A state/event fault tree(SEFT)is a modeling technique for describing the causal chains of events leading to failure in software-controlled complex systems.Such systems are ubiquitous in all areas of everyday life,and ...A state/event fault tree(SEFT)is a modeling technique for describing the causal chains of events leading to failure in software-controlled complex systems.Such systems are ubiquitous in all areas of everyday life,and safety and reliability analyses are increasingly required for these systems.SEFTs combine elements from the traditional fault tree with elements from state-based techniques.In the context of the real-time safety-critical systems,SEFTs do not describe the time properties and important timedependent system behaviors that can lead to system failures.Further,SEFTs lack the precise semantics required for formally modeling time behaviors.In this paper,we present a qualitative analysis method for SEFTs based on transformation from SEFT to timed automata(TA),and use the model checker UPPAAL to verify system requirements’properties.The combination of SEFT and TA is an important step towards an integrated design and verification process for real-time safety-critical systems.Finally,we present a case study of a powerboat autopilot system to confirm our method is viable and valid after achieving the verification goal step by step.展开更多
This study examines the “V + Dào” construction as a state change event through the lens of the Event Integration Hypothesis. It focuses on how these constructions represent state changes, exploring distinctions...This study examines the “V + Dào” construction as a state change event through the lens of the Event Integration Hypothesis. It focuses on how these constructions represent state changes, exploring distinctions between “change” and “stasis”. Using a corpus-based approach, the analysis covers the semantic and syntactic features of “V + Dào” constructions and their event integration patterns. The findings highlight the distribution of agency, animacy, and support relations in state change events, emphasizing the complex interaction of internal and external event integrations and their correlation with the conceptual primitives of change and transition. This study offers insights into the lexicalization and grammaticalization processes of the “V + Dào” construction, and potentially the broader verb-complement constructions in Mandarin.展开更多
This editorial article is intended to perform a discussion on the manuscript entitled“Simultaneous portal vein thrombosis and splenic vein thrombosis in a COVID-19 patient:A case report and review of literature”writ...This editorial article is intended to perform a discussion on the manuscript entitled“Simultaneous portal vein thrombosis and splenic vein thrombosis in a COVID-19 patient:A case report and review of literature”written by Abramowitz et al.The article focuses on the diagnostic processes in a 77-year-old-male patient with a simultaneous portal vein and splenic artery thrombosis accompanying coronavirus disease 2019(COVID-19).The authors postulated that splanchnic thrombosis should be on the list of differential diagnoses in a patient presenting with abdominal pain in presence of a COVID-19 infection.The tendency for venous and arterial thrombosis in COVID-19 patients is encountered,largely attributed to hypercoagulopathy.In general,venous thromboembolism mostly manifest as deep vein thrombosis(DVT),pulmonary embolism(PE)or catheterrelated thromboembolic events.Acute PE,DVT,cerebrovascular events and myocardial infarction are seen as the most common thromboembolic complications in COVID-19 patients.COVID-19-associated hemostatic abnormalities include mild thrombocytopenia and increased D-dimer level.Similar to other coagulopathies,the treatment of the underlying condition is the mainstay.Addition of antiplatelet agents can be considered in critically ill patients at low bleeding risk,not on therapeutic anticoagulation,and receiving gastric acid suppression Early administration of antithrombotic drugs will have a beneficial effect in both the prevention and treatment of thrombotic events,especially in non-ambulatory patients.Low molecular weight heparin(LMWH)should be started if there is no contraindication,including in non-critical patients who are at risk of hospitalization LMWH(enoxaparin)is preferred to standard heparin.展开更多
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr...Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%.展开更多
This article investigates the issue of finite-time state estimation in coupled neural networks under random mixed cyberattacks,in which the Markov process is used to model the mixed cyberattacks.To optimize the utiliz...This article investigates the issue of finite-time state estimation in coupled neural networks under random mixed cyberattacks,in which the Markov process is used to model the mixed cyberattacks.To optimize the utilization of channel resources,a decentralized event-triggered mechanism is adopted during the information transmission.By establishing the augmentation system and constructing the Lyapunov function,sufficient conditions are obtained for the system to be finite-time bounded and satisfy the H_(∞ )performance index.Then,under these conditions,a suitable state estimator gain is obtained.Finally,the feasibility of the method is verified by a given illustrative example.展开更多
Type 2 diabetes(T2D)is an insidious disease associated with neural and vascular complications,acceleration of cardiovascular disease,changes in heart function,and premature death.In the newly released article of the J...Type 2 diabetes(T2D)is an insidious disease associated with neural and vascular complications,acceleration of cardiovascular disease,changes in heart function,and premature death.In the newly released article of the Journal of Sport and Health Science,Liang et al.1 describe results from the UK Biobank data showing the benefits of moderate-to-vigorous intensity physical activity(MVPA)on reducing the risks for vascular events in 11,474 adults with T2D and prediabetes.展开更多
On state estimation problems of switched neural networks,most existing results with an event-triggered scheme(ETS)not only ignore the estimator information,but also just employ a fixed triggering threshold,and the est...On state estimation problems of switched neural networks,most existing results with an event-triggered scheme(ETS)not only ignore the estimator information,but also just employ a fixed triggering threshold,and the estimation error cannot be guaranteed to converge to zero.In addition,the state estimator of non-switched neural networks with integral and exponentially convergent terms cannot be used to improve the estimation performance of switched neural networks due to the difficulties caused by the nonsmoothness of the considered Lyapunov function at the switching instants.In this paper,we aim at overcoming such difficulties and filling in the gaps,by proposing a novel adaptive ETS(AETS)to design an event-based H_(∞)switched proportional-integral(PI)state estimator.A triggering-dependent exponential convergence term and an integral term are introduced into the switched PI state estimator.The relationship among the average dwell time,the AETS and the PI state estimator are established by the triggering-dependent exponential convergence term such that estimation error asymptotically converges to zero with H_(∞)performance level.It is shown that the convergence rate of the resultant error system can be adaptively adjusted according to triggering signals.Finally,the validity of the proposed theoretical results is verified through two illustrative examples.展开更多
Although air pollutant emissions have sharply reduced in recent years,the occurrence of PM_(2.5) pollution events remains an intractable environmental problem in Beijing,and regional transport is the key influence fac...Although air pollutant emissions have sharply reduced in recent years,the occurrence of PM_(2.5) pollution events remains an intractable environmental problem in Beijing,and regional transport is the key influence factor.However,it has been difficult to identify regional transport characteristics and the main contributors to pollution events in recent years.In this study,the relative contribution of regional transport was quantified(61.3%)in PM_(2.5) pollution events during 2018-2021 by the Community Multiscale Air Quality model embedded with the Integrated Source Apportionment Model(CMAQ-ISAM).The four regions with the largest fractional contributions to Beijing for all events were Shandong(7.7%),South Hebei(7.3%),Baoding(6.2%),and Langfang(5.8%).Pollution events were classified into the following types based on regional transport directions:local,southwest(SW),southeast(SE),south-mixed(SM),and others.Based on the transport distance,the SW,SE,and SM types can be subdivided into SW-short,SW-long,SE-short,SE-long,SM-short,SM-long distance from southwest,SM-long distance from southeast,and SM-long distance from southwest and southeast.SE-long was regarded as the most important type,with the highest relative frequency(20%).The transport directions were related to the southwest wind at 925 hPa and southeast wind at 1000 hPa in the south of the Beijing–Tianjin–Hebei(BTH)region,and the distance was mainly controlled by wind strength.The wind-field difference can be attributed to the low-pressure and high-pressure systems that control the BTH region.The results suggest that regional joint pollution control should be optimized based on the transport type.展开更多
Implementing quantum wireless multi-hop network communication is essential to improve the global quantum network system. In this paper, we employ eight-level GHZ states as quantum channels to realize multi-hop quantum...Implementing quantum wireless multi-hop network communication is essential to improve the global quantum network system. In this paper, we employ eight-level GHZ states as quantum channels to realize multi-hop quantum communication, and utilize the logical relationship between the measurements of each node to derive the unitary operation performed by the end node. The hierarchical simultaneous entanglement switching(HSES) method is adopted, resulting in a significant reduction in the consumption of classical information compared to multi-hop quantum teleportation(QT)based on general simultaneous entanglement switching(SES). In addition, the proposed protocol is simulated on the IBM Quantum Experiment platform(IBM QE). Then, the data obtained from the experiment are analyzed using quantum state tomography, which verifies the protocol's good fidelity and accuracy. Finally, by calculating fidelity, we analyze the impact of four different types of noise(phase-damping, amplitude-damping, phase-flip and bit-flip) in this protocol.展开更多
In both Traditional Chinese Medicine(TCM)and modern medicine,they agree that the integrity and healthy structure of the vascular endothelium are essential for normal hemodynamics.Damage to the vascular endothelium can...In both Traditional Chinese Medicine(TCM)and modern medicine,they agree that the integrity and healthy structure of the vascular endothelium are essential for normal hemodynamics.Damage to the vascular endothelium can quickly activate the extrinsic coagulation pathway by triggering the tissue factor(TF)and lead to coagulation.This damage,along with a loss of anticoagulant properties through antithrombinⅢ(ATⅢ),TF pathway inhibitors,and the protein C system,can result in a hypercoagulable state and even thrombosis.Hypercoagulability is not only a common feature of many cancers but also an important factor promoting tumor development and metastasis,which corresponds to the TCM theory of“blood stasis leading to tumors.”The pharmacological effects of heparin and aspirin have similarities with TCM's“activating blood circulation and removing blood stasis”theory in improving blood circulation,treating related diseases,and their anti-inflammatory effects.展开更多
An internal state variable(ISV)model was established according to the experimental results of hot plane strain compression(PSC)to predict the microstructure evolution during hot spinning of ZK61 alloy.The effects of t...An internal state variable(ISV)model was established according to the experimental results of hot plane strain compression(PSC)to predict the microstructure evolution during hot spinning of ZK61 alloy.The effects of the internal variables were considered in this ISV model,and the parameters were optimized by genetic algorithm.After validation,the ISV model was used to simulate the evolution of grain size(GS)and dynamic recrystallization(DRX)fraction during hot spinning via Abaqus and its subroutine Vumat.By comparing the simulated results with the experimental results,the application of the ISV model was proven to be reliable.Meanwhile,the strength of the thin-walled spun ZK61 tube increased from 303 to 334 MPa due to grain refinement by DRX and texture strengthening.Besides,some ultrafine grains(0.5μm)that played an important role in mechanical properties were formed due to the proliferation,movement,and entanglement of dislocations during the spinning process.展开更多
BACKGROUND Minimally invasive esophagectomy(MIE)is a widely accepted treatment for esophageal cancer,yet it is associated with a significant risk of surgical adverse events(SAEs),which can compromise patient recovery ...BACKGROUND Minimally invasive esophagectomy(MIE)is a widely accepted treatment for esophageal cancer,yet it is associated with a significant risk of surgical adverse events(SAEs),which can compromise patient recovery and long-term survival.Accurate preoperative identification of high-risk patients is critical for improving outcomes.AIM To establish and validate a risk prediction and stratification model for the risk of SAEs in patients with MIE.METHODS This retrospective study included 747 patients who underwent MIE at two centers from January 2019 to February 2024.Patients were separated into a train set(n=549)and a validation set(n=198).After screening by least absolute shrinkage and selection operator regression,multivariate logistic regression analyzed clinical and intraoperative variables to identify independent risk factors for SAEs.A risk stratification model was constructed and validated to predict the probability of SAEs.RESULTS SAEs occurred in 10.2%of patients in train set and 13.6%in the validation set.Patients with SAE had significantly higher complication rate and a longer hospital stay after surgery.The key independent risk factors identified included chronic obstructive pulmonary disease,a history of alcohol consumption,low forced expiratory volume in the first second,and low albumin levels.The stratification model has excellent prediction accuracy,with an area under the curve of 0.889 for the training set and an area under the curve of 0.793 for the validation set.CONCLUSION The developed risk stratification model effectively predicts the risk of SAEs in patients undergoing MIE,facilitating targeted preoperative interventions and improving perioperative management.展开更多
1.Introduction.Cold Spray(CS)is a highly advanced solid-state metal depo-sition process that was first developed in the 1980s.This innovative technique involves the high-speed(300-1200 m/s)impact deposition of micron-...1.Introduction.Cold Spray(CS)is a highly advanced solid-state metal depo-sition process that was first developed in the 1980s.This innovative technique involves the high-speed(300-1200 m/s)impact deposition of micron-sized particles(5-50μm)to fabricate coatings[1-3].CS has been extensively used in a variety of coating applications,such as aerospace,automotive,energy,medical,marine,and others,to provide protection against high temperatures,corrosion,erosion,oxidation,and chemicals[4,5].Nowadays,the technical interest in CS is twofold:(i)as a repair process for damaged components,and(ii)as a solid-state additive manufacturing process.Compared to other fusion-based additive manufacturing(AM)technologies,Cold Spray Additive Manufacturing(CSAM)is a new member of the AM family that can enable the fabrication of deposits without undergoing melting.The chemical composition has been largely preserved from the powder to the deposit due to the minimal oxidation.The significant advantages of CSAM over other additive manufacturing processes include a high production rate,unlimited deposition size,high flexibility,and suitability for repairing damaged parts.展开更多
The effects of plasma screening on the ^(1)P^(o) resonance states of H-and He below the n=3 and n=4 thresholds of the respective subsystemsare investigated using the stabilization method and correlated exponential wav...The effects of plasma screening on the ^(1)P^(o) resonance states of H-and He below the n=3 and n=4 thresholds of the respective subsystemsare investigated using the stabilization method and correlated exponential wave functions.Two plasma mediums,namely,the Debye plasma and quantum plasma environments are considered.The screened Coulomb potential(SCP)obtained from Debye-Hückel model is used to represent Debye plasma environments and the exponential cosine screened Coulomb potential(ECSCP)obtained from a modified Debye-Hückel model is used to represent quantum plasma environments.The resonance parameters(resonance positions and widths)are presented in terms of the screening parameters.展开更多
This paper presents a new type of triangular Sharp Eagle wave energy converter(WEC)platform.On the basis of the linear potential flow theory and the finite element analysis method,the hydrodynamic performance and stru...This paper presents a new type of triangular Sharp Eagle wave energy converter(WEC)platform.On the basis of the linear potential flow theory and the finite element analysis method,the hydrodynamic performance and structural response of the platform are studied,considering the actual platform motion and free surface rise under extreme sea states.First,the effects of the wave frequency and direction on the wave-induced loads and dynamic responses were examined.The motion at a wave direction angle of 0°is relatively low.On this basis,the angle constrained by the two sides of the Sharp Eagle floaters should be aligned with the main wave direction to avoid significant platform motion under extreme sea states.Additionally,the structural response of the platform,including the wave-absorbing floaters,is investigated.The results highlighted that the conditions or locations where yielding,buckling,and fatigue failures occur were different.In this context,the connection area of the Sharp Eagle floaters and platform is prone to yielding failure under oblique wave action,whereas the pontoon and side of the Sharp Eagle floaters are prone to buckling failure during significant vertical motion.Additionally,fatigue damage is most likely to occur at the connection between the middle column on both sides of the Sharp Eagle floaters and the pontoons.The findings of this paper revealed an intrinsic connection between wave-induced loads and the dynamic and structural responses of the platform,which provides a useful reference for the improved design of WECs.展开更多
BACKGROUND Endoscopic colon polypectomy is a common procedure used to remove polyps that may develop into colorectal cancer if left untreated.Despite these advantages,patients frequently experience anxiety and other a...BACKGROUND Endoscopic colon polypectomy is a common procedure used to remove polyps that may develop into colorectal cancer if left untreated.Despite these advantages,patients frequently experience anxiety and other adverse reactions.Standardized evidence-based nursing practices are essential for enhancing patient care by addressing both physical and psychological health issues.AIM To analyze the impact of standardized evidence-based nursing on psychological status and adverse reactions of patients undergoing endoscopic colonic polypectomy.METHODS Data from 200 patients who underwent endoscopic colonic polypectomy at the authors’hospital between January and June 2024 were randomly assigned to two groups:Control[received routine nursing care(n=100)]and study[received standardized evidence-based nursing intervention(s)(n=100)].Psychological status,visual analog scale,and Short-Form 36 Health Survey scores,adverse events,and satisfaction with nursing were compared between the two groups.RESULTS After the interventions,the study group exhibited significantly lower scores on the Hamilton Anxiety Rating Scale and Hamilton Depression Rating Scale,along with a reduced incidence of adverse events compared with the control group(P<0.05).Short-Form 36 Health Survey scores and overall satisfaction with nursing care were also significantly higher in the intervention group(P<0.05).CONCLUSION Standardized evidence-based nursing interventions effectively reduced negative patient emotions and enhanced quality of life and satisfaction,demonstrating high safety.展开更多
The World Wide Web provides a wealth of information about everything, including contemporary audio and visual art events, which are discussed on media outlets, blogs, and specialized websites alike. This information m...The World Wide Web provides a wealth of information about everything, including contemporary audio and visual art events, which are discussed on media outlets, blogs, and specialized websites alike. This information may become a robust source of real-world data, which may form the basis of an objective data-driven analysis. In this study, a methodology for collecting information about audio and visual art events in an automated manner from a large array of websites is presented in detail. This process uses cutting edge Semantic Web, Web Search and Generative AI technologies to convert website documents into a collection of structured data. The value of the methodology is demonstrated by creating a large dataset concerning audiovisual events in Greece. The collected information includes event characteristics, estimated metrics based on their text descriptions, outreach metrics based on the media that reported them, and a multi-layered classification of these events based on their type, subjects and methods used. This dataset is openly provided to the general and academic public through a Web application. Moreover, each event’s outreach is evaluated using these quantitative metrics, the results are analyzed with an emphasis on classification popularity and useful conclusions are drawn concerning the importance of artistic subjects, methods, and media.展开更多
Background: Undergoing ultrasound scanning (USS) during the first trimester of pregnancy is highly imperative for expecting mothers, as it supports the early detection of any malformations, identifying the fetal numbe...Background: Undergoing ultrasound scanning (USS) during the first trimester of pregnancy is highly imperative for expecting mothers, as it supports the early detection of any malformations, identifying the fetal number, fetal growth, fetal sex, and calculation of delivery. Previous studies have shown that undergoing such prenatal screening procedures could reduce the antenatal anxiety levels of expectant mothers. The present study aimed to explore the impact of first-trimester ultrasound scanning towards the antenatal anxiety and identify the predictors of antenatal anxiety among expectant mothers in the first trimester. Methods: A repeated measure design study was conducted in Maternity Clinics of University Hospital KDU, Ninewells Care Hospital and Navy General Hospital over 4 months with one hundred and fifteen (n = 115) expectant mothers. Participants completed a general information sheet first and State Trait Anxiety Inventory (STAI) (Spielberger et al., 1970) was administered before and after undergoing the USS. Results: Mean age of the participants was 28.84 ± 3.68. The Wilcoxon Signed Rank test showed that there is a significant reduction of participants’ antenatal anxiety levels following the USS z = −5.658, p Conclusions: Findings suggest that undergoing the first trimester USS significantly reduces the antenatal state anxiety and partner’s support is an important factor in reducing the antenatal anxiety experienced by expectant mothers in the first trimester. Future studies can focus on how USS can contribute to alleviating antenatal anxiety in second and third trimesters.展开更多
Two long-term slow slip events(SSEs) in Lower Cook Inlet, Alaska, were identified by Li SS et al.(2016). The earlier SSE lasted at least 9 years with M_(w) ~7.8 and had an average slip rate of ~82 mm/year. The latter ...Two long-term slow slip events(SSEs) in Lower Cook Inlet, Alaska, were identified by Li SS et al.(2016). The earlier SSE lasted at least 9 years with M_(w) ~7.8 and had an average slip rate of ~82 mm/year. The latter SSE, occurring in a similar area, lasted approximately 2 years with M_(w) ~7.2 and an average slip rate of ~91 mm/year. To test whether these SSEs triggered earthquakes near the slow slip area, we calculated the Coulomb stressing rate changes on receiver faults by using two fault geometry definitions: nodal planes of focal mechanism solutions of past earthquakes, and optimally oriented fault planes. Regions in the shallow slab(30–60 km) that experienced a significant increase in the Coulomb stressing rate due to slip by the SSEs showed an increase in seismicity rates during SSE periods. No correlation was found in the volumes that underwent a significant increase in the Coulomb stressing rate during the SSE within the crust and the intermediate slab. We modeled variations in seismicity rates by using a combination of the Coulomb stress transfer model and the framework of rate-and-state friction. Our model indicated that the SSEs increased the Coulomb stress changes on adjacent faults,thereby increasing the seismicity rates even though the ratio of the SSE stressing rate to the background stressing rate was small. Each long-term SSE in Alaska brought the megathrust updip of the SSE areas closer to failure by up to 0.1–0.15 MPa. The volumes of significant Coulomb stress changes caused by the Upper and Lower Cook Inlet SSEs did not overlap.展开更多
基金supported by the National Natural Science Foundation of China(11832012)
文摘A state/event fault tree(SEFT)is a modeling technique for describing the causal chains of events leading to failure in software-controlled complex systems.Such systems are ubiquitous in all areas of everyday life,and safety and reliability analyses are increasingly required for these systems.SEFTs combine elements from the traditional fault tree with elements from state-based techniques.In the context of the real-time safety-critical systems,SEFTs do not describe the time properties and important timedependent system behaviors that can lead to system failures.Further,SEFTs lack the precise semantics required for formally modeling time behaviors.In this paper,we present a qualitative analysis method for SEFTs based on transformation from SEFT to timed automata(TA),and use the model checker UPPAAL to verify system requirements’properties.The combination of SEFT and TA is an important step towards an integrated design and verification process for real-time safety-critical systems.Finally,we present a case study of a powerboat autopilot system to confirm our method is viable and valid after achieving the verification goal step by step.
文摘This study examines the “V + Dào” construction as a state change event through the lens of the Event Integration Hypothesis. It focuses on how these constructions represent state changes, exploring distinctions between “change” and “stasis”. Using a corpus-based approach, the analysis covers the semantic and syntactic features of “V + Dào” constructions and their event integration patterns. The findings highlight the distribution of agency, animacy, and support relations in state change events, emphasizing the complex interaction of internal and external event integrations and their correlation with the conceptual primitives of change and transition. This study offers insights into the lexicalization and grammaticalization processes of the “V + Dào” construction, and potentially the broader verb-complement constructions in Mandarin.
文摘This editorial article is intended to perform a discussion on the manuscript entitled“Simultaneous portal vein thrombosis and splenic vein thrombosis in a COVID-19 patient:A case report and review of literature”written by Abramowitz et al.The article focuses on the diagnostic processes in a 77-year-old-male patient with a simultaneous portal vein and splenic artery thrombosis accompanying coronavirus disease 2019(COVID-19).The authors postulated that splanchnic thrombosis should be on the list of differential diagnoses in a patient presenting with abdominal pain in presence of a COVID-19 infection.The tendency for venous and arterial thrombosis in COVID-19 patients is encountered,largely attributed to hypercoagulopathy.In general,venous thromboembolism mostly manifest as deep vein thrombosis(DVT),pulmonary embolism(PE)or catheterrelated thromboembolic events.Acute PE,DVT,cerebrovascular events and myocardial infarction are seen as the most common thromboembolic complications in COVID-19 patients.COVID-19-associated hemostatic abnormalities include mild thrombocytopenia and increased D-dimer level.Similar to other coagulopathies,the treatment of the underlying condition is the mainstay.Addition of antiplatelet agents can be considered in critically ill patients at low bleeding risk,not on therapeutic anticoagulation,and receiving gastric acid suppression Early administration of antithrombotic drugs will have a beneficial effect in both the prevention and treatment of thrombotic events,especially in non-ambulatory patients.Low molecular weight heparin(LMWH)should be started if there is no contraindication,including in non-critical patients who are at risk of hospitalization LMWH(enoxaparin)is preferred to standard heparin.
基金supported by the National Natural Science Foundation of China(NSFC)under Grant(No.51677058).
文摘Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%.
基金Project supported by the National Natural Science Foundation of China(Grant No.62303016)the Research and Development Project of Engineering Research Center of Biofilm Water Purification and Utilization Technology of the Ministry of Education of China(Grant No.BWPU2023ZY02)+1 种基金the University Synergy Innovation Program of Anhui Province,China(Grant No.GXXT-2023-020)the Key Project of Natural Science Research in Universities of Anhui Province,China(Grant No.2024AH050171).
文摘This article investigates the issue of finite-time state estimation in coupled neural networks under random mixed cyberattacks,in which the Markov process is used to model the mixed cyberattacks.To optimize the utilization of channel resources,a decentralized event-triggered mechanism is adopted during the information transmission.By establishing the augmentation system and constructing the Lyapunov function,sufficient conditions are obtained for the system to be finite-time bounded and satisfy the H_(∞ )performance index.Then,under these conditions,a suitable state estimator gain is obtained.Finally,the feasibility of the method is verified by a given illustrative example.
文摘Type 2 diabetes(T2D)is an insidious disease associated with neural and vascular complications,acceleration of cardiovascular disease,changes in heart function,and premature death.In the newly released article of the Journal of Sport and Health Science,Liang et al.1 describe results from the UK Biobank data showing the benefits of moderate-to-vigorous intensity physical activity(MVPA)on reducing the risks for vascular events in 11,474 adults with T2D and prediabetes.
基金supported in part by the National Natural Science Foundation of China under Grants 62103352supported in part by Hebei Natural Science Foundation,China under Grant F2023203056the 8th batch of post-doctoral Innovative Talent Support Program BX20230150.
文摘On state estimation problems of switched neural networks,most existing results with an event-triggered scheme(ETS)not only ignore the estimator information,but also just employ a fixed triggering threshold,and the estimation error cannot be guaranteed to converge to zero.In addition,the state estimator of non-switched neural networks with integral and exponentially convergent terms cannot be used to improve the estimation performance of switched neural networks due to the difficulties caused by the nonsmoothness of the considered Lyapunov function at the switching instants.In this paper,we aim at overcoming such difficulties and filling in the gaps,by proposing a novel adaptive ETS(AETS)to design an event-based H_(∞)switched proportional-integral(PI)state estimator.A triggering-dependent exponential convergence term and an integral term are introduced into the switched PI state estimator.The relationship among the average dwell time,the AETS and the PI state estimator are established by the triggering-dependent exponential convergence term such that estimation error asymptotically converges to zero with H_(∞)performance level.It is shown that the convergence rate of the resultant error system can be adaptively adjusted according to triggering signals.Finally,the validity of the proposed theoretical results is verified through two illustrative examples.
基金supported by the National Key R&D program of China(No.2022YFC3703404)the National Natural Science Foundation of China(No.22188102)the Samsung Advanced Institute of Technology.
文摘Although air pollutant emissions have sharply reduced in recent years,the occurrence of PM_(2.5) pollution events remains an intractable environmental problem in Beijing,and regional transport is the key influence factor.However,it has been difficult to identify regional transport characteristics and the main contributors to pollution events in recent years.In this study,the relative contribution of regional transport was quantified(61.3%)in PM_(2.5) pollution events during 2018-2021 by the Community Multiscale Air Quality model embedded with the Integrated Source Apportionment Model(CMAQ-ISAM).The four regions with the largest fractional contributions to Beijing for all events were Shandong(7.7%),South Hebei(7.3%),Baoding(6.2%),and Langfang(5.8%).Pollution events were classified into the following types based on regional transport directions:local,southwest(SW),southeast(SE),south-mixed(SM),and others.Based on the transport distance,the SW,SE,and SM types can be subdivided into SW-short,SW-long,SE-short,SE-long,SM-short,SM-long distance from southwest,SM-long distance from southeast,and SM-long distance from southwest and southeast.SE-long was regarded as the most important type,with the highest relative frequency(20%).The transport directions were related to the southwest wind at 925 hPa and southeast wind at 1000 hPa in the south of the Beijing–Tianjin–Hebei(BTH)region,and the distance was mainly controlled by wind strength.The wind-field difference can be attributed to the low-pressure and high-pressure systems that control the BTH region.The results suggest that regional joint pollution control should be optimized based on the transport type.
基金Project supported by the Open Fund of Anhui Key Laboratory of Mine Intelligent Equipment and Technology (Grant No. ZKSYS202204)the Talent Introduction Fund of Anhui University of Science and Technology (Grant No. 2021yjrc34)the Scientific Research Fund of Anhui Provincial Education Department (Grant No. KJ2020A0301)。
文摘Implementing quantum wireless multi-hop network communication is essential to improve the global quantum network system. In this paper, we employ eight-level GHZ states as quantum channels to realize multi-hop quantum communication, and utilize the logical relationship between the measurements of each node to derive the unitary operation performed by the end node. The hierarchical simultaneous entanglement switching(HSES) method is adopted, resulting in a significant reduction in the consumption of classical information compared to multi-hop quantum teleportation(QT)based on general simultaneous entanglement switching(SES). In addition, the proposed protocol is simulated on the IBM Quantum Experiment platform(IBM QE). Then, the data obtained from the experiment are analyzed using quantum state tomography, which verifies the protocol's good fidelity and accuracy. Finally, by calculating fidelity, we analyze the impact of four different types of noise(phase-damping, amplitude-damping, phase-flip and bit-flip) in this protocol.
基金supported by the Guizhou Provincial Basic Research Program(Natural Science)Youth Guidance Project{Qian Kehe Foundation-[2024]Youth 307}。
文摘In both Traditional Chinese Medicine(TCM)and modern medicine,they agree that the integrity and healthy structure of the vascular endothelium are essential for normal hemodynamics.Damage to the vascular endothelium can quickly activate the extrinsic coagulation pathway by triggering the tissue factor(TF)and lead to coagulation.This damage,along with a loss of anticoagulant properties through antithrombinⅢ(ATⅢ),TF pathway inhibitors,and the protein C system,can result in a hypercoagulable state and even thrombosis.Hypercoagulability is not only a common feature of many cancers but also an important factor promoting tumor development and metastasis,which corresponds to the TCM theory of“blood stasis leading to tumors.”The pharmacological effects of heparin and aspirin have similarities with TCM's“activating blood circulation and removing blood stasis”theory in improving blood circulation,treating related diseases,and their anti-inflammatory effects.
基金supported by the National Natural Science Foundation of China(No.51905123)Major Scientific and Technological Innovation Program of Shandong Province,China(Nos.2020CXGC010303,2022ZLGX04)Key R&D Programme of Shandong Province,China(No.2022JMRH0308).
文摘An internal state variable(ISV)model was established according to the experimental results of hot plane strain compression(PSC)to predict the microstructure evolution during hot spinning of ZK61 alloy.The effects of the internal variables were considered in this ISV model,and the parameters were optimized by genetic algorithm.After validation,the ISV model was used to simulate the evolution of grain size(GS)and dynamic recrystallization(DRX)fraction during hot spinning via Abaqus and its subroutine Vumat.By comparing the simulated results with the experimental results,the application of the ISV model was proven to be reliable.Meanwhile,the strength of the thin-walled spun ZK61 tube increased from 303 to 334 MPa due to grain refinement by DRX and texture strengthening.Besides,some ultrafine grains(0.5μm)that played an important role in mechanical properties were formed due to the proliferation,movement,and entanglement of dislocations during the spinning process.
基金Supported by Joint Funds for the Innovation of Science and Technology,Fujian Province,No.2023Y9187 and No.2021Y9057.
文摘BACKGROUND Minimally invasive esophagectomy(MIE)is a widely accepted treatment for esophageal cancer,yet it is associated with a significant risk of surgical adverse events(SAEs),which can compromise patient recovery and long-term survival.Accurate preoperative identification of high-risk patients is critical for improving outcomes.AIM To establish and validate a risk prediction and stratification model for the risk of SAEs in patients with MIE.METHODS This retrospective study included 747 patients who underwent MIE at two centers from January 2019 to February 2024.Patients were separated into a train set(n=549)and a validation set(n=198).After screening by least absolute shrinkage and selection operator regression,multivariate logistic regression analyzed clinical and intraoperative variables to identify independent risk factors for SAEs.A risk stratification model was constructed and validated to predict the probability of SAEs.RESULTS SAEs occurred in 10.2%of patients in train set and 13.6%in the validation set.Patients with SAE had significantly higher complication rate and a longer hospital stay after surgery.The key independent risk factors identified included chronic obstructive pulmonary disease,a history of alcohol consumption,low forced expiratory volume in the first second,and low albumin levels.The stratification model has excellent prediction accuracy,with an area under the curve of 0.889 for the training set and an area under the curve of 0.793 for the validation set.CONCLUSION The developed risk stratification model effectively predicts the risk of SAEs in patients undergoing MIE,facilitating targeted preoperative interventions and improving perioperative management.
基金supported by the National Natural Science Foundation of China(No.52061135101 and 52001078)the German Research Foundation(DFG,No.448318292)+3 种基金the Technology Innovation Guidance Special Foundation of Shaanxi Province(No.2023GXLH-085)the Fundamental Research Funds for the Central Universities(No.D5000240161)the Project of Key areas of innovation team in Shaanxi Province(No.2024RS-CXTD-20)The author Yingchun Xie thanks the support from the National Key R&D Program(No.2023YFE0108000).
文摘1.Introduction.Cold Spray(CS)is a highly advanced solid-state metal depo-sition process that was first developed in the 1980s.This innovative technique involves the high-speed(300-1200 m/s)impact deposition of micron-sized particles(5-50μm)to fabricate coatings[1-3].CS has been extensively used in a variety of coating applications,such as aerospace,automotive,energy,medical,marine,and others,to provide protection against high temperatures,corrosion,erosion,oxidation,and chemicals[4,5].Nowadays,the technical interest in CS is twofold:(i)as a repair process for damaged components,and(ii)as a solid-state additive manufacturing process.Compared to other fusion-based additive manufacturing(AM)technologies,Cold Spray Additive Manufacturing(CSAM)is a new member of the AM family that can enable the fabrication of deposits without undergoing melting.The chemical composition has been largely preserved from the powder to the deposit due to the minimal oxidation.The significant advantages of CSAM over other additive manufacturing processes include a high production rate,unlimited deposition size,high flexibility,and suitability for repairing damaged parts.
基金Supported by the Natural Science Foundation of Heilongjiang Province(LH2024A025)。
文摘The effects of plasma screening on the ^(1)P^(o) resonance states of H-and He below the n=3 and n=4 thresholds of the respective subsystemsare investigated using the stabilization method and correlated exponential wave functions.Two plasma mediums,namely,the Debye plasma and quantum plasma environments are considered.The screened Coulomb potential(SCP)obtained from Debye-Hückel model is used to represent Debye plasma environments and the exponential cosine screened Coulomb potential(ECSCP)obtained from a modified Debye-Hückel model is used to represent quantum plasma environments.The resonance parameters(resonance positions and widths)are presented in terms of the screening parameters.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFC3003805)Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2022356)Guangzhou Basic and Applied Basic Research Project(Grant No.2023A04J0955).
文摘This paper presents a new type of triangular Sharp Eagle wave energy converter(WEC)platform.On the basis of the linear potential flow theory and the finite element analysis method,the hydrodynamic performance and structural response of the platform are studied,considering the actual platform motion and free surface rise under extreme sea states.First,the effects of the wave frequency and direction on the wave-induced loads and dynamic responses were examined.The motion at a wave direction angle of 0°is relatively low.On this basis,the angle constrained by the two sides of the Sharp Eagle floaters should be aligned with the main wave direction to avoid significant platform motion under extreme sea states.Additionally,the structural response of the platform,including the wave-absorbing floaters,is investigated.The results highlighted that the conditions or locations where yielding,buckling,and fatigue failures occur were different.In this context,the connection area of the Sharp Eagle floaters and platform is prone to yielding failure under oblique wave action,whereas the pontoon and side of the Sharp Eagle floaters are prone to buckling failure during significant vertical motion.Additionally,fatigue damage is most likely to occur at the connection between the middle column on both sides of the Sharp Eagle floaters and the pontoons.The findings of this paper revealed an intrinsic connection between wave-induced loads and the dynamic and structural responses of the platform,which provides a useful reference for the improved design of WECs.
文摘BACKGROUND Endoscopic colon polypectomy is a common procedure used to remove polyps that may develop into colorectal cancer if left untreated.Despite these advantages,patients frequently experience anxiety and other adverse reactions.Standardized evidence-based nursing practices are essential for enhancing patient care by addressing both physical and psychological health issues.AIM To analyze the impact of standardized evidence-based nursing on psychological status and adverse reactions of patients undergoing endoscopic colonic polypectomy.METHODS Data from 200 patients who underwent endoscopic colonic polypectomy at the authors’hospital between January and June 2024 were randomly assigned to two groups:Control[received routine nursing care(n=100)]and study[received standardized evidence-based nursing intervention(s)(n=100)].Psychological status,visual analog scale,and Short-Form 36 Health Survey scores,adverse events,and satisfaction with nursing were compared between the two groups.RESULTS After the interventions,the study group exhibited significantly lower scores on the Hamilton Anxiety Rating Scale and Hamilton Depression Rating Scale,along with a reduced incidence of adverse events compared with the control group(P<0.05).Short-Form 36 Health Survey scores and overall satisfaction with nursing care were also significantly higher in the intervention group(P<0.05).CONCLUSION Standardized evidence-based nursing interventions effectively reduced negative patient emotions and enhanced quality of life and satisfaction,demonstrating high safety.
文摘The World Wide Web provides a wealth of information about everything, including contemporary audio and visual art events, which are discussed on media outlets, blogs, and specialized websites alike. This information may become a robust source of real-world data, which may form the basis of an objective data-driven analysis. In this study, a methodology for collecting information about audio and visual art events in an automated manner from a large array of websites is presented in detail. This process uses cutting edge Semantic Web, Web Search and Generative AI technologies to convert website documents into a collection of structured data. The value of the methodology is demonstrated by creating a large dataset concerning audiovisual events in Greece. The collected information includes event characteristics, estimated metrics based on their text descriptions, outreach metrics based on the media that reported them, and a multi-layered classification of these events based on their type, subjects and methods used. This dataset is openly provided to the general and academic public through a Web application. Moreover, each event’s outreach is evaluated using these quantitative metrics, the results are analyzed with an emphasis on classification popularity and useful conclusions are drawn concerning the importance of artistic subjects, methods, and media.
文摘Background: Undergoing ultrasound scanning (USS) during the first trimester of pregnancy is highly imperative for expecting mothers, as it supports the early detection of any malformations, identifying the fetal number, fetal growth, fetal sex, and calculation of delivery. Previous studies have shown that undergoing such prenatal screening procedures could reduce the antenatal anxiety levels of expectant mothers. The present study aimed to explore the impact of first-trimester ultrasound scanning towards the antenatal anxiety and identify the predictors of antenatal anxiety among expectant mothers in the first trimester. Methods: A repeated measure design study was conducted in Maternity Clinics of University Hospital KDU, Ninewells Care Hospital and Navy General Hospital over 4 months with one hundred and fifteen (n = 115) expectant mothers. Participants completed a general information sheet first and State Trait Anxiety Inventory (STAI) (Spielberger et al., 1970) was administered before and after undergoing the USS. Results: Mean age of the participants was 28.84 ± 3.68. The Wilcoxon Signed Rank test showed that there is a significant reduction of participants’ antenatal anxiety levels following the USS z = −5.658, p Conclusions: Findings suggest that undergoing the first trimester USS significantly reduces the antenatal state anxiety and partner’s support is an important factor in reducing the antenatal anxiety experienced by expectant mothers in the first trimester. Future studies can focus on how USS can contribute to alleviating antenatal anxiety in second and third trimesters.
基金supported by the National Natural Science Foundation of China (Grant No. 42104001)。
文摘Two long-term slow slip events(SSEs) in Lower Cook Inlet, Alaska, were identified by Li SS et al.(2016). The earlier SSE lasted at least 9 years with M_(w) ~7.8 and had an average slip rate of ~82 mm/year. The latter SSE, occurring in a similar area, lasted approximately 2 years with M_(w) ~7.2 and an average slip rate of ~91 mm/year. To test whether these SSEs triggered earthquakes near the slow slip area, we calculated the Coulomb stressing rate changes on receiver faults by using two fault geometry definitions: nodal planes of focal mechanism solutions of past earthquakes, and optimally oriented fault planes. Regions in the shallow slab(30–60 km) that experienced a significant increase in the Coulomb stressing rate due to slip by the SSEs showed an increase in seismicity rates during SSE periods. No correlation was found in the volumes that underwent a significant increase in the Coulomb stressing rate during the SSE within the crust and the intermediate slab. We modeled variations in seismicity rates by using a combination of the Coulomb stress transfer model and the framework of rate-and-state friction. Our model indicated that the SSEs increased the Coulomb stress changes on adjacent faults,thereby increasing the seismicity rates even though the ratio of the SSE stressing rate to the background stressing rate was small. Each long-term SSE in Alaska brought the megathrust updip of the SSE areas closer to failure by up to 0.1–0.15 MPa. The volumes of significant Coulomb stress changes caused by the Upper and Lower Cook Inlet SSEs did not overlap.