The accurate estimation of road traffic states can provide decision making for travelers and traffic managers. In this work,an algorithm based on kernel-k nearest neighbor(KNN) matching of road traffic spatial charact...The accurate estimation of road traffic states can provide decision making for travelers and traffic managers. In this work,an algorithm based on kernel-k nearest neighbor(KNN) matching of road traffic spatial characteristics is presented to estimate road traffic states. Firstly, the representative road traffic state data were extracted to establish the reference sequences of road traffic running characteristics(RSRTRC). Secondly, the spatial road traffic state data sequence was selected and the kernel function was constructed, with which the spatial road traffic data sequence could be mapped into a high dimensional feature space. Thirdly, the referenced and current spatial road traffic data sequences were extracted and the Euclidean distances in the feature space between them were obtained. Finally, the road traffic states were estimated from weighted averages of the selected k road traffic states, which corresponded to the nearest Euclidean distances. Several typical links in Beijing were adopted for case studies. The final results of the experiments show that the accuracy of this algorithm for estimating speed and volume is 95.27% and 91.32% respectively, which prove that this road traffic states estimation approach based on kernel-KNN matching of road traffic spatial characteristics is feasible and can achieve a high accuracy.展开更多
The performance of the conventional Kalman filter depends on process and measurement noise statistics given by the system model and measurements.The conventional Kalman filter is usually used for a linear system,but i...The performance of the conventional Kalman filter depends on process and measurement noise statistics given by the system model and measurements.The conventional Kalman filter is usually used for a linear system,but it should not be used for estimating the state of a nonlinear system such as a satellite motion because it is difficult to obtain the desired estimation results.The linearized Kalman filtering approach and the extended Kalman filtering approach have been proposed for a general nonlinear system.The equations of satellite motion are described.The satellite motion states are estimated,and the relevant estimation errors are calculated through the estimation algorithms of the both above mentioned approaches implemented in Matlab are estimated.The performances of the extended Kalman filter and the linearized Kalman filter are compared.The simulation results show that the extended Kalman filter is much better than the linearized Kalman filter at the aspect of estimation effect.展开更多
A model-based estimator design and implementation is described in this paper to undertake combined estimation of vehicle states and tire-road friction coefficients.The estimator is designed based on a vehicle model wi...A model-based estimator design and implementation is described in this paper to undertake combined estimation of vehicle states and tire-road friction coefficients.The estimator is designed based on a vehicle model with three degrees of freedom(3-DOF) and the dual extended Kalman filter(DEKF) technique is employed.Effectiveness of the estimation is examined and validated by comparing the outputs of the estimator with the responses of the vehicle model in CarSim in three typical road adhesion conditions(high-friction,low-friction,and joint-friction roads).Simulation results demonstrate that the DEKF estimator algorithm designed is able to obtain vehicle states(e.g.,yaw rate and roll angle) as well as road friction coefficients with reasonable accuracy.展开更多
Human experts cannot efficiently access physical information of a quantum many-body states by simply "reading"its coefficients, but have to reply on the previous knowledge such as order parameters and quantu...Human experts cannot efficiently access physical information of a quantum many-body states by simply "reading"its coefficients, but have to reply on the previous knowledge such as order parameters and quantum measurements.We demonstrate that convolutional neural network(CNN) can learn from coefficients of many-body states or reduced density matrices to estimate the physical parameters of the interacting Hamiltonians, such as coupling strengths and magnetic fields, provided the states as the ground states. We propose QubismNet that consists of two main parts: the Qubism map that visualizes the ground states(or the purified reduced density matrices) as images, and a CNN that maps the images to the target physical parameters. By assuming certain constraints on the training set for the sake of balance, QubismNet exhibits impressive powers of learning and generalization on several quantum spin models. While the training samples are restricted to the states from certain ranges of the parameters, QubismNet can accurately estimate the parameters of the states beyond such training regions. For instance, our results show that QubismNet can estimate the magnetic fields near the critical point by learning from the states away from the critical vicinity. Our work provides a data-driven way to infer the Hamiltonians that give the designed ground states, and therefore would benefit the existing and future generations of quantum technologies such as Hamiltonian-based quantum simulations and state tomography.展开更多
Dear Editor,This letter focuses on how an attacker can design suitable improved zero-dynamics (ZD) attack signal based on state estimates of target system. Improved ZD attack is to change zero dynamic gain matrix of a...Dear Editor,This letter focuses on how an attacker can design suitable improved zero-dynamics (ZD) attack signal based on state estimates of target system. Improved ZD attack is to change zero dynamic gain matrix of attack signal to a matrix with determinant greater than 1.展开更多
Dear Editor,The letter deals with the distributed state and fault estimation of the whole physical layer for cyber-physical systems(CPSs) when the cyber layer suffers from DoS attacks. With the advancement of embedded...Dear Editor,The letter deals with the distributed state and fault estimation of the whole physical layer for cyber-physical systems(CPSs) when the cyber layer suffers from DoS attacks. With the advancement of embedded computing, communication and related hardware technologies, CPSs have attracted extensive attention and have been widely used in power system, traffic network, refrigeration system and other fields.展开更多
Dear Editor,This letter investigates the optimal denial-of-service(DoS)attack scheduling targeting state estimation in cyber-Physical systems(CPSs)with the two-hop multi-channel network.CPSs are designed to achieve ef...Dear Editor,This letter investigates the optimal denial-of-service(DoS)attack scheduling targeting state estimation in cyber-Physical systems(CPSs)with the two-hop multi-channel network.CPSs are designed to achieve efficient,secure and adaptive operation by embedding intelligent and autonomous decision-making capabilities in the physical world.As a key component of the CPSs,the wireless network is vulnerable to various malicious attacks due to its openness[1].DoS attack is one of the most common attacks,characterized of simple execution and significant destructiveness[2].To mitigate the economic losses and environmental damage caused by DoS attacks,it is crucial to model and investigate data transmissions in CPSs.展开更多
With the continuous expansion of the power system scale and the increasing complexity of operational mode,the interaction between transmission and distribution systems is becoming more and more significant,placing hig...With the continuous expansion of the power system scale and the increasing complexity of operational mode,the interaction between transmission and distribution systems is becoming more and more significant,placing higher requirements on the accuracy and efficiency of the power system state estimation to address the challenge of balancing computational efficiency and estimation accuracy in traditional coupled transmission and distribution state estimation methods,this paper proposes a collaborative state estimation method based on distribution systems state clustering and load model parameter identification.To resolve the scalability issue of coupled transmission and distribution power systems,clustering is first carried out based on the distribution system states.As the data and models of the transmission system and distribution systems are not shared.For the transmission system,equating the power transmitted from the transmission system to the distribution system is the same as equating the distribution system.Further,the power transmitted from the transmission system to different types of distribution systems is equivalent to different polynomial equivalent load models.Then,a parameter identification method is proposed to obtain the parameters of the equivalent load model.Finally,a transmission and distribution collaborative state estimation model is constructed based on the equivalent load model.The results of the numerical analysis show that compared with the traditional master-slave splitting method,the proposed method significantly enhances computational efficiency while maintaining high estimation accuracy.展开更多
Dear Editor,This letter investigates the optimal transmission scheduling problem in remote state estimation systems over an unknown wireless channel.We propose a partially observable Markov decision Process(POMDP)fram...Dear Editor,This letter investigates the optimal transmission scheduling problem in remote state estimation systems over an unknown wireless channel.We propose a partially observable Markov decision Process(POMDP)framework to model the sensor scheduling problem.By truncating and simplifying the POMDP problem,we have established the properties of the optimal solution under the POMDP model,through a fixed-point contraction method,and have shown that the threshold structure of the POMDP solution is not easily attainable.Subsequently,we obtained a suboptimal solution via Qlearning.Numerical simulations are used to demonstrate the efficacy of the proposed Q-learning approach.展开更多
This paper aims to enhance the array Beamforming(BF) robustness by tackling issues related to BF weight state estimation encountered in Constant Modulus Blind Beamforming(CMBB). To achieve this, we introduce a novel a...This paper aims to enhance the array Beamforming(BF) robustness by tackling issues related to BF weight state estimation encountered in Constant Modulus Blind Beamforming(CMBB). To achieve this, we introduce a novel approach that incorporates an L1-regularizer term in BF weight state estimation. We start by explaining the CMBB formation mechanism under conditions where there is a mismatch in the far-field signal model. Subsequently, we reformulate the BF weight state estimation challenge using a method known as variable-splitting, turning it into a noise minimization problem. This problem combines both linear and nonlinear quadratic terms with an L1-regularizer that promotes the sparsity. The optimization strategy is based on a variable-splitting method, implemented using the Alternating Direction Method of Multipliers(ADMM). Furthermore, a variable-splitting framework is developed to enhance BF weight state estimation, employing a Kalman Smoother(KS) optimization algorithm. The approach integrates the Rauch-TungStriebel smoother to perform posterior-smoothing state estimation by leveraging prior data. We provide proof of convergence for both linear and nonlinear CMBB state estimation technology using the variable-splitting KS and the iterated extended Kalman smoother. Simulations corroborate our theoretical analysis, showing that the proposed method achieves robust stability and effective convergence, even when faced with signal model mismatches.展开更多
This study investigated the problems of non-cooperative target recognition and relative motion estimation during spacecraft rendezvous maneuvers.A structure integrating an Inertial Measurement Unit(IMU)and a visual ca...This study investigated the problems of non-cooperative target recognition and relative motion estimation during spacecraft rendezvous maneuvers.A structure integrating an Inertial Measurement Unit(IMU)and a visual camera was presented.The angular velocity output of the IMU was used to calculate the motion trajectories of star points in multiple image frames,which can highlight the motion of non-cooperative targets with respect to the image background to improve the probability of target recognition.To solve the problem of target misidentification caused by new star points entering the field of view,a target-tracking link based on IMU prediction was introduced to track the position of the target in the image.Furthermore,a measurement model was constructed using the line-of-sight vector generated from target recognition,and the relative motion state was estimated using a Huber-based non-linear filter.Semi-physical and numerical simulations were performed to evaluate the effectiveness and efficiency of the proposed method.展开更多
For target tracking and localization in bearing-only sensor network,it is an essential and significant challenge to solve the problem of plug-and-play expansion while stably enhancing the accuracy of state estimation....For target tracking and localization in bearing-only sensor network,it is an essential and significant challenge to solve the problem of plug-and-play expansion while stably enhancing the accuracy of state estimation.This paper pro-poses a distributed state estimation method based on two-layer factor graph.Firstly,the measurement model of the bearing-only sensor network is constructed,and by investigating the observ-ability and the Cramer-Rao lower bound of the system model,the preconditions are analyzed.Subsequently,the location fac-tor graph and cubature information filtering algorithm of sensor node pairs are proposed for localized estimation.Building upon this foundation,the mechanism for propagating confidence mes-sages within the fusion factor graph is designed,and is extended to the entire sensor network to achieve global state estimation.Finally,groups of simulation experiments are con-ducted to compare and analyze the results,which verifies the rationality,effectiveness,and superiority of the proposed method.展开更多
The state estimation of the flexible multibody systems is a vital issue since it is the base of effective control and condition monitoring.The research on the state estimation method of flexible multibody system with ...The state estimation of the flexible multibody systems is a vital issue since it is the base of effective control and condition monitoring.The research on the state estimation method of flexible multibody system with large deformation and large rotation remains rare.In this investigation,a state estimator based on multiple nonlinear Kalman filtering algorithms was designed for the flexible multibody systems containing large flexibility components that were discretized by absolute nodal coordinate formulation(ANCF).The state variable vector was constructed based on the independent coordinates which are identified through the constraint Jacobian.Three types of Kalman filters were used to compare their performance in the state estimation for ANCF.Three cases including flexible planar rotating beam,flexible four-bar mechanism,and flexible rotating shaft were employed to verify the proposed state estimator.According to the different performances of the three types of Kalman filter,suggestions were given for the construction of the state estimator for the flexible multibody system.展开更多
In actual power systems,most of the high-voltage buses of the transformers are zero injection buses without load or generation.Power injections into these buses are strictly 0,so based on Kirchhoff's current law(K...In actual power systems,most of the high-voltage buses of the transformers are zero injection buses without load or generation.Power injections into these buses are strictly 0,so based on Kirchhoff's current law(KCL),equality constraints should be used to handle these buses in a state estimation model.It is a challenge to ensure that these zero injection constraints can be strictly satisfied without losing computational efficiency.展开更多
Aiming at handling complicated maneuvers or other unpredicted emergencies for hypersonic glide vehicle tracking,three coupled dynamic models of state estimation based on the priori information between guidance variabl...Aiming at handling complicated maneuvers or other unpredicted emergencies for hypersonic glide vehicle tracking,three coupled dynamic models of state estimation based on the priori information between guidance variables and aerodynamics are presented. Firstly, the aerodynamic acceleration acting on the target is analyzed to reveal the essence of the target’s motion.Then three coupled structures for modeling aerodynamic parameters are developed by different ideas: the spiral model with a harmonic oscillator, the bank model with trigonometric functions of the bank angle and the guide model with the changing rule of guidance variables. Meanwhile, the comparison discussion is concluded to show the novelty and advantage of these models.Finally, a performance assessment in different simulation cases is presented and detailed analysis is revealed. The results show that the proposed models perform excellent properties. Moreover, the guide model produces the best tracking performance and the bank model shows the second; however, the spiral model does not outperform the maneuvering reentry vehicle(MaRV) model markedly.展开更多
An adaptive unscented Kalman filter(AUKF)and an augmented state method are employed to estimate the timevarying parameters and states of a kind of nonlinear high-speed objects.A strong tracking filter is employed to i...An adaptive unscented Kalman filter(AUKF)and an augmented state method are employed to estimate the timevarying parameters and states of a kind of nonlinear high-speed objects.A strong tracking filter is employed to improve the tracking ability and robustness of unscented Kalman filter(UKF)when the process noise is inaccuracy,and wavelet transform is used to improve the estimate accuracy by the variance of measurement noise.An augmented square-root framework is utilized to improve the numerical stability and accuracy of UKF.Monte Carlo simulations and applications in the rapid trajectory estimation of hypersonic artillery shells confirm the effectiveness of the proposed method.展开更多
This article presents an up-to-date tutorial review of nonlinear Bayesian estimation. State estimation for nonlinear systems has been a challenge encountered in a wide range of engineering fields, attracting decades o...This article presents an up-to-date tutorial review of nonlinear Bayesian estimation. State estimation for nonlinear systems has been a challenge encountered in a wide range of engineering fields, attracting decades of research effort. To date,one of the most promising and popular approaches is to view and address the problem from a Bayesian probabilistic perspective,which enables estimation of the unknown state variables by tracking their probabilistic distribution or statistics(e.g., mean and covariance) conditioned on a system's measurement data.This article offers a systematic introduction to the Bayesian state estimation framework and reviews various Kalman filtering(KF)techniques, progressively from the standard KF for linear systems to extended KF, unscented KF and ensemble KF for nonlinear systems. It also overviews other prominent or emerging Bayesian estimation methods including Gaussian filtering, Gaussian-sum filtering, particle filtering and moving horizon estimation and extends the discussion of state estimation to more complicated problems such as simultaneous state and parameter/input estimation.展开更多
An airship model is made-up of aerostatic,aerodynamic,dynamic,and propulsive forces and torques.Besides others,the computation of aerodynamic forces and torques is difficult.Usually,wind tunnel experimentation and pot...An airship model is made-up of aerostatic,aerodynamic,dynamic,and propulsive forces and torques.Besides others,the computation of aerodynamic forces and torques is difficult.Usually,wind tunnel experimentation and potential flow theory are used for their calculations.However,the limitations of these methods pose difficulties in their accurate calculation.In this work,an online estimation scheme based on unscented Kalman filter(UKF)is proposed for their calculation.The proposed method introduces six auxiliary states for the complete aerodynamic model.UKF uses an extended model and provides an estimate of a complete state vector along with auxiliary states.The proposed method uses the minimum auxiliary state variables for the approximation of the complete aerodynamic model that makes it computationally less intensive.UKF estimation performance is evaluated by developing a nonlinear simulation environment for University of Engineering and Technology,Taxila(UETT)airship.Estimator performance is validated by performing the error analysis based on estimation error and 2-σ uncertainty bound.For the same problem,the extended Kalman filter(EKF)is also implemented and its results are compared with UKF.The simulation results show that UKF successfully estimates the forces and torques due to the aerodynamic model with small estimation error and the comparative analysis with EKF shows that UKF improves the estimation results and also it is more suitable for the under-consideration problem.展开更多
This paper is concerned with the problem of finitehorizon energy-to-peak state estimation for a class of networked linear time-varying systems.Due to the inherent vulnerability of network-based communication,the measu...This paper is concerned with the problem of finitehorizon energy-to-peak state estimation for a class of networked linear time-varying systems.Due to the inherent vulnerability of network-based communication,the measurement signals transmitted over a communication network might be intercepted by potential eavesdroppers.To avoid information leakage,by resorting to an artificial-noise-assisted method,we develop a novel encryption-decryption scheme to ensure that the transmitted signal is composed of the raw measurement and an artificial-noise term.A special evaluation index named secrecy capacity is employed to assess the information security of signal transmissions under the developed encryption-decryption scheme.The purpose of the addressed problem is to design an encryptiondecryption scheme and a state estimator such that:1)the desired secrecy capacity is ensured;and 2)the required finite-horizon–l_(2)-l_(∞)performance is achieved.Sufficient conditions are established on the existence of the encryption-decryption mechanism and the finite-horizon state estimator.Finally,simulation results are proposed to show the effectiveness of our proposed encryption-decryption-based state estimation scheme.展开更多
In this paper,we present a distributed framework for the lidar-based relative state estimator which achieves highly accurate,real-time trajectory estimation of multiple Unmanned Aerial Vehicles(UAVs)in GPS-denied envi...In this paper,we present a distributed framework for the lidar-based relative state estimator which achieves highly accurate,real-time trajectory estimation of multiple Unmanned Aerial Vehicles(UAVs)in GPS-denied environments.The system builds atop a factor graph,and only on-board sensors and computing power are utilized.Benefiting from the keyframe strategy,each UAV performs relative state estimation individually and broadcasts very partial information without exchanging raw data.The complete system runs in real-time and is evaluated with three experiments in different environments.Experimental results show that the proposed distributed approach offers comparable performance with a centralized method in terms of accuracy and real-time performance.The flight test demonstrates that the proposed relative state estimation framework is able to be used for aggressive flights over 5 m/s.展开更多
基金Projects(LQ16E080012,LY14F030012)supported by the Zhejiang Provincial Natural Science Foundation,ChinaProject(61573317)supported by the National Natural Science Foundation of ChinaProject(2015001)supported by the Open Fund for a Key-Key Discipline of Zhejiang University of Technology,China
文摘The accurate estimation of road traffic states can provide decision making for travelers and traffic managers. In this work,an algorithm based on kernel-k nearest neighbor(KNN) matching of road traffic spatial characteristics is presented to estimate road traffic states. Firstly, the representative road traffic state data were extracted to establish the reference sequences of road traffic running characteristics(RSRTRC). Secondly, the spatial road traffic state data sequence was selected and the kernel function was constructed, with which the spatial road traffic data sequence could be mapped into a high dimensional feature space. Thirdly, the referenced and current spatial road traffic data sequences were extracted and the Euclidean distances in the feature space between them were obtained. Finally, the road traffic states were estimated from weighted averages of the selected k road traffic states, which corresponded to the nearest Euclidean distances. Several typical links in Beijing were adopted for case studies. The final results of the experiments show that the accuracy of this algorithm for estimating speed and volume is 95.27% and 91.32% respectively, which prove that this road traffic states estimation approach based on kernel-KNN matching of road traffic spatial characteristics is feasible and can achieve a high accuracy.
文摘The performance of the conventional Kalman filter depends on process and measurement noise statistics given by the system model and measurements.The conventional Kalman filter is usually used for a linear system,but it should not be used for estimating the state of a nonlinear system such as a satellite motion because it is difficult to obtain the desired estimation results.The linearized Kalman filtering approach and the extended Kalman filtering approach have been proposed for a general nonlinear system.The equations of satellite motion are described.The satellite motion states are estimated,and the relevant estimation errors are calculated through the estimation algorithms of the both above mentioned approaches implemented in Matlab are estimated.The performances of the extended Kalman filter and the linearized Kalman filter are compared.The simulation results show that the extended Kalman filter is much better than the linearized Kalman filter at the aspect of estimation effect.
基金Project (Nos.50775096 and 51075176) supported by the National Natural Science Foundation of China
文摘A model-based estimator design and implementation is described in this paper to undertake combined estimation of vehicle states and tire-road friction coefficients.The estimator is designed based on a vehicle model with three degrees of freedom(3-DOF) and the dual extended Kalman filter(DEKF) technique is employed.Effectiveness of the estimation is examined and validated by comparing the outputs of the estimator with the responses of the vehicle model in CarSim in three typical road adhesion conditions(high-friction,low-friction,and joint-friction roads).Simulation results demonstrate that the DEKF estimator algorithm designed is able to obtain vehicle states(e.g.,yaw rate and roll angle) as well as road friction coefficients with reasonable accuracy.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 12004266, 11834014 and 11975050)the Beijing Natural Science Foundation (Grant Nos. 1192005 and Z180013)+1 种基金the Foundation of Beijing Education Committees (Grant No.KM202010028013)the Academy for Multidisciplinary Studies,Capital Normal University。
文摘Human experts cannot efficiently access physical information of a quantum many-body states by simply "reading"its coefficients, but have to reply on the previous knowledge such as order parameters and quantum measurements.We demonstrate that convolutional neural network(CNN) can learn from coefficients of many-body states or reduced density matrices to estimate the physical parameters of the interacting Hamiltonians, such as coupling strengths and magnetic fields, provided the states as the ground states. We propose QubismNet that consists of two main parts: the Qubism map that visualizes the ground states(or the purified reduced density matrices) as images, and a CNN that maps the images to the target physical parameters. By assuming certain constraints on the training set for the sake of balance, QubismNet exhibits impressive powers of learning and generalization on several quantum spin models. While the training samples are restricted to the states from certain ranges of the parameters, QubismNet can accurately estimate the parameters of the states beyond such training regions. For instance, our results show that QubismNet can estimate the magnetic fields near the critical point by learning from the states away from the critical vicinity. Our work provides a data-driven way to infer the Hamiltonians that give the designed ground states, and therefore would benefit the existing and future generations of quantum technologies such as Hamiltonian-based quantum simulations and state tomography.
基金supported in part by the National Natural Science Foundation of China(61873106,62303109)Start-Up Research Fund of Southeast University(RF1028623002)Shenzhen Science and Technology Program(JCYJ20230807114609019)
文摘Dear Editor,This letter focuses on how an attacker can design suitable improved zero-dynamics (ZD) attack signal based on state estimates of target system. Improved ZD attack is to change zero dynamic gain matrix of attack signal to a matrix with determinant greater than 1.
基金supported by the National Natural Science Foundation of China(62303273,62373226)the National Research Foundation,Singapore through the Medium Sized Center for Advanced Robotics Technology Innovation(WP2.7)
文摘Dear Editor,The letter deals with the distributed state and fault estimation of the whole physical layer for cyber-physical systems(CPSs) when the cyber layer suffers from DoS attacks. With the advancement of embedded computing, communication and related hardware technologies, CPSs have attracted extensive attention and have been widely used in power system, traffic network, refrigeration system and other fields.
文摘Dear Editor,This letter investigates the optimal denial-of-service(DoS)attack scheduling targeting state estimation in cyber-Physical systems(CPSs)with the two-hop multi-channel network.CPSs are designed to achieve efficient,secure and adaptive operation by embedding intelligent and autonomous decision-making capabilities in the physical world.As a key component of the CPSs,the wireless network is vulnerable to various malicious attacks due to its openness[1].DoS attack is one of the most common attacks,characterized of simple execution and significant destructiveness[2].To mitigate the economic losses and environmental damage caused by DoS attacks,it is crucial to model and investigate data transmissions in CPSs.
基金State Grid Jiangsu Electric Power Co.,Ltd.Technology Project(J2023121).
文摘With the continuous expansion of the power system scale and the increasing complexity of operational mode,the interaction between transmission and distribution systems is becoming more and more significant,placing higher requirements on the accuracy and efficiency of the power system state estimation to address the challenge of balancing computational efficiency and estimation accuracy in traditional coupled transmission and distribution state estimation methods,this paper proposes a collaborative state estimation method based on distribution systems state clustering and load model parameter identification.To resolve the scalability issue of coupled transmission and distribution power systems,clustering is first carried out based on the distribution system states.As the data and models of the transmission system and distribution systems are not shared.For the transmission system,equating the power transmitted from the transmission system to the distribution system is the same as equating the distribution system.Further,the power transmitted from the transmission system to different types of distribution systems is equivalent to different polynomial equivalent load models.Then,a parameter identification method is proposed to obtain the parameters of the equivalent load model.Finally,a transmission and distribution collaborative state estimation model is constructed based on the equivalent load model.The results of the numerical analysis show that compared with the traditional master-slave splitting method,the proposed method significantly enhances computational efficiency while maintaining high estimation accuracy.
基金supported in part by the Frontier Technology R&D Plan of Jiangsu Province(BF2024065)the Shenzhen Science and Technology Program(JCYJ20230807114609019)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX22_0236).
文摘Dear Editor,This letter investigates the optimal transmission scheduling problem in remote state estimation systems over an unknown wireless channel.We propose a partially observable Markov decision Process(POMDP)framework to model the sensor scheduling problem.By truncating and simplifying the POMDP problem,we have established the properties of the optimal solution under the POMDP model,through a fixed-point contraction method,and have shown that the threshold structure of the POMDP solution is not easily attainable.Subsequently,we obtained a suboptimal solution via Qlearning.Numerical simulations are used to demonstrate the efficacy of the proposed Q-learning approach.
基金supported in Natural Science Foundation of Shandong Province,China(ZR2013FM018)。
文摘This paper aims to enhance the array Beamforming(BF) robustness by tackling issues related to BF weight state estimation encountered in Constant Modulus Blind Beamforming(CMBB). To achieve this, we introduce a novel approach that incorporates an L1-regularizer term in BF weight state estimation. We start by explaining the CMBB formation mechanism under conditions where there is a mismatch in the far-field signal model. Subsequently, we reformulate the BF weight state estimation challenge using a method known as variable-splitting, turning it into a noise minimization problem. This problem combines both linear and nonlinear quadratic terms with an L1-regularizer that promotes the sparsity. The optimization strategy is based on a variable-splitting method, implemented using the Alternating Direction Method of Multipliers(ADMM). Furthermore, a variable-splitting framework is developed to enhance BF weight state estimation, employing a Kalman Smoother(KS) optimization algorithm. The approach integrates the Rauch-TungStriebel smoother to perform posterior-smoothing state estimation by leveraging prior data. We provide proof of convergence for both linear and nonlinear CMBB state estimation technology using the variable-splitting KS and the iterated extended Kalman smoother. Simulations corroborate our theoretical analysis, showing that the proposed method achieves robust stability and effective convergence, even when faced with signal model mismatches.
基金funded by the China Postdoctoral Science Foundation(No.2023M730337)。
文摘This study investigated the problems of non-cooperative target recognition and relative motion estimation during spacecraft rendezvous maneuvers.A structure integrating an Inertial Measurement Unit(IMU)and a visual camera was presented.The angular velocity output of the IMU was used to calculate the motion trajectories of star points in multiple image frames,which can highlight the motion of non-cooperative targets with respect to the image background to improve the probability of target recognition.To solve the problem of target misidentification caused by new star points entering the field of view,a target-tracking link based on IMU prediction was introduced to track the position of the target in the image.Furthermore,a measurement model was constructed using the line-of-sight vector generated from target recognition,and the relative motion state was estimated using a Huber-based non-linear filter.Semi-physical and numerical simulations were performed to evaluate the effectiveness and efficiency of the proposed method.
基金supported by the National Natural Science Foundation of China(62176214).
文摘For target tracking and localization in bearing-only sensor network,it is an essential and significant challenge to solve the problem of plug-and-play expansion while stably enhancing the accuracy of state estimation.This paper pro-poses a distributed state estimation method based on two-layer factor graph.Firstly,the measurement model of the bearing-only sensor network is constructed,and by investigating the observ-ability and the Cramer-Rao lower bound of the system model,the preconditions are analyzed.Subsequently,the location fac-tor graph and cubature information filtering algorithm of sensor node pairs are proposed for localized estimation.Building upon this foundation,the mechanism for propagating confidence mes-sages within the fusion factor graph is designed,and is extended to the entire sensor network to achieve global state estimation.Finally,groups of simulation experiments are con-ducted to compare and analyze the results,which verifies the rationality,effectiveness,and superiority of the proposed method.
基金supported by the National Natural Science Foundation of China(Grant Nos.12272123 and 12302047)the Natural Science Foundation of Jiangsu Province(Grant No.BK20231185)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.SJCX24_0192).
文摘The state estimation of the flexible multibody systems is a vital issue since it is the base of effective control and condition monitoring.The research on the state estimation method of flexible multibody system with large deformation and large rotation remains rare.In this investigation,a state estimator based on multiple nonlinear Kalman filtering algorithms was designed for the flexible multibody systems containing large flexibility components that were discretized by absolute nodal coordinate formulation(ANCF).The state variable vector was constructed based on the independent coordinates which are identified through the constraint Jacobian.Three types of Kalman filters were used to compare their performance in the state estimation for ANCF.Three cases including flexible planar rotating beam,flexible four-bar mechanism,and flexible rotating shaft were employed to verify the proposed state estimator.According to the different performances of the three types of Kalman filter,suggestions were given for the construction of the state estimator for the flexible multibody system.
文摘In actual power systems,most of the high-voltage buses of the transformers are zero injection buses without load or generation.Power injections into these buses are strictly 0,so based on Kirchhoff's current law(KCL),equality constraints should be used to handle these buses in a state estimation model.It is a challenge to ensure that these zero injection constraints can be strictly satisfied without losing computational efficiency.
基金supported by the National High-tech R&D Program of China(863 Program)(2015AA7326042 2015AA8321471)
文摘Aiming at handling complicated maneuvers or other unpredicted emergencies for hypersonic glide vehicle tracking,three coupled dynamic models of state estimation based on the priori information between guidance variables and aerodynamics are presented. Firstly, the aerodynamic acceleration acting on the target is analyzed to reveal the essence of the target’s motion.Then three coupled structures for modeling aerodynamic parameters are developed by different ideas: the spiral model with a harmonic oscillator, the bank model with trigonometric functions of the bank angle and the guide model with the changing rule of guidance variables. Meanwhile, the comparison discussion is concluded to show the novelty and advantage of these models.Finally, a performance assessment in different simulation cases is presented and detailed analysis is revealed. The results show that the proposed models perform excellent properties. Moreover, the guide model produces the best tracking performance and the bank model shows the second; however, the spiral model does not outperform the maneuvering reentry vehicle(MaRV) model markedly.
基金supported by the National Natural Science Foundation of China(61304254)the National Science Foundation for Distinguished Young Scholars of China(60925011)the Provincial and Ministerial Key Fund of China(9140A07010511BQ0105)
文摘An adaptive unscented Kalman filter(AUKF)and an augmented state method are employed to estimate the timevarying parameters and states of a kind of nonlinear high-speed objects.A strong tracking filter is employed to improve the tracking ability and robustness of unscented Kalman filter(UKF)when the process noise is inaccuracy,and wavelet transform is used to improve the estimate accuracy by the variance of measurement noise.An augmented square-root framework is utilized to improve the numerical stability and accuracy of UKF.Monte Carlo simulations and applications in the rapid trajectory estimation of hypersonic artillery shells confirm the effectiveness of the proposed method.
文摘This article presents an up-to-date tutorial review of nonlinear Bayesian estimation. State estimation for nonlinear systems has been a challenge encountered in a wide range of engineering fields, attracting decades of research effort. To date,one of the most promising and popular approaches is to view and address the problem from a Bayesian probabilistic perspective,which enables estimation of the unknown state variables by tracking their probabilistic distribution or statistics(e.g., mean and covariance) conditioned on a system's measurement data.This article offers a systematic introduction to the Bayesian state estimation framework and reviews various Kalman filtering(KF)techniques, progressively from the standard KF for linear systems to extended KF, unscented KF and ensemble KF for nonlinear systems. It also overviews other prominent or emerging Bayesian estimation methods including Gaussian filtering, Gaussian-sum filtering, particle filtering and moving horizon estimation and extends the discussion of state estimation to more complicated problems such as simultaneous state and parameter/input estimation.
文摘An airship model is made-up of aerostatic,aerodynamic,dynamic,and propulsive forces and torques.Besides others,the computation of aerodynamic forces and torques is difficult.Usually,wind tunnel experimentation and potential flow theory are used for their calculations.However,the limitations of these methods pose difficulties in their accurate calculation.In this work,an online estimation scheme based on unscented Kalman filter(UKF)is proposed for their calculation.The proposed method introduces six auxiliary states for the complete aerodynamic model.UKF uses an extended model and provides an estimate of a complete state vector along with auxiliary states.The proposed method uses the minimum auxiliary state variables for the approximation of the complete aerodynamic model that makes it computationally less intensive.UKF estimation performance is evaluated by developing a nonlinear simulation environment for University of Engineering and Technology,Taxila(UETT)airship.Estimator performance is validated by performing the error analysis based on estimation error and 2-σ uncertainty bound.For the same problem,the extended Kalman filter(EKF)is also implemented and its results are compared with UKF.The simulation results show that UKF successfully estimates the forces and torques due to the aerodynamic model with small estimation error and the comparative analysis with EKF shows that UKF improves the estimation results and also it is more suitable for the under-consideration problem.
基金This work was supported in part by the National Natural Science Foundation of China(62273087,61933007,62273088,U21A2019,62073180)the Shanghai Pujiang Program of China(22PJ1400400)+3 种基金the Program of Shanghai Academic/Technology Research Leader of China(20XD1420100)the European Union’s Horizon 2020 Research and Innovation Programme(820776)(INTEGRADDE)the Royal Society of UKthe Alexander von Humboldt Foundation of Germany.
文摘This paper is concerned with the problem of finitehorizon energy-to-peak state estimation for a class of networked linear time-varying systems.Due to the inherent vulnerability of network-based communication,the measurement signals transmitted over a communication network might be intercepted by potential eavesdroppers.To avoid information leakage,by resorting to an artificial-noise-assisted method,we develop a novel encryption-decryption scheme to ensure that the transmitted signal is composed of the raw measurement and an artificial-noise term.A special evaluation index named secrecy capacity is employed to assess the information security of signal transmissions under the developed encryption-decryption scheme.The purpose of the addressed problem is to design an encryptiondecryption scheme and a state estimator such that:1)the desired secrecy capacity is ensured;and 2)the required finite-horizon–l_(2)-l_(∞)performance is achieved.Sufficient conditions are established on the existence of the encryption-decryption mechanism and the finite-horizon state estimator.Finally,simulation results are proposed to show the effectiveness of our proposed encryption-decryption-based state estimation scheme.
基金supported by the National Key Research and Development Program of China(No.2018AAA0102401)the National Natural Science Foundation of China(Nos.62022060,61773278,61873340).
文摘In this paper,we present a distributed framework for the lidar-based relative state estimator which achieves highly accurate,real-time trajectory estimation of multiple Unmanned Aerial Vehicles(UAVs)in GPS-denied environments.The system builds atop a factor graph,and only on-board sensors and computing power are utilized.Benefiting from the keyframe strategy,each UAV performs relative state estimation individually and broadcasts very partial information without exchanging raw data.The complete system runs in real-time and is evaluated with three experiments in different environments.Experimental results show that the proposed distributed approach offers comparable performance with a centralized method in terms of accuracy and real-time performance.The flight test demonstrates that the proposed relative state estimation framework is able to be used for aggressive flights over 5 m/s.