The generalized cell mapping(GCM) method is used to obtain the stationary response of a single-degree-of-freedom.Vibro-impact system under a colored noise excitation. In order to show the advantage of the GCM method, ...The generalized cell mapping(GCM) method is used to obtain the stationary response of a single-degree-of-freedom.Vibro-impact system under a colored noise excitation. In order to show the advantage of the GCM method, the stochastic averaging method is also presented. Both of the two methods are tested through concrete examples and verified by the direct numerical simulation. It is shown that the GCM method can well predict the stationary response of this noise-perturbed system no matter whether the noise is wide-band or narrow-band, while the stochastic averaging method is valid only for the wide-band noise.展开更多
An actual ecological predator-prey system often undergoes random environmental mutations owing to the impact of natural disasters and man-made destruction, which may destroy the balance between the species. In this pa...An actual ecological predator-prey system often undergoes random environmental mutations owing to the impact of natural disasters and man-made destruction, which may destroy the balance between the species. In this paper,the stochastic dynamics of the nonlinear predator-prey system considering random environmental mutations is investigated, and a feedback control strategy is proposed to reshape the response of the predator-prey system against random abrupt environmental mutations. A delayed Markov jump system(MJS) is established to model such a predator-prey system. A novel first integral is constructed which leads to better approximation solutions of the ecosystem. Then, by applying the stochastic averaging method based on this novel first integral, the stochastic response of the predator-prey system is investigated, and an analytical feedback control is designed to reshape the response of the ecosystem from the disturbed state back to the undisturbed one.Numerical simulations finally illustrate the accuracy and effectiveness of the proposed procedure.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 11772149)the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics and Astronautics,China (Grant No. MCMS-I-19G01)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD),China。
文摘The generalized cell mapping(GCM) method is used to obtain the stationary response of a single-degree-of-freedom.Vibro-impact system under a colored noise excitation. In order to show the advantage of the GCM method, the stochastic averaging method is also presented. Both of the two methods are tested through concrete examples and verified by the direct numerical simulation. It is shown that the GCM method can well predict the stationary response of this noise-perturbed system no matter whether the noise is wide-band or narrow-band, while the stochastic averaging method is valid only for the wide-band noise.
基金the National Natural Science Foundation of China(Nos.11772293 and12072312)Zhejiang Science and Technology Project(No.2019C03129)。
文摘An actual ecological predator-prey system often undergoes random environmental mutations owing to the impact of natural disasters and man-made destruction, which may destroy the balance between the species. In this paper,the stochastic dynamics of the nonlinear predator-prey system considering random environmental mutations is investigated, and a feedback control strategy is proposed to reshape the response of the predator-prey system against random abrupt environmental mutations. A delayed Markov jump system(MJS) is established to model such a predator-prey system. A novel first integral is constructed which leads to better approximation solutions of the ecosystem. Then, by applying the stochastic averaging method based on this novel first integral, the stochastic response of the predator-prey system is investigated, and an analytical feedback control is designed to reshape the response of the ecosystem from the disturbed state back to the undisturbed one.Numerical simulations finally illustrate the accuracy and effectiveness of the proposed procedure.