期刊文献+
共找到288篇文章
< 1 2 15 >
每页显示 20 50 100
GIS Analysis of Spatial Distribution of Crop Incidence 被引量:2
1
作者 马永 周春平 李小娟 《Plant Diseases and Pests》 CAS 2011年第3期14-16,共3页
Using GIS spatial statistical analysis method, with ArcGIS software as an analysis tool, taking the diseased maize in Hedong District of Linyi City as the study object, the distribution characteristic of the diseased ... Using GIS spatial statistical analysis method, with ArcGIS software as an analysis tool, taking the diseased maize in Hedong District of Linyi City as the study object, the distribution characteristic of the diseased crops this time in spatial location was analyzed. The results showed that the diseased crops mainly dis- tributed along with river tributaries and downstream of main rivers. The correlation between adjacent diseased plots was little, so the infection of pests and diseases were excluded, and the major reason of incidence might be river pollution. 展开更多
关键词 Crop incidence spatial statistical analysis method GIS Weighted standard deviation ellipse China
在线阅读 下载PDF
Statistical analysis of geomagnetic field variations during the partial solar eclipse on 2011 January 4 in Turkey
2
作者 Abdullah Ates Yunus Levent Ekinci +2 位作者 Aydin Buyuksarac Attila Aydemir Alper Demirci 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2015年第5期742-752,共11页
Some geophysical parameters, such as those related to gravitation and the geomagnetic field, could change during solar eclipses. In order to observe geomagnetic fluctuations, geomagnetic measurements were carded out i... Some geophysical parameters, such as those related to gravitation and the geomagnetic field, could change during solar eclipses. In order to observe geomagnetic fluctuations, geomagnetic measurements were carded out in a limited time frame during the partial solar eclipse that occurred on 2011 January 4 and was observed in Canakkale and Ankara, Turkey. Additionally, records of the geomagnetic field spanning 24 hours, obtained from another observatory (in Iznik, Turkey), were also analyzed to check for any peculiar variations. In the data processing stage, a polynomial fit, following the application of a running average routine, was applied to the geomagnetic field data sets. Geomagnetic field data sets indicated there was a characteristic decrease at the beginning of the solar eclipse and this decrease can be well-correlated with previous geomagnetic field measurements that were taken during the total solar eclipse that was observed in Turkey on 2006 March 29. The behavior of the geomagnetic field is also consistent with previous observations in the literature. As a result of these analyses, it can be suggested that eclipses can cause a shielding effect on the geomagnetic field of the Earth. 展开更多
关键词 SUN magnetic field -- eclipses -- methods data analysis -- methods statistics
在线阅读 下载PDF
Preliminary analysis on the noise characteristics of MWISP data
3
作者 Jia-Jun Cai Ji Yang +4 位作者 Sheng Zheng Qing-Zeng Yan Shao-Bo Zhang Xin Zhou Hao-Ran Feng 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2021年第12期365-374,共10页
Noise is a significant part within a millimeter-wave molecular line datacube.Analyzing the noise improves our understanding of noise characteristics,and further contributes to scientific discoveries.We measure the noi... Noise is a significant part within a millimeter-wave molecular line datacube.Analyzing the noise improves our understanding of noise characteristics,and further contributes to scientific discoveries.We measure the noise level of a single datacube from MWISP and perform statistical analyses.We identified major factors which increase the noise level of a single datacube,including bad channels,edge effects,baseline distortion and line contamination.Cleaning algorithms are applied to remove or reduce these noise components.As a result,we obtained the cleaned datacube in which noise follows a positively skewed normal distribution.We further analyzed the noise structure distribution of a 3 D mosaicked datacube in the range l=40°7 to 43°3 and b=-2°3 to 0°3 and found that noise in the final mosaicked datacube is mainly characterized by noise fluctuation among the cells. 展开更多
关键词 methods:analytical methods:data analysis methods:statistical
在线阅读 下载PDF
Random forest algorithm for classification of multiwavelength data 被引量:3
4
作者 Dan Gao Yan-Xia Zhang Yong-Heng Zhao 《Chinese Journal of Astronomy and Astrophysics》 CSCD 2009年第2期220-226,共7页
We introduced a decision tree method called Random Forests for multiwavelength data classification. The data were adopted from different databases, including the Sloan Digital Sky Survey (SDSS) Data Release five, US... We introduced a decision tree method called Random Forests for multiwavelength data classification. The data were adopted from different databases, including the Sloan Digital Sky Survey (SDSS) Data Release five, USNO, FIRST and ROSAT. We then studied the discrimination of quasars from stars and the classification of quasars, stars and galaxies with the sample from optical and radio bands and with that from optical and X-ray bands. Moreover, feature selection and feature weighting based on Random Forests were investigated. The performances based on different input patterns were compared. The experimental results show that the random forest method is an effective method for astronomical object classification and can be applied to other classification problems faced in astronomy. In addition, Random Forests will show its superiorities due to its own merits, e.g. classification, feature selection, feature weighting as well as outlier detection. 展开更多
关键词 classification-- astronomical databases miscellaneous -- catalogs -- meth- ods data analysis -- methods statistical
在线阅读 下载PDF
A star-based method for precise wavelength calibration of the Chinese Space Station Telescope(CSST) slitless spectroscopic survey 被引量:2
5
作者 Hai-Bo Yuan Ding-Shan Deng Yang Sun 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2021年第3期235-242,共8页
The Chinese Space Station Telescope(CSST)spectroscopic survey aims to deliver high-quality low-resolution(R>200)slitless spectra for hundreds of millions of targets down to a limiting magnitude of about 21 mag,dist... The Chinese Space Station Telescope(CSST)spectroscopic survey aims to deliver high-quality low-resolution(R>200)slitless spectra for hundreds of millions of targets down to a limiting magnitude of about 21 mag,distributed within a large survey area(17500 deg2)and covering a wide wavelength range(255-1000 nm by three bands GU,GV,and GI).As slitless spectroscopy precludes the usage of wavelength calibration lamps,wavelength calibration is one of the most challenging issues in the reduction of slitless spectra,yet it plays a key role in measuring precise radial velocities of stars and redshifts of galaxies.In this work,we propose a star-based method that can monitor and correct for possible errors in the CSST wavelength calibration using normal scientific observations,taking advantage of the facts that(ⅰ)there are about ten million stars with reliable radial velocities now available thanks to spectroscopic surveys like LAMOST,(ⅱ)the large field of view of CSST enables efficient observations of such stars in a short period of time,and(ⅲ)radial velocities of such stars can be reliably measured using only a narrow segment of CSST spectra.We demonstrate that it is possible to achieve a wavelength calibration precision of a few km s^(-1) for the GU band,and about 10 to 20 kms^(-1) for the GV and GI bands,with only a few hundred velocity standard stars.Implementations of the method to other surveys are also discussed. 展开更多
关键词 methods:data analysis methods:statistical techniques:spectroscopic techniques:radial velocities stars:fundamental parameters stars:kinematics and dynamics
在线阅读 下载PDF
Automated estimation of stellar fundamental parameters from low resolution spectra: the PLS method 被引量:1
6
作者 Jian-Nan Zhang A-Li Luo Yong-Heng Zhao 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2009年第6期712-724,共13页
PLS (Partial Least Squares regression) is introduced into an automatic estimation of fundamental stellar spectral parameters. It extracts the most correlative spectral component to the parameters (Teff, log g and [... PLS (Partial Least Squares regression) is introduced into an automatic estimation of fundamental stellar spectral parameters. It extracts the most correlative spectral component to the parameters (Teff, log g and [Fe/H]), and sets up a linear regression function from spectra to the corresponding parameters. Considering the properties of stellar spectra and the PLS algorithm, we present a piecewise PLS regression method for estimation of stellar parameters, which is composed of one PLS model for Teff, and seven PLS models for log g and [Fe/H] estimation. Its performance is investigated by large experiments on flux calibrated spectra and continuum normalized spectra at different signal-to-noise ratios (SNRs) and resolutions. The results show that the piecewise PLS method is robust for spectra at the medium resolution of 0.23 nm. For low resolution 0.5 nm and 1 nm spectra, it achieves competitive results at higher SNR. Experiments using ELODIE spectra of 0.23 nm resolution illustrate that our piecewise PLS models trained with MILES spectra are efficient for O ~ G stars: for flux calibrated spectra, the systematic offsets are 3.8%, 0.14 dex, and -0.09 dex for Teff, log g and [Fe/H], with error scatters of 5.2%, 0.44 dex and 0.38 dex, respectively; for continuum normalized spectra, the systematic offsets are 3.8%, 0.12dex, and -0.13 dex for Teff, log g and [Fe/H], with error scatters of 5.2%, 0.49 dex and 0.41 dex, respectively. The PLS method is rapid, easy to use and does not rely as strongly on the tightness of a parameter grid of templates to reach high precision as Artificial Neural Networks or minimum distance methods do. 展开更多
关键词 methodS data analysis -- methods statistical -- stars fundamental param- eters (classification temperatures metallicity) -- techniques spectroscopic -- surveys
在线阅读 下载PDF
Data-driven Seeing Prediction for Optics Telescope:from Statistical Modeling,Machine Learning to Deep Learning Techniques 被引量:1
7
作者 Wei-Jian Ni Quan-Le Shen +3 位作者 Qing-Tian Zeng Huai-Qing Wang Xiang-Qun Cui Tong Liu 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2022年第12期152-165,共14页
Predicting seeing of astronomical observations can provide hints of the quality of optical imaging in the near future,and facilitate flexible scheduling of observation tasks to maximize the use of astronomical observa... Predicting seeing of astronomical observations can provide hints of the quality of optical imaging in the near future,and facilitate flexible scheduling of observation tasks to maximize the use of astronomical observatories.Traditional approaches to seeing prediction mostly rely on regional weather models to capture the in-dome optical turbulence patterns.Thanks to the developing of data gathering and aggregation facilities of astronomical observatories in recent years,data-driven approaches are becoming increasingly feasible and attractive to predict astronomical seeing.This paper systematically investigates data-driven approaches to seeing prediction by leveraging various big data techniques,from traditional statistical modeling,machine learning to new emerging deep learning methods,on the monitoring data of the Large sky Area Multi-Object fiber Spectroscopic Telescope(LAMOST).The raw monitoring data are preprocessed to allow for big data modeling.Then we formulate the seeing prediction task under each type of modeling framework and develop seeing prediction models through using representative big data techniques,including ARIMA and Prophet for statistical modeling,MLP and XGBoost for machine learning,and LSTM,GRU and Transformer for deep learning.We perform empirical studies on the developed models with a variety of feature configurations,yielding notable insights into the applicability of big data techniques to the seeing prediction task. 展开更多
关键词 methods:data analysis methods:statistical telescopes
在线阅读 下载PDF
Ensemble Learning for Stellar Classification and Radius Estimation from Multimodal Data 被引量:1
8
作者 Zhi-Jie Deng Sheng-Yuan Yu +2 位作者 A-Li Luo Xiao Kong Xiang-Ru Li 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第11期211-224,共14页
Stellar classification and radius estimation are crucial for understanding the structure of the Universe and stella evolution.With the advent of the era of astronomical big data,multimodal data are available and theor... Stellar classification and radius estimation are crucial for understanding the structure of the Universe and stella evolution.With the advent of the era of astronomical big data,multimodal data are available and theoretically effective for stellar classification and radius estimation.A problem is how to improve the performance of this task by jointly using the multimodal data.However,existing research primarily focuses on using single-modal data.To this end,this paper proposes a model,Multi-Modal SCNet,and its ensemble model Multimodal Ensemble fo Stellar Classification and Regression(MESCR)for improving stellar classification and radius estimation performance by fusing two modality data.In this problem,a typical phenomenon is that the sample numbers o some types of stars are evidently more than others.This imbalance has negative effects on model performance Therefore,this work utilizes a weighted sampling strategy to deal with the imbalance issues in MESCR.Som evaluation experiments are conducted on a test set for MESCR and the classification accuracy is 96.1%,and th radius estimation performance Mean of Absolute Error andσare 0.084 dex and 0.149 R_(⊙),respectively.Moreover we assessed the uncertainty of model predictions,confirming good consistency within a reasonable deviation range.Finally,we applied our model to 50,871,534 SDSS stars without spectra and published a new catalog. 展开更多
关键词 methodS data analysis TECHNIQUES image processing methodS statistical
在线阅读 下载PDF
Spatiotemporal evolution and influencing factors of urban resilience in the Yellow River Basin,China 被引量:1
9
作者 JI Xiaomei NIE Zhilei +2 位作者 WANG Kaiyong XU Mingxian FANG Yuhao 《Regional Sustainability》 2024年第3期54-68,共15页
The Yellow River Basin of China is a key region that contains myriad interactions between human activities and natural environment.Industrialization and urbanization promote social-economic development,but they also h... The Yellow River Basin of China is a key region that contains myriad interactions between human activities and natural environment.Industrialization and urbanization promote social-economic development,but they also have generated a series of environmental and ecological issues in this basin.Previous researches have evaluated urban resilience at the national,regional,urban agglomeration,city,and prefecture levels,but not at the watershed level.To address this research gap and elevate the Yellow River Basin’s urban resilience level,we constructed an urban resilience evaluation index system from five dimensions:industrial resilience,social resilience,environmental resilience,technological resilience,and organizational resilience.The entropy weight method was used to comprehensively evaluate urban resilience in the Yellow River Basin.The exploratory spatial data analysis method was employed to study the spatiotemporal differences in urban resilience in the Yellow River Basin in 2010,2015,and 2020.Furthermore,the grey correlation analysis method was utilized to explore the influencing factors of these differences.The results of this study are as follows:(1)the overall level of urban resilience in the Yellow River Basin was relatively low but showed an increasing trend during 2010–2015,and significant spatial distribution differences were observed,with a higher resilience level in the eastern region and a low-medium resilience level in the western region;(2)the differences in urban resilience were noticeable,with industrial resilience and social resilience being relatively highly developed,whereas organizational resilience and environmental resilience were relatively weak;and(3)the correlation ranking of resilience influencing factors was as follows:science and technology level>administrative power>openness>market forces.This research can provide a basis for improving the resilience level of cities in the Yellow River Basin and contribute to the high-quality development of the region. 展开更多
关键词 Urban resilience Spatiotemporal evolution Entropy weight method Exploratory spatial data analysis method Grey correlation analysis method Yellow River Basin
在线阅读 下载PDF
Extraction and Analysis of Coronal High-temperature Components Based on Outlier Detection
10
作者 Li-Yan Sun Kai-Fan Ji +1 位作者 Jun-Chao Hong Hui Liu 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2023年第6期143-152,共10页
The extraction of high-temperature regions in active regions(ARs)is an important means to help understand the mechanism of coronal heating.The important observational means of high-temperature radiation in ARs is the ... The extraction of high-temperature regions in active regions(ARs)is an important means to help understand the mechanism of coronal heating.The important observational means of high-temperature radiation in ARs is the main emission line of Fe XVⅢin the 94?of the Atmospheric Imaging Assembly.However,the diagnostic algorithms for Fe XVⅢ,including the differential emission measure(DEM)and linear diagnostics proposed by Del based on the DEM,have been greatly limited for a long time,and the results obtained are different from the predictions.In this paper,we use the outlier detection method to establish the nonlinear correlation between 94?and 171,193,211?based on the former researches by others.A neural network based on 171,193,211?is constructed to replace the low-temperature emission lines in the ARs of 94?.The predicted results are regarded as the low-temperature components of 94?,and then the predicted results are subtracted from 94?to obtain the outlier component of 94?,or Fe XVⅢ.Then,the outlier components obtained by neural network are compared with the Fe XVⅢobtained by DEM and Del's method,and a high similarity is found,which proves the reliability of neural network to obtain the high-temperature components of ARs,but there are still many differences.In order to analyze the differences between the Fe XVⅢobtained by the three methods,we subtract the Fe XVⅢobtained by the DEM and Del's method from the Fe XVⅢobtained by the neural network to obtain the residual value,and compare it with the results of Fe XIV in the temperature range of 6.1-6.45 MK.It is found that there is a great similarity,which also shows that the Fe XVⅢobtained by DEM and Del's method still has a large low-temperature component dominated by Fe XIV,and the Fe XVⅢobtained by neural network is relatively pure. 展开更多
关键词 Sun:corona Sun:activity methods:statistical methods:data analysis techniques:image processing
在线阅读 下载PDF
A method for pulsar searching:combining a two-dimensional autocorrelation profile map and a deep convolutional neural network
11
作者 Long-Qi Wang Jing Jin +1 位作者 Lu Liu Yi Shen 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2021年第7期155-170,共16页
In pulsar astronomy, detecting effective pulsar signals among numerous pulsar candidates is an important research topic. Starting from space X-ray pulsar signals, the two-dimensional autocorrelation profile map(2 D-AP... In pulsar astronomy, detecting effective pulsar signals among numerous pulsar candidates is an important research topic. Starting from space X-ray pulsar signals, the two-dimensional autocorrelation profile map(2 D-APM) feature modelling method, which utilizes epoch folding of the autocorrelation function of X-ray signals and expands the time-domain information of the periodic axis, is proposed. A uniform setting criterion regarding the time resolution of the periodic axis addresses pulsar signals without any prior information. Compared with the traditional profile, the model has a strong anti-noise ability, a greater abundance of information and consistent characteristics. The new feature is simulated with double Gaussian components, and the characteristic distribution of the model is revealed to be closely related to the distance between the double peaks of the profile. Next, a deep convolutional neural network(DCNN)is built, named Inception-Res Net. According to the order of the peak separation and number of arriving photons, 30 data sets based on the Poisson process are simulated to construct the training set, and the observation data of PSRs B0531+21, B0540-69 and B1509-58 from the Rossi X-ray Timing Explorer(RXTE) are selected to generate the test set. The number of training sets and the number of test sets are 30 000 and 5400, respectively. After achieving convergence stability, more than 99% of the pulsar signals are recognized, and more than 99% of the interference is successfully rejected, which verifies the high degree of agreement between the network and the feature model and the high potential of the proposed method in searching for pulsars. 展开更多
关键词 methods:data analysis methods:statistical X-rays:stars
在线阅读 下载PDF
地下水背景值评估研究进展
12
作者 闫纲丽 冯屾 +1 位作者 刘睿男 黄冠星 《吉林大学学报(地球科学版)》 北大核心 2025年第5期1655-1670,共16页
选取适宜的地下水背景值评估方法是客观认知地下水背景值的关键。本文在回顾地下水背景值研究发展历程的基础上,概述了现有评估方法及其优缺点,并指出其未来发展趋势。地下水背景值评估方法大致可分为基于未被污染地下水样本的方法、预... 选取适宜的地下水背景值评估方法是客观认知地下水背景值的关键。本文在回顾地下水背景值研究发展历程的基础上,概述了现有评估方法及其优缺点,并指出其未来发展趋势。地下水背景值评估方法大致可分为基于未被污染地下水样本的方法、预筛选法、数理统计法、基于图谱的探索性数据分析方法及多方法组合等五类。其中:基于未被污染地下水样本的方法因其自身局限性较强已很少采用;预筛选法和数理统计法是当前常用单一类方法,前者主观性较强而后者客观性更优;基于图谱的探索性数据分析方法少见单独使用,多与其他方法组合联用;多方法组合通过互补单一方法的局限性已经成为地下水背景值评估研究的重要发展方向。多方法组合中:预筛选-数理统计组合方法最常见,应用较广;新兴的基于图谱的探索性数据分析方法与预筛选法、数理统计法或预筛选-数理统计法三种方法中的其中一种分别组合的方法更为优越,但该类组合方法的使用往往需要以研究区水文地球化学的深入认知为基础,便捷性和普适性不如预筛选-数理统计组合方法。多方法组合已成为地下水背景值评估研究的主要发展趋势。 展开更多
关键词 地下水 背景值 预筛选法 数理统计法 基于图谱的探索性数据分析 组合方法
在线阅读 下载PDF
长三角城市群文旅产业协调发展时空演化特征及驱动因素
13
作者 喻江平 董欣童 侯世祥 《西华师范大学学报(自然科学版)》 2025年第2期195-204,共10页
基于2010—2021年长三角城市群27个城市的面板数据,运用协调模型和探索性空间数据分析方法,分析长三角城市群文旅协调水平的变化趋势及空间格局,并从产业融合理论视角构建文旅协调发展的动力机制,结合地理加权回归模型对各因素作用的时... 基于2010—2021年长三角城市群27个城市的面板数据,运用协调模型和探索性空间数据分析方法,分析长三角城市群文旅协调水平的变化趋势及空间格局,并从产业融合理论视角构建文旅协调发展的动力机制,结合地理加权回归模型对各因素作用的时空演变规律进行探究,结果表明:(1)城市群文旅协调度均值呈稳定增长态势,但整体呈濒临失调状态,协调度呈现东高西低的空间格局;(2)根据局部相关性分析,上海和嘉兴为该区域重要增长极,表现为高-高关联区域,合肥和南京存在“马太效应”趋势,表现为高-低关联区域,芜湖和池州为低-低关联区域;(3)时空地理加权回归结果显示,消费需求、技术进步、政府管制、人力资本及基础设施对文旅协调水平表现为正向促进作用与负向抑制作用并存,各驱动因素作用存在明显空间分异。针对城市群文化产业和旅游产业濒临失调、文旅协调发展不平衡不充分等问题,提出建立长三角城市群生态环境协同保护和治理的长效机制、构建错位发展的文旅产业格局等建议。 展开更多
关键词 文旅协调 探索性空间数据分析方法 时空地理加权回归 长三角城市群
在线阅读 下载PDF
北京市制造业与生产性服务业协同集聚的测度方法与时空演变 被引量:2
14
作者 郭倩钰 孙威 孙涵 《地理学报》 北大核心 2025年第2期415-432,共18页
产业协同集聚是产业发展到高级阶段的产物,也是产业协同发展在空间上的具体表现。本文从产业协同集聚的测度方法入手,针对目前研究方法中存在的可塑性面积单元问题(MAUP)和可视化效果不佳等构建了综合性的测度方法体系。利用该方法体系... 产业协同集聚是产业发展到高级阶段的产物,也是产业协同发展在空间上的具体表现。本文从产业协同集聚的测度方法入手,针对目前研究方法中存在的可塑性面积单元问题(MAUP)和可视化效果不佳等构建了综合性的测度方法体系。利用该方法体系以北京市制造业与生产性服务业协同集聚为案例进行实证研究,分析协同集聚在时间和空间上的动态演变过程和特征。结果表明:(1) 2018年行业对的集聚跨度的极差为34 km,集聚强度的平均值为0.0858,相比2008年集聚范围更分散,集聚强度有所降低,但设备制造业、科学技术、信息传输服务等知识密集型行业对则更倾向于协同集聚;(2)2008年协同集聚水平较高的行业对集中分布在城市核心区,2018年则沿着交通干线向外围地区扩散,形成“多点集聚”的分布形态,并大致与北京市规划的两业融合示范园区相对应;(3)综合来看,制造业与生产性服务业协同集聚呈现集聚强度下降,但中高度协同集聚的网格分布扩大,区域间的非均衡性缩小,空间分布得到优化,工业园区、交通可达性和信息技术发展在其中发挥了重要作用。 展开更多
关键词 协同集聚 制造业 生产性服务业 DO指数 空间数据统计分析方法 北京市
原文传递
空间数据科学R语言实践:以民航GNSS干扰数据分析为例
15
作者 张潇月 李斌 卢宾宾 《城市观察》 2025年第4期65-72,160,共9页
随着城市治理数字化进程的加快,多源空间数据在城市运行监测中扮演着日益关键的角色,但现有工具在高维异构数据处理、建模与可视化方面存在显著瓶颈,限制了多源空间数据在城市规划、环境监测和公共安全等领域的应用效率与可拓展性。为... 随着城市治理数字化进程的加快,多源空间数据在城市运行监测中扮演着日益关键的角色,但现有工具在高维异构数据处理、建模与可视化方面存在显著瓶颈,限制了多源空间数据在城市规划、环境监测和公共安全等领域的应用效率与可拓展性。为应对这一挑战,本文以R语言为核心工具,系统梳理其在空间数据科学中的关键应用路径,聚焦空间数据处理、可视化表达和时空统计建模三大核心环节,构建了一个从数据导入到结果推理的完整流程框架。同时,进一步结合民航GNSS干扰数据开展实证分析,验证R语言在处理高维航空空间数据中的高效性和可复用性。研究表明,R语言不仅打破了传统平台的封闭性限制,提升了计算与建模的灵活性,还推动空间数据分析走向开放、灵活与智能,具有广泛的跨学科应用潜力与推广价值。 展开更多
关键词 空间数据处理 空间数据可视化 空间数据统计分析 R语言
在线阅读 下载PDF
“四新”建设背景下概率论与数理统计教学改革研究 被引量:1
16
作者 江慧敏 方立铭 赵妍 《黄山学院学报》 2025年第2期95-99,共5页
新工科、新医科、新农科、新文科“四新”建设背景下国家对于培养复合型人才提出了迫切需求。概率论与数理统计在医科类院校作为专业基础课主要面向医工交叉专业,是培养区域性人才的基础学科。通过对现有概率论与数理统计教学中存在的... 新工科、新医科、新农科、新文科“四新”建设背景下国家对于培养复合型人才提出了迫切需求。概率论与数理统计在医科类院校作为专业基础课主要面向医工交叉专业,是培养区域性人才的基础学科。通过对现有概率论与数理统计教学中存在的问题进行梳理,利用雨课堂进行定量分析,针对性地提出两段式“导讲评研”教学方式,旨在构建“一中心,两机翼,三混合”的概率论与数理统计教学新模式。通过回顾性收集开展教学改革前后的课堂数据,分析论证了该教学模式有益于概率论与数理统计课程在医学院校的教学。 展开更多
关键词 教学改革 导讲评学 概率论与数理统计 数据分析
在线阅读 下载PDF
三种常用数据分析方法在药物制剂研究中的应用
17
作者 袁晨宜 李晓 +4 位作者 洪卫漫 陈泽锴 周良良 张定 陈振华 《海南师范大学学报(自然科学版)》 2025年第2期167-176,共10页
随着科学技术不断发展,药物制剂的复杂性和个性化需求日益增加,传统的试错法已无法满足快速、高效、精准的药物研发要求。数据分析通过使用科学方法、过程和算法从大规模数据集中洞察和提取信息,为药物制剂设计优化提供了一种科学、系... 随着科学技术不断发展,药物制剂的复杂性和个性化需求日益增加,传统的试错法已无法满足快速、高效、精准的药物研发要求。数据分析通过使用科学方法、过程和算法从大规模数据集中洞察和提取信息,为药物制剂设计优化提供了一种科学、系统的手段。数据分析方法的应用逐渐改善药物剂型设计、优化生产工艺、提高药物制剂研发效率,对提升药物制剂的质量和疗效具有重要意义。本文概述了多元统计分析、机器学习和数据挖掘这三种常用的数据分析方法及三者之间联系与侧重,总结了数据分析方法在药物制剂研究中的应用,并对数据分析在药物制剂研究中应用前景进行探讨和展望,为药物制剂智能化发展提供参考。 展开更多
关键词 数据分析方法 药物制剂 多元统计分析 机器学习 数据挖掘
在线阅读 下载PDF
大气环境监测技术与数据分析方法比较研究
18
作者 冯汉坤 《黑龙江环境通报》 2025年第3期101-103,共3页
本文比较了大气环境监测技术与数据分析方法,探讨了各种监测技术的原理与应用、数据分析在大气监测中的关键作用,以及相关技术方法的比较,揭示了不同方法的优势和局限。结果表明,传统方法在理论和可靠性上有广泛的应用基础,现代方法更... 本文比较了大气环境监测技术与数据分析方法,探讨了各种监测技术的原理与应用、数据分析在大气监测中的关键作用,以及相关技术方法的比较,揭示了不同方法的优势和局限。结果表明,传统方法在理论和可靠性上有广泛的应用基础,现代方法更利于处理复杂数据结构和大规模数据。综合考虑成本效益,本文强调了选择适宜分析方法的重要性。 展开更多
关键词 大气环境监测 数据分析方法 传统统计分析 成本效益分析
在线阅读 下载PDF
The k Nearest Neighbors Estimator of the M-Regression in Functional Statistics 被引量:4
19
作者 Ahmed Bachir Ibrahim Mufrah Almanjahie Mohammed Kadi Attouch 《Computers, Materials & Continua》 SCIE EI 2020年第12期2049-2064,共16页
It is well known that the nonparametric estimation of the regression function is highly sensitive to the presence of even a small proportion of outliers in the data.To solve the problem of typical observations when th... It is well known that the nonparametric estimation of the regression function is highly sensitive to the presence of even a small proportion of outliers in the data.To solve the problem of typical observations when the covariates of the nonparametric component are functional,the robust estimates for the regression parameter and regression operator are introduced.The main propose of the paper is to consider data-driven methods of selecting the number of neighbors in order to make the proposed processes fully automatic.We use thek Nearest Neighbors procedure(kNN)to construct the kernel estimator of the proposed robust model.Under some regularity conditions,we state consistency results for kNN functional estimators,which are uniform in the number of neighbors(UINN).Furthermore,a simulation study and an empirical application to a real data analysis of octane gasoline predictions are carried out to illustrate the higher predictive performances and the usefulness of the kNN approach. 展开更多
关键词 Functional data analysis quantile regression kNN method uniform nearest neighbor(UNN)consistency functional nonparametric statistics almost complete convergence rate
在线阅读 下载PDF
A novel stellar spectrum denoising method based on deep Bayesian modeling 被引量:1
20
作者 Xin Kang Shi-Yuan He Yan-Xia Zhang 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2021年第7期127-142,共16页
Spectrum denoising is an important procedure for large-scale spectroscopical surveys. This work proposes a novel stellar spectrum denoising method based on deep Bayesian modeling. The construction of our model include... Spectrum denoising is an important procedure for large-scale spectroscopical surveys. This work proposes a novel stellar spectrum denoising method based on deep Bayesian modeling. The construction of our model includes a prior distribution for each stellar subclass, a spectrum generator and a flow-based noise model. Our method takes into account the noise correlation structure, and it is not susceptible to strong sky emission lines and cosmic rays. Moreover, it is able to naturally handle spectra with missing flux values without ad-hoc imputation. The proposed method is evaluated on real stellar spectra from the Sloan Digital Sky Survey(SDSS) with a comprehensive list of common stellar subclasses and compared to the standard denoising auto-encoder. Our denoising method demonstrates a superior performance to the standard denoising auto-encoder, in respect of denoising quality and missing flux imputation. It may be potentially helpful in improving the accuracy of the classification and physical parameter measurement of stars when applying our method during data preprocessing. 展开更多
关键词 methods:data analysis methods:numerical methods:statistical techniques:spectroscopic
在线阅读 下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部