Zero-energy modes localized at the ends of one-dimensional(1D)wires hold great potential as qubits for fault-tolerant quantum computing.However,all the candidates known to date exhibit a wave function that decays expo...Zero-energy modes localized at the ends of one-dimensional(1D)wires hold great potential as qubits for fault-tolerant quantum computing.However,all the candidates known to date exhibit a wave function that decays exponentially into the bulk and hybridizes with other nearby zero-modes,thus hampering their use for braiding operations.Here,we show that a quasi-1D diamond-necklace chain exhibits an unforeseen type of robust boundary state,namely compact localized zero-energy modes that do not decay into the bulk.We find that this state emerges due to the presence of a latent symmetry in the system.We experimentally realize the diamond-necklace chain in an electronic quantum simulator setup.展开更多
基金financial support from the European Research Council(Horizon 2020“FRACTAL”,865570)the Dutch Research Council(grant 16PR3245)+2 种基金the research program“Materials for the Quantum Age”(QuMat)for financial supportThis program(registration number 024.005.006)is part of the Gravitation program financed by the Dutch Ministry of Education,Culture and Science(OCW)funding provided by Shanghai Jiao Tong University.
文摘Zero-energy modes localized at the ends of one-dimensional(1D)wires hold great potential as qubits for fault-tolerant quantum computing.However,all the candidates known to date exhibit a wave function that decays exponentially into the bulk and hybridizes with other nearby zero-modes,thus hampering their use for braiding operations.Here,we show that a quasi-1D diamond-necklace chain exhibits an unforeseen type of robust boundary state,namely compact localized zero-energy modes that do not decay into the bulk.We find that this state emerges due to the presence of a latent symmetry in the system.We experimentally realize the diamond-necklace chain in an electronic quantum simulator setup.