior of economic design of control chart,a cost & loss model with Taguchi's loss function for the economic design of X & S control charts is embellished,which is regarded as an optimization problem with multiple statistical constraints.The optimization design is also carried out based on a number of combinations of process shifts collected from the field operation of the conventional control charts,thus more hidden information about the shift combinations is mined and employed to the optimization design of control charts.At the same time,an improved particle swarm optimization(IPSO) is developed to solve such an optimization problem in design of X & S control charts,IPSO is first tested for several benchmark problems from the literature and evaluated with standard performance metrics.Experimental results show that the proposed algorithm has significant advantages on obtaining the optimal design parameters of the charts.The proposed method can substantially reduce the total cost(or loss) of the control charts,and it will be a promising tool for economic design of control charts.展开更多
Automatic process control(APC)based on design of experiment(DOE)is a cost-efficient approach for variation reduction.The process changes both in mean and variance owing to online parameter adjustment make it hard to a...Automatic process control(APC)based on design of experiment(DOE)is a cost-efficient approach for variation reduction.The process changes both in mean and variance owing to online parameter adjustment make it hard to apply traditional SPC charts in such DOE-based APC applied process.An adaptive SPC scheme is developed,which can better track the process transitions and achieve the possible SPC run cost reduction when the process is stable.The control law of SPC parameters is designed by fully utilizing the estimation properties of the process model instead of traditionally using the data collected from the production line.An example is provided to illustrate the proposed adaptive SPC design approach.展开更多
Consistent high-quality and defect-free production is the demand of the day. The product recall not only increases engineering and manufacturing cost but also affects the quality and the reliability of the product in ...Consistent high-quality and defect-free production is the demand of the day. The product recall not only increases engineering and manufacturing cost but also affects the quality and the reliability of the product in the eye of users. The monitoring and improvement of a manufacturing process are the strength of statistical process control. In this article we propose a process monitoring memory-based scheme for continuous data under the assumption of normality to detect small non-random shift patterns in any manufacturing or service process.The control limits for the proposed scheme are constructed. The in-control and out-of-control average run length(AVL) expressions have been derived for the performance evaluation of the proposed scheme. Robustness to non-normality has been tested after simulation study of the run length distribution of the proposed scheme, and the comparisons with Shewhart and exponentially weighted moving average(EWMA) schemes are presented for various gamma and t-distributions. The proposed scheme is effective and attractive as it has one design parameter which differentiates it from the traditional schemes. Finally, some suggestions and recommendations are made for the future work.展开更多
基金Supported by the National High-Tech Development Program of China(No.863-511-920-011,2001AA411230).
文摘Multivariate statistical process monitoring and control (MSPM&C) methods for chemical process monitoring with statistical projection techniques such as principal component analysis (PCA) and partial least squares (PLS) are surveyed in this paper. The four-step procedure of performing MSPM&C for chemical process, modeling of processes, detecting abnormal events or faults, identifying the variable(s) responsible for the faults and diagnosing the source cause for the abnormal behavior, is analyzed. Several main research directions of MSPM&C reported in the literature are discussed, such as multi-way principal component analysis (MPCA) for batch process, statistical monitoring and control for nonlinear process, dynamic PCA and dynamic PLS, and on-line quality control by inferential models. Industrial applications of MSPM&C to several typical chemical processes, such as chemical reactor, distillation column, polymerization process, petroleum refinery units, are summarized. Finally, some concluding remarks and future considerations are made.
基金Supported by the National Natural Science Foundation of China (No.60574047) and the Doctorate Foundation of the State Education Ministry of China (No.20050335018).
文摘Abstract Data-driven tools, such as principal component analysis (PCA) and independent component analysis (ICA) have been applied to different benchmarks as process monitoring methods. The difference between the two methods is that the components of PCA are still dependent while ICA has no orthogonality constraint and its latentvariables are independent. Process monitoring with PCA often supposes that process data or principal components is Gaussian distribution. However, this kind of constraint cannot be satisfied by several practical processes. To ex-tend the use of PCA, a nonparametric method is added to PCA to overcome the difficulty, and kernel density estimation (KDE) is rather a good choice. Though ICA is based on non-Gaussian distribution intormation, .KDE can help in the close monitoring of the data. Methods, such as PCA, ICA, PCA.with .KDE(KPCA), and ICA with KDE,(KICA), are demonstrated and. compared by applying them to a practical industnal Spheripol craft polypropylene catalyzer reactor instead of a laboratory emulator.
基金Supported by the 973 project of China (2013CB733600), the National Natural Science Foundation (21176073), the Doctoral Fund of Ministry of Education (20090074110005), the New Century Excellent Talents in University (NCET-09-0346), "Shu Guang" project (09SG29) and the Fundamental Research Funds for the Central Universities.
文摘The kernel principal component analysis (KPCA) method employs the first several kernel principal components (KPCs), which indicate the most variance information of normal observations for process monitoring, but may not reflect the fault information. In this study, sensitive kernel principal component analysis (SKPCA) is proposed to improve process monitoring performance, i.e., to deal with the discordance of T2 statistic and squared prediction error SVE statistic and reduce missed detection rates. T2 statistic can be used to measure the variation di rectly along each KPC and analyze the detection performance as well as capture the most useful information in a process. With the calculation of the change rate of T2 statistic along each KPC, SKPCA selects the sensitive kernel principal components for process monitoring. A simulated simple system and Tennessee Eastman process are employed to demonstrate the efficiency of SKPCA on online monitoring. The results indicate that the monitoring performance is improved significantly.
基金supported by National Natural Science Foundation of China (Grant No. 70931004,Grant No. 70802043)
文摘Profile monitoring is used to check the stability of the quality of a product over time when the product quality is best represented by a function at each time point.However,most previous monitoring approaches have not considered that the argument values may vary from profile to profile,which is common in practice.A novel nonparametric control scheme based on profile error is proposed for monitoring nonlinear profiles with varied argument values.The proposed scheme uses the metrics of profile error as the statistics to construct the control charts.More details about the design of this nonparametric scheme are also discussed.The monitoring performance of the combined control scheme is compared with that of alternative nonparametric methods via simulation.Simulation studies show that the combined scheme is effective in detecting parameter error and is sensitive to small shifts in the process.In addition,due to the properties of the charting statistics,the out-of-control signal can provide diagnostic information for the users.Finally,the implementation steps of the proposed monitoring scheme are given and applied for monitoring the blade manufacturing process.With the application in blade manufacturing of aircraft engines,the proposed nonparametric control scheme is effective,interpretable,and easy to apply.
基金National Natural Foundation of China (No.60421002, No.70471052)
文摘Chemical process variables are always driven by random noise and disturbances. The closed-loop con-trol yields process measurements that are auto and cross correlated. The influence of auto and cross correlations on statistical process control (SPC) is investigated in detail by Monte Carlo experiments. It is revealed that in the sense of average performance, the false alarms rates (FAR) of principal component analysis (PCA), dynamic PCA are not affected by the time-series structures of process variables. Nevertheless, non-independent identical distribution will cause the actual FAR to deviate from its theoretic value apparently and result in unexpected consecutive false alarms for normal operating process. Dynamic PCA and ARMA-PCA are demonstrated to be inefficient to remove the influences of auto and cross correlations. Subspace identification-based PCA (SI-PCA) is proposed to improve the monitoring of dynamic processes. Through state space modeling, SI-PCA can remove the auto and cross corre-lations efficiently and avoid consecutive false alarms. Synthetic Monte Carlo experiments and the application in Tennessee Eastman challenge process illustrate the advantages of the proposed approach.
基金The National Major Scientific and Technological Special Project for‘Significant New Drugs Development’(Grant No.:2017ZX0901001-007)provides support for this study.
文摘From a regulatory perspective,drug quality consistency evaluation must concern different processes used for the same drug.In this study,an assessment strategy based on quality by design(QbD)was developed for population pharmaceutical quality evaluation.A descriptive analysis method based on QbD concept was first established to characterize the process by critical evaluation attributes(CEAs).Then quantitative analysis method based on an improved statistical process control(SPC)method was established to investigate the process indicators(PIs)in the process population,such as mean distribution,batch-to-batch difference and abnormal quality probability.After that rules for risk assessment were established based on the SPC limitations and parameters.Both the SPC parameters of the CEAs and the risk of PIs were visualized according to the interaction test results to obtain a better understanding of the population pharmaceutical quality.Finally,an assessment strategy was built and applied to generic drug consistency assessment,process risk assessment and quality trend tracking.The strategy demonstrated in this study could help reveal quality consistency from the perspective of process control and process risk,and further show the recent development status of domestic pharmaceutical production processes.In addition,a process risk assessment and population quality trend tracking provide databased information for approval.Not only can this information serve as a further basis for decisionmaking by the regulatory authority regarding early warnings,but it can also reduce some avoidable adverse reactions.With continuous addition of data,dynamic population pharmaceutical quality is meaningful for emergencies and decision-making regarding drug regulation.
文摘In order to reduce the variations of the product quality in batch processes, multivariate statistical process control methods according to multi-way principal component analysis (MPCA) or multi-way projection to latent structure (MPLS) were proposed for on-line batch process monitoring. However, they are based on the decomposition of relative covariance matrix and strongly affected by outlying observations. In this paper, in view of an efficient projection pursuit algorithm, a robust statistical batch process monitoring (RSBPM) framework,which is resistant to outliers, is proposed to reduce the high demand for modeling data. The construction of robust normal operating condition model and robust control limits are discussed in detail. It is evaluated on monitoring an industrial streptomycin fermentation process and compared with the conventional MPCA. The results show that the RSBPM framework is resistant to possible outliers and the robustness is confirmed.
基金Supported by the National Natural Science Foundation Committee of China(61503259)China Postdoctoral Science Foundation Funded Project(2017M611261)+1 种基金Chinese Scholarship Council(201608210107)Hanyu Plan of Shenyang Jianzhu University(XKHY2-64)
文摘Building energy consumption accounts for nearly 40% of global energy consumption, HVAC (Heating, Ventilating, and Air Conditioning) systems are the major building energy consumers, and as one type of HVAC systems, the heat pump air conditioning system, which is more energy-efficient compared to the traditional air conditioning system, is being more widely used to save energy. However, in northern China, extreme climatic conditions increase the cooling and heating load of the heat pump air conditioning system and accelerate the aging of the equipment, and the sensor may detect drifted parameters owing to climate change. This non-linear drifted parameter increases the false alarm rate of the fault detection and the need for unnecessary troubleshooting. In order to overcome the impact of the device aging and the drifted parameter, a Kalman filter and SPC (statistical process control) fault detection method are introduced in this paper. In this method, the model parameter and its standard variance can he estimated by Kalman filter based on the gray model and the real-time data of the air conditioning system. Further, by using SPC to construct the dynamic control limits, false alarm rate is reduced. And this paper mainly focuses on the cold machine failure in the component failure and its soft fault detection. This approach has been tested on a simulation model of the "Sino-German Energy Conservation Demonstration Center" building heat pump air-conditioning system in Shenyang, China, and the results show that the Kalman filter and SPC fault detection method is simple and highly efficient with a low false alarm rate, and it can deal with the difficulties caused by the extreme environment and the non-linear influence of the parameters, and what's more, it provides a good foundation for dynamic fault diagnosis and fault prediction analysis.
文摘The purpose of the present study is to investigate the presence of multi-fractal behaviours in the traffic time series not only by statistical approaches but also by geometrical approaches. The pointwisc Hǒlder exponent of a function is calculated by developing an algorithm for the numerical evaluation of HSlder exponent of time series. The traffic time series observed on the Beijing Yuquanying highway are analysed. The results from all these methods indicate that the traffic data exhibit the multi-fractal behaviour.
文摘To monitor the quality characteristics of a process, appropriate graphical and statistical tools must be used. These tools are capable of showing the evolution over time of the behavior of the quality characteristics (measurable or countable) and detecting situations that seem to present certain anomalies. The control chart is one of these tools widely used in quality management. In the process of managing the COVID-19 pandemic, this tool will make it possible to know at all times whether the parameters monitored such as the positivity rate, the recovery rate, and the mortality rate, are under control and to act accordingly. Monitoring cure and mortality rates will also show us the effectiveness of the treatments used.
基金National Natural Science Foundation of China (70931004)
文摘For aircraft manufacturing industries, the analyses and prediction of part machining error during machining process are very important to control and improve part machining quality. In order to effectively control machining error, the method of integrating multivariate statistical process control (MSPC) and stream of variations (SoV) is proposed. Firstly, machining error is modeled by multi-operation approaches for part machining process. SoV is adopted to establish the mathematic model of the relationship between the error of upstream operations and the error of downstream operations. Here error sources not only include the influence of upstream operations but also include many of other error sources. The standard model and the predicted model about SoV are built respectively by whether the operation is done or not to satisfy different requests during part machining process. Secondly, the method of one-step ahead forecast error (OSFE) is used to eliminate autocorrelativity of the sample data from the SoV model, and the T2 control chart in MSPC is built to realize machining error detection according to the data characteristics of the above error model, which can judge whether the operation is out of control or not. If it is, then feedback is sent to the operations. The error model is modified by adjusting the operation out of control, and continually it is used to monitor operations. Finally, a machining instance containing two operations demonstrates the effectiveness of the machining error control method presented in this paper.
基金Supported by National Natural Science Foundation of China (No. 70931004)
文摘Traditional studies on integrated statistical process control and engineering process control (SPC-EPC) are based on linear autoregressive integrated moving average (ARIMA) time series models to describe the dynamic noise of the system.However,linear models sometimes are unable to model complex nonlinear autocorrelation.To solve this problem,this paper presents an integrated SPC-EPC method based on smooth transition autoregressive (STAR) time series model,and builds a minimum mean squared error (MMSE) controller as well as an integrated SPC-EPC control system.The performance of this method for checking the trend and sustained shift is analyzed.The simulation results indicate that this integrated SPC-EPC control method based on STAR model is effective in controlling complex nonlinear systems.
基金Sponsored by the Scientific Research Foundation for Returned Overseas Chinese Scholars of the Ministry of Education of China
文摘A new method using discriminant analysis and control charts is proposed for monitoring multivariate process operations more reliably.Fisher discriminant analysis (FDA) is used to derive a feature discriminant direction (FDD) between each normal and fault operations,and each FDD thus decided constructs the feature space of each fault operation.Individuals control charts (XmR charts) are used to monitor multivariate processes using the process data projected onto feature spaces.Upper control limit (UCL) and lower control limit (LCL) on each feature space from normal process operation are calculated for XmR charts,and are used to distinguish fault from normal.A variation trend on an XmR chart reveals the type of relevant fault operation.Applications to Tennessee Eastman simulation processes show that this proposed method can result in better monitoring performance than principal component analysis (PCA)-based methods and can better identify step type faults on XmR charts.
文摘To overcome the large time-delay in measuring the hardness of mixed rubber, rheological parameters were used to predict the hardness. A novel Q-based model updating strategy was proposed as a universal platform to track time-varying properties. Using a few selected support samples to update the model, the strategy could dramat- ically save the storage cost and overcome the adverse influence of low signal-to-noise ratio samples. Moreover, it could be applied to any statistical process monitoring system without drastic changes to them, which is practical for industrial practices. As examples, the Q-based strategy was integrated with three popular algorithms (partial least squares (PIE), recursive PIE (RPLS), and kernel PIE (KPIE)) to form novel regression ones, QPLS, QRPIE and QKPLS, respectively. The applications for predicting mixed rubber hardness on a large-scale tire plant in east China prove the theoretical considerations.
基金National Natural Science Foundation of China(51105369)
文摘Virtual testability demonstration test has many advantages,such as low cost,high efficiency,low risk and few restrictions.It brings new requirements to the fault sample generation.A fault sample simulation approach for virtual testability demonstration test based on stochastic process theory is proposed.First,the similarities and differences of fault sample generation between physical testability demonstration test and virtual testability demonstration test are discussed.Second,it is pointed out that the fault occurrence process subject to perfect repair is renewal process.Third,the interarrival time distribution function of the next fault event is given.Steps and flowcharts of fault sample generation are introduced.The number of faults and their occurrence time are obtained by statistical simulation.Finally,experiments are carried out on a stable tracking platform.Because a variety of types of life distributions and maintenance modes are considered and some assumptions are removed,the sample size and structure of fault sample simulation results are more similar to the actual results and more reasonable.The proposed method can effectively guide the fault injection in virtual testability demonstration test.
基金Supported by the National Basic Research Program of China(2013CB733600)
文摘Rectisol process is more efficient in comparison with other physical or chemical absorption methods for gas purification. To implement a real time simulation of Rectisol process, thermodynamic model and simulation strategy are needed. In this paper, a method of modified statistical associated fluid theory with perturbation theory is used to predict thermodynamic behavior of process. As Rectisol process is a highly heat-integrated process with many loops, a method of equation oriented strategy, sequential quadratic programming, is used as the solver and the process converges perfectly. Then analyses are conducted with this simulator.
基金supported by Defense Industrial Technology Development Program of China (Grant No. A2520110003)
文摘Much research effort has been devoted to economic design of X & S control charts,however,there are some problems in usual methods.On the one hand,it is difficult to estimate the relationship between costs and other model parameters,so the economic design method is often not effective in producing charts that can quickly detect small shifts before substantial losses occur;on the other hand,in many cases,only one type of process shift or only one pair of process shifts are taken into consideration,which may not correctly reflect the actual process conditions.To improve the behavior of economic design of control chart,a cost & loss model with Taguchi's loss function for the economic design of X & S control charts is embellished,which is regarded as an optimization problem with multiple statistical constraints.The optimization design is also carried out based on a number of combinations of process shifts collected from the field operation of the conventional control charts,thus more hidden information about the shift combinations is mined and employed to the optimization design of control charts.At the same time,an improved particle swarm optimization(IPSO) is developed to solve such an optimization problem in design of X & S control charts,IPSO is first tested for several benchmark problems from the literature and evaluated with standard performance metrics.Experimental results show that the proposed algorithm has significant advantages on obtaining the optimal design parameters of the charts.The proposed method can substantially reduce the total cost(or loss) of the control charts,and it will be a promising tool for economic design of control charts.
基金the National Natural Science Foundation of China(50405016,70671065).
文摘Automatic process control(APC)based on design of experiment(DOE)is a cost-efficient approach for variation reduction.The process changes both in mean and variance owing to online parameter adjustment make it hard to apply traditional SPC charts in such DOE-based APC applied process.An adaptive SPC scheme is developed,which can better track the process transitions and achieve the possible SPC run cost reduction when the process is stable.The control law of SPC parameters is designed by fully utilizing the estimation properties of the process model instead of traditionally using the data collected from the production line.An example is provided to illustrate the proposed adaptive SPC design approach.
文摘Consistent high-quality and defect-free production is the demand of the day. The product recall not only increases engineering and manufacturing cost but also affects the quality and the reliability of the product in the eye of users. The monitoring and improvement of a manufacturing process are the strength of statistical process control. In this article we propose a process monitoring memory-based scheme for continuous data under the assumption of normality to detect small non-random shift patterns in any manufacturing or service process.The control limits for the proposed scheme are constructed. The in-control and out-of-control average run length(AVL) expressions have been derived for the performance evaluation of the proposed scheme. Robustness to non-normality has been tested after simulation study of the run length distribution of the proposed scheme, and the comparisons with Shewhart and exponentially weighted moving average(EWMA) schemes are presented for various gamma and t-distributions. The proposed scheme is effective and attractive as it has one design parameter which differentiates it from the traditional schemes. Finally, some suggestions and recommendations are made for the future work.