The physical layer key generation technique provides an efficient method,which utilizes the natural dynamics of wireless channel.However,there are some extremely challenging security scenarios such as static or quasi-...The physical layer key generation technique provides an efficient method,which utilizes the natural dynamics of wireless channel.However,there are some extremely challenging security scenarios such as static or quasi-static environment,which lead to the low randomness of generated keys.Meanwhile,the coefficients of the static channel may be dropped into the guard space and discarded by the quantization approach,which causes low key generation rate.To tackle these issues,we propose a random coefficient-moving product based wireless key generation scheme(RCMP-WKG),where new random resources with remarkable fluctuations can be obtained by applying random coefficient and by moving product on the legitimate nodes.Furthermore,appropriate quantization approaches are used to increase the key generation rate.Moreover,the security of our proposed scheme is evaluated by analyzing different attacks and the eavesdropper’s mean square error(MSE).The simulation results reveal that the proposed scheme can achieve better performances in key capacity,key inconsistency rate(KIR)and key generation rate(KGR)compared with the prior works in static environment.Besides,the proposed scheme can deteriorate the MSE performance of the eavesdropper and improve the key generation performance of legitimate nodes by controlling the length of the moving product.展开更多
Exact calculations of the static earth pressure from a thick alluvium require accurate/Co values. These calculations influence the sinking cost and the safety of the freezing method. The static earth pressure coeffici...Exact calculations of the static earth pressure from a thick alluvium require accurate/Co values. These calculations influence the sinking cost and the safety of the freezing method. The static earth pressure coefficient (K0) of thick and deep soil was analyzed using laboratory tests. The results show that the static earth pressure coefficient of thick and deep soils is nonlinear and different from that of superficial soils. The constant of superficial soils is usually invariant and the total stress or incremental stress definitions used in traditional geo-meehanics give the same value. The influence of load increments when calculating for superficial soil is ignored. The difference in values of K0 for thick alluvium defimed by the total stress or the incremental stress methods is over 10%. The effects of the thick alluvium on K0 should be considered during the design of frozen shaft projects. Such things as the frozen shaft thickness and the excavated section height should be chosen to assure the rationality of the design and to avoid potential faults and accidents.展开更多
The static earth pressure coefficient of soils is,approximately,considered to be a constant in the view of clas-sical soil mechanics. This is supported by many research results. The high pressure experimental research...The static earth pressure coefficient of soils is,approximately,considered to be a constant in the view of clas-sical soil mechanics. This is supported by many research results. The high pressure experimental research and analysis of remolding deep soil described herein indicate that the static earth pressure of thick overburden has a notable non lin-ear characteristic. It also appears larger than that of superficial soils. It is necessary for deep coal mine design and con-struction to consider this particularity of soil pressure so as to avoid engineering accidents and heavy loss of life and property.展开更多
The static and dynamic diffusion coefficients are important coefficients to describe the moisture transfer processes in particleboard. In this paper, the formula of culculating the static and dynamic diffusion coeffic...The static and dynamic diffusion coefficients are important coefficients to describe the moisture transfer processes in particleboard. In this paper, the formula of culculating the static and dynamic diffusion coefficients were deduced. At first, the static diffusion coefficients of four kinds of particleboards were determined by using diffusion cup method. The results demonstrated that the static diffusion coefficients parallel to panel surface were 10-20 times as large as that of perpendicular to panel surface for test boards. To determine both dynamic diffusion coefficients and surface emission coefficients of moisture in particleboards in one experimental period, specimens in four different thicknesses of each kind of particleboard were used in the experiment. Then the method of regression was used and the dynamic diffusion coefficients and surface emission coefficients were determined based on the slope and intercept of the regressive line.展开更多
Many analytical methods have been adopted to estimate the slope stability by providing various stability numbers,e.g.static safety of factor(static FoS)or the critical seismic acceleration coefficient,while little att...Many analytical methods have been adopted to estimate the slope stability by providing various stability numbers,e.g.static safety of factor(static FoS)or the critical seismic acceleration coefficient,while little attention has been given to the relationship between the slope stability numbers and the critical seismic acceleration coefficient.This study aims to investigate the relationship between the static FoS and the critical seismic acceleration coefficient of soil slopes in the framework of the upper-bound limit analysis.Based on the 3D rotational failure mechanism,the critical seismic acceleration coefficient using the pseudo-static method and the static FoS using the strength reduction technique are first determined.Then,the relationship between the static FoS and the critical seismic acceleration coefficient is presented under considering the slope angleβ,the frictional angleφ,and the dimensionless coefficients B/H and c/γH.Finally,a fitting formula between the static FoS and the critical seismic acceleration coefficient is proposed and validated by analytical and numerical results.展开更多
Typical rotors such as those on steam turbine or generator are often supported by two bearings with two balance planes at both ends.Vibrations are monitored by a pair of proximity probes at each bearing.There are two ...Typical rotors such as those on steam turbine or generator are often supported by two bearings with two balance planes at both ends.Vibrations are monitored by a pair of proximity probes at each bearing.There are two approaches to reduce 1X vibration due to unbalance at both ends via balancing with influence coefficient method.The first approach is to treat it as a multiple-plane balancing problem involving 2x2 matrix of complex influence coefficients.The second approach is to treat it as two single-plane balance problems using static(in-phase)and couple(180 degree out-of-phase)components,respectively.Conversion equations of influence coefficients between these two approaches have been found previously by the author.The corresponding spreadsheets that convert influence coefficients between these two formats are presented in the current paper.The paper shows effectiveness of these conversion equations in dealing with real balancing problems in the field.A detailed balance case is presented to demonstrate how the conversion equations are used to reduce vibration effectively.展开更多
One of the most important issues in geotechnical engineering is excess pore pressure caused by clay soil loading and consolidation. Regarding uncertainties and complexities, this issue has long been the subject of att...One of the most important issues in geotechnical engineering is excess pore pressure caused by clay soil loading and consolidation. Regarding uncertainties and complexities, this issue has long been the subject of attention of many researchers. In this work, a one-dimensional consolidation apparatus was equipped in a way that pore water pressure and settlement could be continuously read and recorded during consolidation process under static loading. The end of primary consolidation was obtained using water pressure changes helping to present a new method for determining the end of primary consolidation and consolidation coefficient. This method was then compared with two classical theory methods of lg t and t. Using Terzaghi's theory, the way of pore pressure dissipation for lg t, t and the new method was found and compared with experimental results. It is concluded that the new method has better results.展开更多
This article lists all possible conversion equations of influence coefficients(ICs)with different formats when some of these are known to handle two-plane balancing tasks with no or less trial weight runs.There are tw...This article lists all possible conversion equations of influence coefficients(ICs)with different formats when some of these are known to handle two-plane balancing tasks with no or less trial weight runs.There are two approaches for two-plane balancing.One can treat it as a multi-plane balance problem involving a 2×2 matrix of complex ICs where two direct ICs along with two cross-effect ICs are generated so that correction weights at one or two balance planes can be determined.One can also apply a static pare(in-phase)and/or couple pair(180 degrees out-of-phase)weights for balancing.The latter approach has been used quite often in the field,especially on steam turbine and generator rotors.Dependent on vibration mode shapes and combinations as well as balance plane accessibility,sometimes applying static or couple pair weights can be a wise choice;other times weights at one or two end planes are needed.There are totally 4 possible sets of IC data due to weights at plane 1,plane 2,static pair,and couple pair.IC data would typically be obtained by applying trial weights followed by trial weight runs.It is found,however,that all these IC data can be converted easily without trial weight runs once any two of 4 sets are known.The above findings and conversion equations have been obtained analytically and verified by experimental results.Real cases are given to demonstratetheirapplications.展开更多
The proper selection of a relevant mixer generally requires an effective assessment of several models against theapplication requirements. This is a complex task, as traditional evaluation methods generally focus only...The proper selection of a relevant mixer generally requires an effective assessment of several models against theapplication requirements. This is a complex task, as traditional evaluation methods generally focus only on a single aspect of performance, such as pressure loss, mixing characteristics, or heat transfer. This study assesses aurea-based selective catalytic reduction (SCR) system installed on a ship, where the installation space is limitedand the distance between the urea aqueous solution injection position and the reactor is low;therefore, the staticmixer installed in this pipeline has special performance requirements. In particular, four evaluation indices areused in this study: The B value, C value, pressure loss correction factor (Z′), and the ratio of the required distanceto the equivalent diameter of the pipe (LV/D) when the velocity field after the mixer attains uniformity. Six typesof static mixers were simulated with varying concentrations, flow speeds, and positions. A fuzzy comprehensiveevaluation method was introduced to evaluate and compare the related advantages and disadvantages. The resultsshowed that 1) mixing performance was related to the shape of the mixer and had no direct relationship with flowvelocity. 2) For the same mixer position, the lower the urea concentration, the greater the difficulty of evenly mixing the solution. 3) At a constant urea concentration, the mixing performance improved when the mixer was closer to the injection inlet. 4) The installation of a GK mixer in the SCR system of a 9L20C diesel engine was best.展开更多
基金supported in part by the National Natural Science Foundation of China(Numbers 62171445,62471477 and 62201592).
文摘The physical layer key generation technique provides an efficient method,which utilizes the natural dynamics of wireless channel.However,there are some extremely challenging security scenarios such as static or quasi-static environment,which lead to the low randomness of generated keys.Meanwhile,the coefficients of the static channel may be dropped into the guard space and discarded by the quantization approach,which causes low key generation rate.To tackle these issues,we propose a random coefficient-moving product based wireless key generation scheme(RCMP-WKG),where new random resources with remarkable fluctuations can be obtained by applying random coefficient and by moving product on the legitimate nodes.Furthermore,appropriate quantization approaches are used to increase the key generation rate.Moreover,the security of our proposed scheme is evaluated by analyzing different attacks and the eavesdropper’s mean square error(MSE).The simulation results reveal that the proposed scheme can achieve better performances in key capacity,key inconsistency rate(KIR)and key generation rate(KGR)compared with the prior works in static environment.Besides,the proposed scheme can deteriorate the MSE performance of the eavesdropper and improve the key generation performance of legitimate nodes by controlling the length of the moving product.
基金Project BK2007040 supported by the Provincial Natural Science Foundation of Jiangsu, China
文摘Exact calculations of the static earth pressure from a thick alluvium require accurate/Co values. These calculations influence the sinking cost and the safety of the freezing method. The static earth pressure coefficient (K0) of thick and deep soil was analyzed using laboratory tests. The results show that the static earth pressure coefficient of thick and deep soils is nonlinear and different from that of superficial soils. The constant of superficial soils is usually invariant and the total stress or incremental stress definitions used in traditional geo-meehanics give the same value. The influence of load increments when calculating for superficial soil is ignored. The difference in values of K0 for thick alluvium defimed by the total stress or the incremental stress methods is over 10%. The effects of the thick alluvium on K0 should be considered during the design of frozen shaft projects. Such things as the frozen shaft thickness and the excavated section height should be chosen to assure the rationality of the design and to avoid potential faults and accidents.
基金Project 50534040 supported by the National Natrual Science Foundation of China
文摘The static earth pressure coefficient of soils is,approximately,considered to be a constant in the view of clas-sical soil mechanics. This is supported by many research results. The high pressure experimental research and analysis of remolding deep soil described herein indicate that the static earth pressure of thick overburden has a notable non lin-ear characteristic. It also appears larger than that of superficial soils. It is necessary for deep coal mine design and con-struction to consider this particularity of soil pressure so as to avoid engineering accidents and heavy loss of life and property.
文摘The static and dynamic diffusion coefficients are important coefficients to describe the moisture transfer processes in particleboard. In this paper, the formula of culculating the static and dynamic diffusion coefficients were deduced. At first, the static diffusion coefficients of four kinds of particleboards were determined by using diffusion cup method. The results demonstrated that the static diffusion coefficients parallel to panel surface were 10-20 times as large as that of perpendicular to panel surface for test boards. To determine both dynamic diffusion coefficients and surface emission coefficients of moisture in particleboards in one experimental period, specimens in four different thicknesses of each kind of particleboard were used in the experiment. Then the method of regression was used and the dynamic diffusion coefficients and surface emission coefficients were determined based on the slope and intercept of the regressive line.
基金Project(2017YFB1201204)supported by the National Key R&D Program of ChinaProject(1053320190957)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Many analytical methods have been adopted to estimate the slope stability by providing various stability numbers,e.g.static safety of factor(static FoS)or the critical seismic acceleration coefficient,while little attention has been given to the relationship between the slope stability numbers and the critical seismic acceleration coefficient.This study aims to investigate the relationship between the static FoS and the critical seismic acceleration coefficient of soil slopes in the framework of the upper-bound limit analysis.Based on the 3D rotational failure mechanism,the critical seismic acceleration coefficient using the pseudo-static method and the static FoS using the strength reduction technique are first determined.Then,the relationship between the static FoS and the critical seismic acceleration coefficient is presented under considering the slope angleβ,the frictional angleφ,and the dimensionless coefficients B/H and c/γH.Finally,a fitting formula between the static FoS and the critical seismic acceleration coefficient is proposed and validated by analytical and numerical results.
文摘Typical rotors such as those on steam turbine or generator are often supported by two bearings with two balance planes at both ends.Vibrations are monitored by a pair of proximity probes at each bearing.There are two approaches to reduce 1X vibration due to unbalance at both ends via balancing with influence coefficient method.The first approach is to treat it as a multiple-plane balancing problem involving 2x2 matrix of complex influence coefficients.The second approach is to treat it as two single-plane balance problems using static(in-phase)and couple(180 degree out-of-phase)components,respectively.Conversion equations of influence coefficients between these two approaches have been found previously by the author.The corresponding spreadsheets that convert influence coefficients between these two formats are presented in the current paper.The paper shows effectiveness of these conversion equations in dealing with real balancing problems in the field.A detailed balance case is presented to demonstrate how the conversion equations are used to reduce vibration effectively.
文摘One of the most important issues in geotechnical engineering is excess pore pressure caused by clay soil loading and consolidation. Regarding uncertainties and complexities, this issue has long been the subject of attention of many researchers. In this work, a one-dimensional consolidation apparatus was equipped in a way that pore water pressure and settlement could be continuously read and recorded during consolidation process under static loading. The end of primary consolidation was obtained using water pressure changes helping to present a new method for determining the end of primary consolidation and consolidation coefficient. This method was then compared with two classical theory methods of lg t and t. Using Terzaghi's theory, the way of pore pressure dissipation for lg t, t and the new method was found and compared with experimental results. It is concluded that the new method has better results.
文摘This article lists all possible conversion equations of influence coefficients(ICs)with different formats when some of these are known to handle two-plane balancing tasks with no or less trial weight runs.There are two approaches for two-plane balancing.One can treat it as a multi-plane balance problem involving a 2×2 matrix of complex ICs where two direct ICs along with two cross-effect ICs are generated so that correction weights at one or two balance planes can be determined.One can also apply a static pare(in-phase)and/or couple pair(180 degrees out-of-phase)weights for balancing.The latter approach has been used quite often in the field,especially on steam turbine and generator rotors.Dependent on vibration mode shapes and combinations as well as balance plane accessibility,sometimes applying static or couple pair weights can be a wise choice;other times weights at one or two end planes are needed.There are totally 4 possible sets of IC data due to weights at plane 1,plane 2,static pair,and couple pair.IC data would typically be obtained by applying trial weights followed by trial weight runs.It is found,however,that all these IC data can be converted easily without trial weight runs once any two of 4 sets are known.The above findings and conversion equations have been obtained analytically and verified by experimental results.Real cases are given to demonstratetheirapplications.
基金wasfinancially aided by the National Natural Science Foundation of China(52276122).
文摘The proper selection of a relevant mixer generally requires an effective assessment of several models against theapplication requirements. This is a complex task, as traditional evaluation methods generally focus only on a single aspect of performance, such as pressure loss, mixing characteristics, or heat transfer. This study assesses aurea-based selective catalytic reduction (SCR) system installed on a ship, where the installation space is limitedand the distance between the urea aqueous solution injection position and the reactor is low;therefore, the staticmixer installed in this pipeline has special performance requirements. In particular, four evaluation indices areused in this study: The B value, C value, pressure loss correction factor (Z′), and the ratio of the required distanceto the equivalent diameter of the pipe (LV/D) when the velocity field after the mixer attains uniformity. Six typesof static mixers were simulated with varying concentrations, flow speeds, and positions. A fuzzy comprehensiveevaluation method was introduced to evaluate and compare the related advantages and disadvantages. The resultsshowed that 1) mixing performance was related to the shape of the mixer and had no direct relationship with flowvelocity. 2) For the same mixer position, the lower the urea concentration, the greater the difficulty of evenly mixing the solution. 3) At a constant urea concentration, the mixing performance improved when the mixer was closer to the injection inlet. 4) The installation of a GK mixer in the SCR system of a 9L20C diesel engine was best.