期刊文献+
共找到47篇文章
< 1 2 3 >
每页显示 20 50 100
AI赋能+数据驱动的云南白药牙膏智能质量放行模式创建与应用实践
1
作者 曲跃尊 李劲 +5 位作者 章金宇 李海军 王静 贾绍强 余娅 杨哲 《口腔护理用品工业》 2025年第5期19-26,共8页
近年来人工智能(artificial intelligence, AI)技术迅速兴起,特别是伴随着生成式AI、问答型AI、判别式AI、知识图谱等技术的不断进步以及AI技术应用场景的不断拓展,无论是当下还是未来都将深刻改变人类社会。2024年06月18日,国家药监局... 近年来人工智能(artificial intelligence, AI)技术迅速兴起,特别是伴随着生成式AI、问答型AI、判别式AI、知识图谱等技术的不断进步以及AI技术应用场景的不断拓展,无论是当下还是未来都将深刻改变人类社会。2024年06月18日,国家药监局综合司发布《关于印发药品监管人工智能典型应用场景清单的通知》及《药品监管人工智能典型应用场景清单》^([1]),如何借助AI技术提升药品审评质量和效率,有效促进“人工智能+”在药品监管领域的实践探索,统筹推进人工智能场景创新,进一步构建智慧监管体系,已经成为整个医药及化妆品产业上下游及监管方重点思考的方向。云南白药集团率先在牙膏智慧工厂落地并实施了AI赋能+数据驱动的智能质量放行模式。本研究从企业自身质量管理数字化转型的视角出发,梳理了云南白药牙膏质量放行的所有要素及信息化系统建设和集成情况,在行业内创造性推出智能质量放行系统。重点介绍云南白药集团对该系统的建设应用情况以及质量管理数字化转型实践,梳理了生产企业信息化发展现状以及面临的挑战,探索企业内部智慧监管创新发展实践路径,总结智能质量放行系统建设应用的阶段性成果,并提出进一步的思考。该模式具有高度可复制、可推广、可借鉴的特性,可推广至具有相同应用场景的食品、药品、化妆品、保健品、医疗器械等行业,以期为提升行业安全治理能力和治理水平,推动质量管理创新提供参考,进而推动全行业、全领域、全链路的智慧监管并引领未来质量安全监管科学化、现代化、信息化、智慧化。 展开更多
关键词 人工智能(AI) 数字化转型 在线近红外光谱技术(NIRS On-line Near-Infrared Spectroscopy) 过程质量监控(SPC Statistical Process Control) 工业物联网(IIOT Industrial Internet of Things) 质量管理 质量放行 智慧监管
在线阅读 下载PDF
Multivariate Statistical Process Monitoring and Control: Recent Developments and Applications to Chemical Industry 被引量:39
2
作者 梁军 钱积新 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2003年第2期191-203,共13页
Multivariate statistical process monitoring and control (MSPM&C) methods for chemical process monitoring with statistical projection techniques such as principal component analysis (PCA) and partial least squares ... Multivariate statistical process monitoring and control (MSPM&C) methods for chemical process monitoring with statistical projection techniques such as principal component analysis (PCA) and partial least squares (PLS) are surveyed in this paper. The four-step procedure of performing MSPM&C for chemical process, modeling of processes, detecting abnormal events or faults, identifying the variable(s) responsible for the faults and diagnosing the source cause for the abnormal behavior, is analyzed. Several main research directions of MSPM&C reported in the literature are discussed, such as multi-way principal component analysis (MPCA) for batch process, statistical monitoring and control for nonlinear process, dynamic PCA and dynamic PLS, and on-line quality control by inferential models. Industrial applications of MSPM&C to several typical chemical processes, such as chemical reactor, distillation column, polymerization process, petroleum refinery units, are summarized. Finally, some concluding remarks and future considerations are made. 展开更多
关键词 multivariate statistical process monitoring and control (MSPM&C) fault detection and isolation (FDI) principal component analysis (PCA) partial least squares (PLS) quality control inferential model
在线阅读 下载PDF
Multivariate Statistical Process Monitoring of an Industrial Polypropylene Catalyzer Reactor with Component Analysis and Kernel Density Estimation 被引量:16
3
作者 熊丽 梁军 钱积新 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第4期524-532,共9页
Abstract Data-driven tools, such as principal component analysis (PCA) and independent component analysis (ICA) have been applied to different benchmarks as process monitoring methods. The difference between the t... Abstract Data-driven tools, such as principal component analysis (PCA) and independent component analysis (ICA) have been applied to different benchmarks as process monitoring methods. The difference between the two methods is that the components of PCA are still dependent while ICA has no orthogonality constraint and its latentvariables are independent. Process monitoring with PCA often supposes that process data or principal components is Gaussian distribution. However, this kind of constraint cannot be satisfied by several practical processes. To ex-tend the use of PCA, a nonparametric method is added to PCA to overcome the difficulty, and kernel density estimation (KDE) is rather a good choice. Though ICA is based on non-Gaussian distribution intormation, .KDE can help in the close monitoring of the data. Methods, such as PCA, ICA, PCA.with .KDE(KPCA), and ICA with KDE,(KICA), are demonstrated and. compared by applying them to a practical industnal Spheripol craft polypropylene catalyzer reactor instead of a laboratory emulator. 展开更多
关键词 multivariate statistical process monitoring principal comPonent analysis kermel density estimation POLYPROPYLENE catalyzer reactor fault detection data-driven tools
在线阅读 下载PDF
Statistical Monitoring of Chemical Processes Based on Sensitive Kernel Principal Components 被引量:10
4
作者 JIANG Qingchao YAN Xuefeng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第6期633-643,共11页
The kernel principal component analysis (KPCA) method employs the first several kernel principal components (KPCs), which indicate the most variance information of normal observations for process monitoring, but m... The kernel principal component analysis (KPCA) method employs the first several kernel principal components (KPCs), which indicate the most variance information of normal observations for process monitoring, but may not reflect the fault information. In this study, sensitive kernel principal component analysis (SKPCA) is proposed to improve process monitoring performance, i.e., to deal with the discordance of T2 statistic and squared prediction error SVE statistic and reduce missed detection rates. T2 statistic can be used to measure the variation di rectly along each KPC and analyze the detection performance as well as capture the most useful information in a process. With the calculation of the change rate of T2 statistic along each KPC, SKPCA selects the sensitive kernel principal components for process monitoring. A simulated simple system and Tennessee Eastman process are employed to demonstrate the efficiency of SKPCA on online monitoring. The results indicate that the monitoring performance is improved significantly. 展开更多
关键词 statistical process monitoring kernel principal component analysis sensitive kernel principal compo-nent Tennessee Eastman process
在线阅读 下载PDF
Nonparametric Control Scheme for Monitoring Phase Ⅱ Nonlinear Profiles with Varied Argument Values 被引量:6
5
作者 ZHANG Yang HE Zhen +1 位作者 FANG Juntao ZHANG Min 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第3期587-597,共11页
Profile monitoring is used to check the stability of the quality of a product over time when the product quality is best represented by a function at each time point.However,most previous monitoring approaches have no... Profile monitoring is used to check the stability of the quality of a product over time when the product quality is best represented by a function at each time point.However,most previous monitoring approaches have not considered that the argument values may vary from profile to profile,which is common in practice.A novel nonparametric control scheme based on profile error is proposed for monitoring nonlinear profiles with varied argument values.The proposed scheme uses the metrics of profile error as the statistics to construct the control charts.More details about the design of this nonparametric scheme are also discussed.The monitoring performance of the combined control scheme is compared with that of alternative nonparametric methods via simulation.Simulation studies show that the combined scheme is effective in detecting parameter error and is sensitive to small shifts in the process.In addition,due to the properties of the charting statistics,the out-of-control signal can provide diagnostic information for the users.Finally,the implementation steps of the proposed monitoring scheme are given and applied for monitoring the blade manufacturing process.With the application in blade manufacturing of aircraft engines,the proposed nonparametric control scheme is effective,interpretable,and easy to apply. 展开更多
关键词 statistical process control profile monitoring nonparametric metric profile error
在线阅读 下载PDF
Investigation of Dynamic Multivariate Chemical Process Monitoring 被引量:3
6
作者 谢磊 张建明 王树青 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第5期559-568,共10页
Chemical process variables are always driven by random noise and disturbances. The closed-loop con-trol yields process measurements that are auto and cross correlated. The influence of auto and cross correlations on s... Chemical process variables are always driven by random noise and disturbances. The closed-loop con-trol yields process measurements that are auto and cross correlated. The influence of auto and cross correlations on statistical process control (SPC) is investigated in detail by Monte Carlo experiments. It is revealed that in the sense of average performance, the false alarms rates (FAR) of principal component analysis (PCA), dynamic PCA are not affected by the time-series structures of process variables. Nevertheless, non-independent identical distribution will cause the actual FAR to deviate from its theoretic value apparently and result in unexpected consecutive false alarms for normal operating process. Dynamic PCA and ARMA-PCA are demonstrated to be inefficient to remove the influences of auto and cross correlations. Subspace identification-based PCA (SI-PCA) is proposed to improve the monitoring of dynamic processes. Through state space modeling, SI-PCA can remove the auto and cross corre-lations efficiently and avoid consecutive false alarms. Synthetic Monte Carlo experiments and the application in Tennessee Eastman challenge process illustrate the advantages of the proposed approach. 展开更多
关键词 multivariate statistical processes control subspace identification false alarms rate dynamic processes
在线阅读 下载PDF
A strategy for population pharmaceutical quality assessment based on quality by design 被引量:3
7
作者 Yu Zhao Changqin Hu +2 位作者 Shangchen Yao Lihui Yin Xiaomei Ling 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2021年第5期588-595,共8页
From a regulatory perspective,drug quality consistency evaluation must concern different processes used for the same drug.In this study,an assessment strategy based on quality by design(QbD)was developed for populatio... From a regulatory perspective,drug quality consistency evaluation must concern different processes used for the same drug.In this study,an assessment strategy based on quality by design(QbD)was developed for population pharmaceutical quality evaluation.A descriptive analysis method based on QbD concept was first established to characterize the process by critical evaluation attributes(CEAs).Then quantitative analysis method based on an improved statistical process control(SPC)method was established to investigate the process indicators(PIs)in the process population,such as mean distribution,batch-to-batch difference and abnormal quality probability.After that rules for risk assessment were established based on the SPC limitations and parameters.Both the SPC parameters of the CEAs and the risk of PIs were visualized according to the interaction test results to obtain a better understanding of the population pharmaceutical quality.Finally,an assessment strategy was built and applied to generic drug consistency assessment,process risk assessment and quality trend tracking.The strategy demonstrated in this study could help reveal quality consistency from the perspective of process control and process risk,and further show the recent development status of domestic pharmaceutical production processes.In addition,a process risk assessment and population quality trend tracking provide databased information for approval.Not only can this information serve as a further basis for decisionmaking by the regulatory authority regarding early warnings,but it can also reduce some avoidable adverse reactions.With continuous addition of data,dynamic population pharmaceutical quality is meaningful for emergencies and decision-making regarding drug regulation. 展开更多
关键词 Population pharmaceutical quality Quality by design(QbD) Crucial evaluation attributes(CEAs) Process indicators(PIs) Improved statistical process control(SPC) Risk assessment
暂未订购
A Robust Statistical Batch Process Monitoring Framework and Its Application 被引量:4
8
作者 谢磊 张建明 王树青 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第5期682-687,共6页
In order to reduce the variations of the product quality in batch processes, multivariate statistical process control methods according to multi-way principal component analysis (MPCA) or multi-way projection to laten... In order to reduce the variations of the product quality in batch processes, multivariate statistical process control methods according to multi-way principal component analysis (MPCA) or multi-way projection to latent structure (MPLS) were proposed for on-line batch process monitoring. However, they are based on the decomposition of relative covariance matrix and strongly affected by outlying observations. In this paper, in view of an efficient projection pursuit algorithm, a robust statistical batch process monitoring (RSBPM) framework,which is resistant to outliers, is proposed to reduce the high demand for modeling data. The construction of robust normal operating condition model and robust control limits are discussed in detail. It is evaluated on monitoring an industrial streptomycin fermentation process and compared with the conventional MPCA. The results show that the RSBPM framework is resistant to possible outliers and the robustness is confirmed. 展开更多
关键词 robust statistical batch process monitoring robust principal componentanalysis streptomycin fermentation robust multi-way principal component analysis
在线阅读 下载PDF
Research on fault detection method for heat pump air conditioning system under cold weather 被引量:6
9
作者 Liangliang Sun Jianghua Wu +1 位作者 Haiqi Jia Xuebin Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第12期1812-1819,共8页
Building energy consumption accounts for nearly 40% of global energy consumption, HVAC (Heating, Ventilating, and Air Conditioning) systems are the major building energy consumers, and as one type of HVAC systems, t... Building energy consumption accounts for nearly 40% of global energy consumption, HVAC (Heating, Ventilating, and Air Conditioning) systems are the major building energy consumers, and as one type of HVAC systems, the heat pump air conditioning system, which is more energy-efficient compared to the traditional air conditioning system, is being more widely used to save energy. However, in northern China, extreme climatic conditions increase the cooling and heating load of the heat pump air conditioning system and accelerate the aging of the equipment, and the sensor may detect drifted parameters owing to climate change. This non-linear drifted parameter increases the false alarm rate of the fault detection and the need for unnecessary troubleshooting. In order to overcome the impact of the device aging and the drifted parameter, a Kalman filter and SPC (statistical process control) fault detection method are introduced in this paper. In this method, the model parameter and its standard variance can he estimated by Kalman filter based on the gray model and the real-time data of the air conditioning system. Further, by using SPC to construct the dynamic control limits, false alarm rate is reduced. And this paper mainly focuses on the cold machine failure in the component failure and its soft fault detection. This approach has been tested on a simulation model of the "Sino-German Energy Conservation Demonstration Center" building heat pump air-conditioning system in Shenyang, China, and the results show that the Kalman filter and SPC fault detection method is simple and highly efficient with a low false alarm rate, and it can deal with the difficulties caused by the extreme environment and the non-linear influence of the parameters, and what's more, it provides a good foundation for dynamic fault diagnosis and fault prediction analysis. 展开更多
关键词 Fault detection Cold machine Kalman filter Statistical process control Dynamic control
在线阅读 下载PDF
Multi-fractal analysis of highway traffic data 被引量:2
10
作者 商朋见 申金升 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第2期365-373,共9页
The purpose of the present study is to investigate the presence of multi-fractal behaviours in the traffic time series not only by statistical approaches but also by geometrical approaches. The pointwisc Hǒlder expon... The purpose of the present study is to investigate the presence of multi-fractal behaviours in the traffic time series not only by statistical approaches but also by geometrical approaches. The pointwisc Hǒlder exponent of a function is calculated by developing an algorithm for the numerical evaluation of HSlder exponent of time series. The traffic time series observed on the Beijing Yuquanying highway are analysed. The results from all these methods indicate that the traffic data exhibit the multi-fractal behaviour. 展开更多
关键词 fractals probability theory stochastic processes and statistics
原文传递
Construction of Control Charts for Monitoring Various Parameters Related to the Management of the COVID-19 Pandemic 被引量:2
11
作者 Mame Faty Mbaye Ngor Sarr Baba Ngom 《Journal of Biosciences and Medicines》 2021年第3期9-19,共11页
To monitor the quality characteristics of a process, appropriate graphical and statistical tools must be used. These tools are capable of showing the evolution over time of the behavior of the quality characteristics ... To monitor the quality characteristics of a process, appropriate graphical and statistical tools must be used. These tools are capable of showing the evolution over time of the behavior of the quality characteristics (measurable or countable) and detecting situations that seem to present certain anomalies. The control chart is one of these tools widely used in quality management. In the process of managing the COVID-19 pandemic, this tool will make it possible to know at all times whether the parameters monitored such as the positivity rate, the recovery rate, and the mortality rate, are under control and to act accordingly. Monitoring cure and mortality rates will also show us the effectiveness of the treatments used. 展开更多
关键词 COVID-19 Statistical Process Control Control Charts Healthcare
在线阅读 下载PDF
Machining Error Control by Integrating Multivariate Statistical Process Control and Stream of Variations Methodology 被引量:4
12
作者 WANG Pei ZHANG Dinghua LI Shan CHEN Bing 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2012年第6期937-947,共11页
For aircraft manufacturing industries, the analyses and prediction of part machining error during machining process are very important to control and improve part machining quality. In order to effectively control mac... For aircraft manufacturing industries, the analyses and prediction of part machining error during machining process are very important to control and improve part machining quality. In order to effectively control machining error, the method of integrating multivariate statistical process control (MSPC) and stream of variations (SoV) is proposed. Firstly, machining error is modeled by multi-operation approaches for part machining process. SoV is adopted to establish the mathematic model of the relationship between the error of upstream operations and the error of downstream operations. Here error sources not only include the influence of upstream operations but also include many of other error sources. The standard model and the predicted model about SoV are built respectively by whether the operation is done or not to satisfy different requests during part machining process. Secondly, the method of one-step ahead forecast error (OSFE) is used to eliminate autocorrelativity of the sample data from the SoV model, and the T2 control chart in MSPC is built to realize machining error detection according to the data characteristics of the above error model, which can judge whether the operation is out of control or not. If it is, then feedback is sent to the operations. The error model is modified by adjusting the operation out of control, and continually it is used to monitor operations. Finally, a machining instance containing two operations demonstrates the effectiveness of the machining error control method presented in this paper. 展开更多
关键词 machining error multivariate statistical process control stream of variations error modeling one-step ahead forecast error error detection
原文传递
Integrated Statistical and Engineering Process Control Based on Smooth Transition Autoregressive Model 被引量:1
13
作者 张晓蕾 何桢 《Transactions of Tianjin University》 EI CAS 2013年第2期147-156,共10页
Traditional studies on integrated statistical process control and engineering process control (SPC-EPC) are based on linear autoregressive integrated moving average (ARIMA) time series models to describe the dynamic n... Traditional studies on integrated statistical process control and engineering process control (SPC-EPC) are based on linear autoregressive integrated moving average (ARIMA) time series models to describe the dynamic noise of the system.However,linear models sometimes are unable to model complex nonlinear autocorrelation.To solve this problem,this paper presents an integrated SPC-EPC method based on smooth transition autoregressive (STAR) time series model,and builds a minimum mean squared error (MMSE) controller as well as an integrated SPC-EPC control system.The performance of this method for checking the trend and sustained shift is analyzed.The simulation results indicate that this integrated SPC-EPC control method based on STAR model is effective in controlling complex nonlinear systems. 展开更多
关键词 statistical process control engineering process control time series STAR model AUTOCORRELATION
在线阅读 下载PDF
New Method for Multivariate Statistical Process Monitoring 被引量:1
14
作者 裴旭东 陈祥光 刘春涛 《Journal of Beijing Institute of Technology》 EI CAS 2010年第1期92-98,共7页
A new method using discriminant analysis and control charts is proposed for monitoring multivariate process operations more reliably.Fisher discriminant analysis (FDA) is used to derive a feature discriminant direct... A new method using discriminant analysis and control charts is proposed for monitoring multivariate process operations more reliably.Fisher discriminant analysis (FDA) is used to derive a feature discriminant direction (FDD) between each normal and fault operations,and each FDD thus decided constructs the feature space of each fault operation.Individuals control charts (XmR charts) are used to monitor multivariate processes using the process data projected onto feature spaces.Upper control limit (UCL) and lower control limit (LCL) on each feature space from normal process operation are calculated for XmR charts,and are used to distinguish fault from normal.A variation trend on an XmR chart reveals the type of relevant fault operation.Applications to Tennessee Eastman simulation processes show that this proposed method can result in better monitoring performance than principal component analysis (PCA)-based methods and can better identify step type faults on XmR charts. 展开更多
关键词 Fisher discriminant analysis individuals control chart multivariate statistical process monitoring
在线阅读 下载PDF
A novel Q-based online model updating strategy and its application in statistical process control for rubber mixing 被引量:2
15
作者 Chunying Zhang Sun Chen +1 位作者 Fang Wu Kai Song 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第5期796-803,共8页
To overcome the large time-delay in measuring the hardness of mixed rubber, rheological parameters were used to predict the hardness. A novel Q-based model updating strategy was proposed as a universal platform to tra... To overcome the large time-delay in measuring the hardness of mixed rubber, rheological parameters were used to predict the hardness. A novel Q-based model updating strategy was proposed as a universal platform to track time-varying properties. Using a few selected support samples to update the model, the strategy could dramat- ically save the storage cost and overcome the adverse influence of low signal-to-noise ratio samples. Moreover, it could be applied to any statistical process monitoring system without drastic changes to them, which is practical for industrial practices. As examples, the Q-based strategy was integrated with three popular algorithms (partial least squares (PIE), recursive PIE (RPLS), and kernel PIE (KPIE)) to form novel regression ones, QPLS, QRPIE and QKPLS, respectively. The applications for predicting mixed rubber hardness on a large-scale tire plant in east China prove the theoretical considerations. 展开更多
关键词 Online model updating Rubber mixingQ statistic Hardness Rheological parameters Statistical process control
在线阅读 下载PDF
A Fault Sample Simulation Approach for Virtual Testability Demonstration Test 被引量:3
16
作者 ZHANG Yong QIU Jing +1 位作者 LIU Guanjun YANG Peng 《Chinese Journal of Aeronautics》 SCIE EI CSCD 2012年第4期598-604,共7页
Virtual testability demonstration test has many advantages,such as low cost,high efficiency,low risk and few restrictions.It brings new requirements to the fault sample generation.A fault sample simulation approach fo... Virtual testability demonstration test has many advantages,such as low cost,high efficiency,low risk and few restrictions.It brings new requirements to the fault sample generation.A fault sample simulation approach for virtual testability demonstration test based on stochastic process theory is proposed.First,the similarities and differences of fault sample generation between physical testability demonstration test and virtual testability demonstration test are discussed.Second,it is pointed out that the fault occurrence process subject to perfect repair is renewal process.Third,the interarrival time distribution function of the next fault event is given.Steps and flowcharts of fault sample generation are introduced.The number of faults and their occurrence time are obtained by statistical simulation.Finally,experiments are carried out on a stable tracking platform.Because a variety of types of life distributions and maintenance modes are considered and some assumptions are removed,the sample size and structure of fault sample simulation results are more similar to the actual results and more reasonable.The proposed method can effectively guide the fault injection in virtual testability demonstration test. 展开更多
关键词 fault sample testability demonstration virtual testability test stochastic process statistical simulation Monte Carlo maintenance
原文传递
Equation oriented method for Rectisol wash modeling and analysis 被引量:4
17
作者 高宁 翟持 +1 位作者 孙巍 张新宇 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第9期1530-1535,共6页
Rectisol process is more efficient in comparison with other physical or chemical absorption methods for gas purification. To implement a real time simulation of Rectisol process, thermodynamic model and simulation str... Rectisol process is more efficient in comparison with other physical or chemical absorption methods for gas purification. To implement a real time simulation of Rectisol process, thermodynamic model and simulation strategy are needed. In this paper, a method of modified statistical associated fluid theory with perturbation theory is used to predict thermodynamic behavior of process. As Rectisol process is a highly heat-integrated process with many loops, a method of equation oriented strategy, sequential quadratic programming, is used as the solver and the process converges perfectly. Then analyses are conducted with this simulator. 展开更多
关键词 Rectisol process simulation Modified statistical associated fluid theory Equation oriented Sequential quadratic programming
在线阅读 下载PDF
Economic Design of & S Control Charts Based on Taguchi's Loss Function and Its Optimization
18
作者 GUO Yu YANG Wen'an +1 位作者 LIAO Wenhe GAO Shiwen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第3期576-586,共11页
Much research effort has been devoted to economic design of X & S control charts,however,there are some problems in usual methods.On the one hand,it is difficult to estimate the relationship between costs and other m... Much research effort has been devoted to economic design of X & S control charts,however,there are some problems in usual methods.On the one hand,it is difficult to estimate the relationship between costs and other model parameters,so the economic design method is often not effective in producing charts that can quickly detect small shifts before substantial losses occur;on the other hand,in many cases,only one type of process shift or only one pair of process shifts are taken into consideration,which may not correctly reflect the actual process conditions.To improve the behavior of economic design of control chart,a cost & loss model with Taguchi's loss function for the economic design of X & S control charts is embellished,which is regarded as an optimization problem with multiple statistical constraints.The optimization design is also carried out based on a number of combinations of process shifts collected from the field operation of the conventional control charts,thus more hidden information about the shift combinations is mined and employed to the optimization design of control charts.At the same time,an improved particle swarm optimization(IPSO) is developed to solve such an optimization problem in design of X & S control charts,IPSO is first tested for several benchmark problems from the literature and evaluated with standard performance metrics.Experimental results show that the proposed algorithm has significant advantages on obtaining the optimal design parameters of the charts.The proposed method can substantially reduce the total cost(or loss) of the control charts,and it will be a promising tool for economic design of control charts. 展开更多
关键词 statistical process control control charts Taguchi's loss function OPTIMIZATION particle swarm optimization
在线阅读 下载PDF
Adaptive SPC monitoring scheme for DOE-based APC
19
作者 Ye Liang Pan Ershun Xi Lifeng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第2期329-336,共8页
Automatic process control(APC)based on design of experiment(DOE)is a cost-efficient approach for variation reduction.The process changes both in mean and variance owing to online parameter adjustment make it hard to a... Automatic process control(APC)based on design of experiment(DOE)is a cost-efficient approach for variation reduction.The process changes both in mean and variance owing to online parameter adjustment make it hard to apply traditional SPC charts in such DOE-based APC applied process.An adaptive SPC scheme is developed,which can better track the process transitions and achieve the possible SPC run cost reduction when the process is stable.The control law of SPC parameters is designed by fully utilizing the estimation properties of the process model instead of traditionally using the data collected from the production line.An example is provided to illustrate the proposed adaptive SPC design approach. 展开更多
关键词 automatic process control statistical process control robust parameter design process transitions.
在线阅读 下载PDF
Memory Based Scheme to Monitor Non-Random Small Shift Patterns in Manufacturing Process
20
作者 KHAN Mansoor 崔利荣 《Journal of Shanghai Jiaotong university(Science)》 EI 2016年第4期509-512,共4页
Consistent high-quality and defect-free production is the demand of the day. The product recall not only increases engineering and manufacturing cost but also affects the quality and the reliability of the product in ... Consistent high-quality and defect-free production is the demand of the day. The product recall not only increases engineering and manufacturing cost but also affects the quality and the reliability of the product in the eye of users. The monitoring and improvement of a manufacturing process are the strength of statistical process control. In this article we propose a process monitoring memory-based scheme for continuous data under the assumption of normality to detect small non-random shift patterns in any manufacturing or service process.The control limits for the proposed scheme are constructed. The in-control and out-of-control average run length(AVL) expressions have been derived for the performance evaluation of the proposed scheme. Robustness to non-normality has been tested after simulation study of the run length distribution of the proposed scheme, and the comparisons with Shewhart and exponentially weighted moving average(EWMA) schemes are presented for various gamma and t-distributions. The proposed scheme is effective and attractive as it has one design parameter which differentiates it from the traditional schemes. Finally, some suggestions and recommendations are made for the future work. 展开更多
关键词 average run length (AVL) exponentially weighted moving average (EWMA) chart industrial process normal distribution power curve quality control statistical process control
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部