We theoretically investigate the excited state intramolecular proton transfer(ESIPT) behavior of the novel fluorophore bis-imine derivative molecule HNP which was designed based on the intersection of 1-(hydrazonometh...We theoretically investigate the excited state intramolecular proton transfer(ESIPT) behavior of the novel fluorophore bis-imine derivative molecule HNP which was designed based on the intersection of 1-(hydrazonomethyl)-naphthalene-2-ol and 1-pyrenecarboxaldehyde. Especially, the density functional theory(DFT) and time-dependent density functional theory(TDDFT) methods for HNP monomer are introduced. Moreover, the "our own n-layered integrated molecular orbital and molecular mechanics"(ONIOM) method(TDDFT:universal force field(UFF)) is used to reveal the aggregation-induced emission(AIE) effect on the ESIPT process for HNP in crystal. Our results confirm that the ESIPT process happens upon the photoexcitation for the HNP monomer and HNP in crystal, which is distinctly monitored by the optimized geometric structures and the potential energy curves. In addition, the results of potential energy curves reveal that the ESIPT process in HNP will be promoted by the AIE effect. Furthermore, the highest occupied molecular orbital(HOMO) and lowest unoccupied molecular orbital(LUMO) for the HNP monomer and HNP in crystal have been calculated. The calculation demonstrates that the electron density decrease of proton donor caused by excitation promotes the ESIPT process. In addition, we find that the variation of atomic dipole moment corrected Hirshfeld population(ADCH) charge for proton acceptor induced by the AIE effect facilitates the ESIPT process. The results will be expected to deepen the understanding of ESIPT dynamics for luminophore under the AIE effect and provide insight into future design of high-efficient AIE compounds.展开更多
Starting from Wigner’s definition of the function named now after him we systematically develop different representation of this quasiprobability with emphasis on symmetric representations concerning the canonical va...Starting from Wigner’s definition of the function named now after him we systematically develop different representation of this quasiprobability with emphasis on symmetric representations concerning the canonical variables (q,p) of phase space and using the known relation to the parity operator. One of the representations is by means of the Laguerre 2D polynomials which is particularly effective in quantum optics. For the coherent states we show that their Fourier transforms are again coherent states. We calculate the Wigner quasiprobability to the eigenstates of a particle in a square well with infinitely high impenetrable walls which is not smooth in the spatial coordinate and vanishes outside the wall boundaries. It is not well suited for the calculation of expectation values. A great place takes on the calculation of the Wigner quasiprobability for coherent phase states in quantum optics which is essentially new. We show that an unorthodox entire function plays there a role in most formulae which makes all calculations difficult. The Wigner quasiprobability for coherent phase states is calculated and graphically represented but due to the involved unorthodox function it may be considered only as illustration and is not suited for the calculation of expectation values. By another approach via the number representation of the states and using the recently developed summation formula by means of Generalized Eulerian numbers it becomes possible to calculate in approximations with good convergence the basic expectation values, in particular, the basic uncertainties which are additionally represented in graphics. Both considered examples, the square well and the coherent phase states, belong to systems with SU (1,1) symmetry with the same index K=1/2 of unitary irreducible representations.展开更多
After developing the concept of displaced squeezed vacuum states in the non-unitary approach and establishing the connection to the unitary approach we calculate their quasiprobabilities and expectation values in gene...After developing the concept of displaced squeezed vacuum states in the non-unitary approach and establishing the connection to the unitary approach we calculate their quasiprobabilities and expectation values in general form. Then we consider the displacement of the squeezed vacuum states and calculate their photon statistics and their quasiprobabilities. The expectation values of the displaced states are related to the expectation values of the undisplaced states and are calculated for some simplest cases which are sufficient to discuss their categorization as sub-Poissonian and super-Poissonian statistics. A large set of these states do not belong to sub- or to super-Poissonian states but are also not Poissonian states. We illustrate in examples their photon distributions. This shows that the notions of sub- and of super-Poissonian statistics and their use for the definition of nonclassicality of states are problematic. In Appendix A we present the most important relations for SU (1,1) treatment of squeezing and the disentanglement of their operators. Some initial members of sequences of expectation values for squeezed vacuum states are collected in Appendix E.展开更多
In this paper the results of dynamic NMR studies on ethylmethylamino-tertiary-butyl-phenylborane (EMABPB) with or without light are reported. The NMR data were recorded on a Bruker 400 MHz NMR equipped with our custom...In this paper the results of dynamic NMR studies on ethylmethylamino-tertiary-butyl-phenylborane (EMABPB) with or without light are reported. The NMR data were recorded on a Bruker 400 MHz NMR equipped with our custom-made optical probe and with our custom-made 450 watts (W) monochromatic light sources. The molecular photochemistry including twisted intramolecular charge-transfer-excited-state (TICT) of the EMABPB in several solvents has been investigated. These results indicate that the aminoborane demonstrates multiple configurations in CD3Cl and CD2Cl2 resulting in the shifts of the signals of the alkyl groups on the nitrogen and boron. This indicates that there are some time-dependent changes at constant temperature over the irradiation interval. At ﹣60°C and the presence of light (λ = 265 nm), we observed a large change in the populations of the two sites, and this by itself indicates a modification in the rotation around the boron nitrogen bond in the excited state. By considering the existence of the TICT state, many important energy technologies may be developed with higher efficiency by controlling the back-electron transfer processes.展开更多
The specific mechanisms by which acupuncture affects the central nervous system are unclear. In the International Standard Scalp Acupuncture system, acupuncture needles are applied at the middle line of the vertex, an...The specific mechanisms by which acupuncture affects the central nervous system are unclear. In the International Standard Scalp Acupuncture system, acupuncture needles are applied at the middle line of the vertex, anterior parietal-temporal oblique line, and the posterior parietal-temporal oblique line. We conducted a single-arm prospective clinical trial in which seven healthy elderly volunteers (three men and four women;50–70 years old) received International Standard Scalp Acupuncture at MS5 (the mid-sagittal line between Baihui (DU20) and Qianding (DU21)), the left MS6 (line joining Sishencong (EX-HN1) and Xuanli (GB6)), and the left MS7 (line joining DU20 and Qubin (GB7)). After acupuncture, resting-state functional magnetic resonance imaging demonstrated changes in the fractional amplitude of low frequency fluctuations and regional homogeneity in various areas, showing remarkable enhancement of regional homogeneity in the bilateral anterior cingulate, left medial frontal gyrus, supramarginal gyrus, right middle frontal gyrus, and inferior frontal gyrus. Functional connectivity based on a seed region at the right middle frontal gyrus (42, 51, 9) decreased at the bilateral medial superior frontal gyrus. Our data preliminarily indicates that the international standard scalp acupuncture in healthy elderly participants specifcally enhances the correlation between the brain regions involved in cognition and implementation of the brain network regulation system and the surrounding adjacent brain regions. The study was approved by the Ethics Committee of the China-Japan Union Hospital at Jilin University, China, on July 18, 2016 (approval No. 2016ks043).展开更多
Heterogeneity of biological samples is usually considered a major obstacle for three-dimensional (3D) structure determination of macromolecular complexes. Heterogeneity may occur at the level of composition or conform...Heterogeneity of biological samples is usually considered a major obstacle for three-dimensional (3D) structure determination of macromolecular complexes. Heterogeneity may occur at the level of composition or conformational variability of complexes and affects most 3D structure determination methods that rely on signal averaging. Here, an approach is described that allows sorting structural states based on a 3D statistical approach, the 3D sampling and classification (3D-SC) of 3D structures derived from single particles imaged by cryo electron microscopy (cryo-EM). The method is based on jackknifing & bootstrapping of 3D sub-ensembles and 3D multivariate statistical analysis followed by 3D classification. The robustness of the statistical sorting procedure is corroborated using model data from an RNA polymerase structure and experimental data from a ribosome complex. It allows resolving multiple states within heterogeneous complexes that thus become amendable for a structural analysis despite of their highly flexible nature. The method has important implications for high-resolution structural studies and allows describing structure ensembles to provide insights into the dynamics of multi-component macromolecular assemblies.展开更多
Classical computation of electronic properties in large-scale materials remains challenging.Quantum computation has the potential to offer advantages in memory footprint and computational scaling.However,general and v...Classical computation of electronic properties in large-scale materials remains challenging.Quantum computation has the potential to offer advantages in memory footprint and computational scaling.However,general and viable quantum algorithms for simulating large-scale materials are still limited.We propose and implement random-state quantum algorithms to calculate electronic-structure properties of real materials.Using a random state circuit on a small number of qubits,we employ real-time evolution with first-order Trotter decomposition and Hadamard test to obtain electronic density of states,and we develop a modified quantum phase estimation algorithm to calculate real-space local density of states via direct quantum measurements.Furthermore,we validate these algorithms by numerically computing the density of states and spatial distributions of electronic states in graphene,twisted bilayer graphene quasicrystals,and fractal lattices,covering system sizes from hundreds to thousands of atoms.Our results manifest that the random-state quantum algorithms provide a general and qubit-efficient route to scalable simulations of electronic properties in large-scale periodic and aperiodic materials.展开更多
Multitarget stool DNA(mt-sDNA) testing was approved for average risk colorectal cancer(CRC) screening by the United States Food and Drug Administration and thereafter reimbursed for use by the Medicare program(2014).T...Multitarget stool DNA(mt-sDNA) testing was approved for average risk colorectal cancer(CRC) screening by the United States Food and Drug Administration and thereafter reimbursed for use by the Medicare program(2014).The United States Preventive Services Task Force(USPSTF) October 2015 draft recommendation for CRC screening included mt-s DNA as an "alternative" screening test that "may be useful in select clinical circumstances",despite its very high sensitivity for early stage CRC.The evidence supporting mt-s DNA for routine screening use is robust.The clinical efficacy of mt-s DNA as measured by sensitivity,specificity,life-years gained(LYG),and CRC deaths averted is similar to or exceeds that of the other more specifically recommended screening options included in the draft document,especially those requiring annual testing adherence.In a population with primarily irregular screening participation,tests with the highest point sensitivity and reasonable specificity are more likely to favorably impact CRC related morbidity and mortality than those depending on annual adherence.This paper reviews the evidence supporting mt-s DNA for routine screening and demonstrates,using USPSTF's modeling data,that mt-s DNA at three-year intervals provides significant clinical net benefits and fewer complications per LYG than annual fecal immunochemical testing,high sensitivity guaiac based fecal occult blood testing and 10-year colonoscopy screening.展开更多
In conventional higher-order topological insulators(HOTIs),the emergence of topological states can be explained by using the nonzero bulk polarization index.However,corner states emerge in HOTIs with incomplete bounda...In conventional higher-order topological insulators(HOTIs),the emergence of topological states can be explained by using the nonzero bulk polarization index.However,corner states emerge in HOTIs with incomplete boundary unit cells(i.e.,boundary defects)even though the bulk polarization is zero,which challenges the conventional understanding of HOTIs.Here,based on a Kekul´e-distorted honeycomb lattice with incomplete unit cells,we reveal that incomplete unit cells exhibit fractional charges through the analysis of Wannier centers by developing a compensation method and creating the concept of Wannier center domain(WCD)which is the smallest region that one Wannier center occupies.This method compensates for the missing parts of these boundary incomplete unit cells with additional WCDs to make them complete.The compensated WCDs automatically carry the corresponding charge,and this charge together with that of the incomplete unit cell constitutes the total charge of the complete unit cell after compensation.We conclude that the emergence of corner states is attributed to the filling anomaly,which is a fundamental mechanism.Our results refresh the understanding of HOTIs,especially those with structural discontinuities,and provide a novel design for topological states which have application value in producing optical functional devices.展开更多
Resting-state functional magnetic resonance imaging has revealed disrupted brain network connectivity in adults and teenagers with cerebral palsy. However, the specific brain networks implicated in neonatal cases rema...Resting-state functional magnetic resonance imaging has revealed disrupted brain network connectivity in adults and teenagers with cerebral palsy. However, the specific brain networks implicated in neonatal cases remain poorly understood. In this study, we recruited 14 termborn infants with mild hypoxic ischemic encephalopathy and 14 term-born infants with severe hypoxic ischemic encephalopathy from Changzhou Children's Hospital, China. Resting-state functional magnetic resonance imaging data showed efficient small-world organization in whole-brain networks in both the mild and severe hypoxic ischemic encephalopathy groups. However, compared with the mild hypoxic ischemic encephalopathy group, the severe hypoxic ischemic encephalopathy group exhibited decreased local efficiency and a low clustering coefficient. The distribution of hub regions in the functional networks had fewer nodes in the severe hypoxic ischemic encephalopathy group compared with the mild hypoxic ischemic encephalopathy group. Moreover, nodal efficiency was reduced in the left rolandic operculum, left supramarginal gyrus, bilateral superior temporal gyrus, and right middle temporal gyrus. These results suggest that the topological structure of the resting state functional network in children with severe hypoxic ischemic encephalopathy is clearly distinct from that in children with mild hypoxic ischemic encephalopathy, and may be associated with impaired language, motion, and cognition. These data indicate that it may be possible to make early predictions regarding brain development in children with severe hypoxic ischemic encephalopathy, enabling early interventions targeting brain function. This study was approved by the Regional Ethics Review Boards of the Changzhou Children's Hospital(approval No. 2013-001) on January 31, 2013. Informed consent was obtained from the family members of the children. The trial was registered with the Chinese Clinical Trial Registry(registration number: ChiCTR1800016409) and the protocol version is 1.0.展开更多
The main symptom of patients with Alzheimer’s disease is cognitive dysfunction. Alzheimer’s disease is mainly diagnosed based on changes in brain structure. Functional connectivity reflects the synchrony of function...The main symptom of patients with Alzheimer’s disease is cognitive dysfunction. Alzheimer’s disease is mainly diagnosed based on changes in brain structure. Functional connectivity reflects the synchrony of functional activities between non-adjacent brain regions, and changes in functional connectivity appear earlier than those in brain structure. In this study, we detected resting-state functional connectivity changes in patients with Alzheimer’s disease to provide reference evidence for disease prediction. Functional magnetic resonance imaging data from patients with Alzheimer’s disease were used to show whether particular white and gray matter areas had certain functional connectivity patterns and if these patterns changed with disease severity. In nine white and corresponding gray matter regions, correlations of normal cognition, early mild cognitive impairment, and late mild cognitive impairment with blood oxygen level-dependent signal time series were detected. Average correlation coefficient analysis indicated functional connectivity patterns between white and gray matter in the resting state of patients with Alzheimer’s disease. Functional connectivity pattern variation correlated with disease severity, with some regions having relatively strong or weak correlations. We found that the correlation coefficients of five regions were 0.3–0.5 in patients with normal cognition and 0–0.2 in those developing Alzheimer’s disease. Moreover, in the other four regions, the range increased to 0.45–0.7 with increasing cognitive impairment. In some white and gray matter areas, there were specific connectivity patterns. Changes in regional white and gray matter connectivity patterns may be used to predict Alzheimer’s disease;however, detailed information on specific connectivity patterns is needed. All study data were obtained from the Alzheimer’s Disease Neuroimaging Initiative Library of the Image and Data Archive Database.展开更多
The results of the 2022-2025 study conducted for the vulnerability assessment of pastures and for the development of improvement measures on the degraded land sections in the arid and semi-arid provinces of the Caucas...The results of the 2022-2025 study conducted for the vulnerability assessment of pastures and for the development of improvement measures on the degraded land sections in the arid and semi-arid provinces of the Caucasus under the global climate change conditions are introduced in the current article.The main goal of our scientific work is to study and assess the current ecological and resource state of natural phytocenoses,pastures and hayfields in the arid and semi-arid landscapes under climate change.The paper presents the results of determining the areas and levels of degradation of the natural biogeocenoses and biogeocenoses of the pastures and hayfields in the mountain and highland landscapes.The results were obtained using remote sensing,field and laboratory studies and analyses.The conducted studies have revealed that along 34,174.5 ha pasture and 1342.0 meadows areas of the pastures at the Areni,Yeghegis,Yeghegnadzor and Vayq consolidated administrative territories situated in the arid and semi-arid zones of the Vayots Dzor Region high degradation was recorded in about 6508 hectares of pasture and 407 hectares of meadows areas,which is related to irregular and uncontrolled economic mismanagement of the local population and global climate change.To improve the ecological condition,accessibility and quality of ecosystem services of the pastures,hayfields and natural meadows,comprehensive restoration bioecological and agrotechnical measures have been proposed.They are aimed at improving the air,water and nutrient regimes of soils,at their bioprotection,as well as at the general increase in area and at improving the economic characteristics of the vegetation cover.Such measures on the ecosystem basis are appropriate in the context of enriching the qualitative composition of plants with useful ecological and economic bioecological characteristics,taking into account the characteristics of landscapes,weather and climatic conditions,and agricultural opportunities.展开更多
Superconducting elect rides have attracted growing attention for their potential to achieve high superconducting transition temperatures(T_(C))under pressure.However,many known elect rides are chemically reactive and ...Superconducting elect rides have attracted growing attention for their potential to achieve high superconducting transition temperatures(T_(C))under pressure.However,many known elect rides are chemically reactive and unstable,making high-quality single-crystal growth,characterization,and measurements difficult,and most do not exhibit superconductivity at ambient pressure.In contrast,La_(3) In stands out for its ambient-pressure superconductivity(T_(C)∼9.4 K)and the availability of high-quality single crystals.Here,we investigate its low-energy electronic structure using angle-resolved photoemission spectroscopy and first-principles calculations.The bands near the Fermi energy(E_(F))are mainly derived from La 5d and In 5p orbitals.A saddle point is directly observed at the Brillouin zone(BZ)boundary,while a three-dimensional Van Hove singularity crosses E_(F) at the BZ corner.First-principles calculations further reveal topological Dirac surface states within the bulk energy gap above E_(F).The coexistence of a high density of states and in-gap topological surface states near𝐸F suggests that La3In offers a promising platform for tuning superconductivity and exploring possible topological superconducting phases through doping or external pressure.展开更多
The hybridization gap in strained-layer InAs/In_(x)Ga_(1−x) Sb quantum spin Hall insulators(QSHIs)is significantly enhanced compared to binary InAs/GaSb QSHI structures,where the typical indium composition,x,ranges be...The hybridization gap in strained-layer InAs/In_(x)Ga_(1−x) Sb quantum spin Hall insulators(QSHIs)is significantly enhanced compared to binary InAs/GaSb QSHI structures,where the typical indium composition,x,ranges between 0.2 and 0.4.This enhancement prompts a critical question:to what extent can quantum wells(QWs)be strained while still preserving the fundamental QSHI phase?In this study,we demonstrate the controlled molecular beam epitaxial growth of highly strained-layer QWs with an indium composition of x=0.5.These structures possess a substantial compressive strain within the In_(0.5)Ga_(0.5)Sb QW.Detailed crystal structure analyses confirm the exceptional quality of the resulting epitaxial films,indicating coherent lattice structures and the absence of visible dislocations.Transport measurements further reveal that the QSHI phase in InAs/In_(0.5)Ga_(0.5)Sb QWs is robust and protected by time-reversal symmetry.Notably,the edge states in these systems exhibit giant magnetoresistance when subjected to a modest perpendicular magnetic field.This behavior is in agreement with the𝑍2 topological property predicted by the Bernevig–Hughes–Zhang model,confirming the preservation of topologically protected edge transport in the presence of enhanced bulk strain.展开更多
An effective power quality prediction for regional power grid can provide valuable references and contribute to the discovering and solving of power quality problems. So a predicting model for power quality steady sta...An effective power quality prediction for regional power grid can provide valuable references and contribute to the discovering and solving of power quality problems. So a predicting model for power quality steady state index based on chaotic theory and least squares support vector machine (LSSVM) is proposed in this paper. At first, the phase space reconstruction of original power quality data is performed to form a new data space containing the attractor. The new data space is used as training samples for the LSSVM. Then in order to predict power quality steady state index accurately, the particle swarm algorithm is adopted to optimize parameters of the LSSVM model. According to the simulation results based on power quality data measured in a certain distribution network, the model applies to several indexes with higher forecasting accuracy and strong practicability.展开更多
Mahalanobis-Taguchi system(MTS)is a kind of data mining and pattern recognition method which can identify the attribute characteristics of multidimensional data by constructing Mahalanobis distance(MD)measurement scal...Mahalanobis-Taguchi system(MTS)is a kind of data mining and pattern recognition method which can identify the attribute characteristics of multidimensional data by constructing Mahalanobis distance(MD)measurement scale.In this paper,considering the influence of irregular distribution of the sample data and abnormal variation of the normal data on accuracy of MTS,a feature recognition and selection model of the equipment state based on the improved MTS is proposed,and two aspects of the model namely construction of the original Mahalanobis space(MS)and determination of the threshold are studied.Firstly,the original training sample space is statistically controlled by the X-bar-S control chart,and extreme data of the single characteristic attribute is filtered to reduce the impact of extreme condition on the accuracy of the model,so as to construct a more robust MS.Furthermore,the box plot method is used to determine the threshold of the model.And the stability of the model and the tolerance to the extreme condition are improved by leaving sufficient range of the variation for the extreme condition which is identified as in the normal range.Finally,the improved model is compared with the traditional one based on the unimproved MTS by using the data from the literature.The result shows that compared with the traditional model,the accuracy and sensitivity of the improved model for state identification can be greatly enhanced.展开更多
Consciousness is a prismatic and ambiguous concept that still eludes any universal definition. Severe acquired brain injuries resulting in a disorder of con-sciousness(DOC) provide a model from which insights into con...Consciousness is a prismatic and ambiguous concept that still eludes any universal definition. Severe acquired brain injuries resulting in a disorder of con-sciousness(DOC) provide a model from which insights into consciousness can be drawn. A number of recent studies highlight the difficulty in making a diagnosis in patients with DOC based only on behavioral assessments. Here we aim to provide an overview of how neuroimaging techniques can help assess patients with DOC. Such techniques are expected to facilitate a more accurate understanding of brain function in states of unconsciousness and to improve the evaluation of thepatient's cognitive abilities by providing both diagnostic and prognostic indicators.展开更多
This paper presents a method of thermal state calculation of combustion chamber in small thrust liquid rocket engine. The goal is to predict the thermal state of chamber wall by using basic parameters of engine: thrus...This paper presents a method of thermal state calculation of combustion chamber in small thrust liquid rocket engine. The goal is to predict the thermal state of chamber wall by using basic parameters of engine: thrust level, propellants, chamber pressure, injection pattern, film cooling parameters, material of wall and their coating, etc. The difficulties in modeling the startup and shutdown processes of thrusters lie in the fact that there are the conjugated physical processes occurring at various parameters for non-design conditions. A mathematical model to predict the thermal state of the combustion chamber for different engine operation modes is developed. To simulate the startup and shutdown processes, a quasi-steady approach is applied by replacing the transient process with time-variant operating parameters of steady-state processes. The mathematical model is based on several principles and data commonly used for heat transfer modeling: geometry of flow part, gas dynamics of flow, thermodynamics of propellants and combustion spices, convective and radiation heat flows, conjugated heat transfer between hot gas and wall, and transient approach for calculation of thermal state of construction. Calculations of the thermal state of the combustion chamber in single-turn-on mode show good convergence with the experimental results. The results of pulsed modes indicate a large temperature gradient on the internal wall surface of the chamber between pulses and the thermal state of the wall strongly depends on the pulse duration and the interval.展开更多
Modifiers have a broad array of influences on extraction with liquids in standard state, supercritical fluid extraction (SFE), trapping by SFE and supercritical fluid chromatography (SFC). They can significantly chang...Modifiers have a broad array of influences on extraction with liquids in standard state, supercritical fluid extraction (SFE), trapping by SFE and supercritical fluid chromatography (SFC). They can significantly change the qualitative and quantitative results. Quantitative and qualitative results can be influenced by different extractants and modifiers in different ways as it was shown by Brondz et al. at 2007 in “The real nature of the indole alkaloids in Cortinarius infractus: Evaluation of artifact formation through solvent extraction method development”, J. Chromatography A, 1148, 1-7. The choice of correct extractant, modifier, and trapper to the bulk mobile phase for supercritical fluids (SFs) or for liquids in subcritical or in the liquids in standard state is a challenge in any extraction procedure. This is the second paper in a sequence that describes the influence of extractants and modifiers on the performance of SFs and results of extraction with liquids in standard state and SFE. Here, attention is given to possible mistakes in qualitative and quantitative results by poor understanding of the influence of extractants, modifiers, and trappers on extraction and trapping process by a careless choice of extractant, modifier, and trapper for extraction with liquids in standard state and SFE. The SF chosen for discussion in the paper is CO2. However, similar effects can be observed with use of other SFs and fluids in subcritical and standard states. In this paper, the discussion of lipids, fatty and carboxylic acids have been chosen as target analytes for extraction, trapping and analysis. Some examples from extraction with liquids in the standard state and trapping in the supercritical state (collection) have been furnished with the wrong extractant, modifier, or trapper which is presented for illustration of inappropriate choice of extractants, modifiers, and trappers.展开更多
Condense matter methods and mathematical models used in solving problems in solid state physics are transformed to high energy quantum cosmology in order to estimate the magnitude of the missing dark energy of the uni...Condense matter methods and mathematical models used in solving problems in solid state physics are transformed to high energy quantum cosmology in order to estimate the magnitude of the missing dark energy of the universe. Looking at the problem from this novel viewpoint was rewarded by a rather unexpected result, namely that the gap labelling method of integrated density of states for three dimensional icosahedral quasicrystals is identical to the previously measured and theoretically concluded ordinary energy density of the universe, namely a mere 4.5 percent of Einstein’s energy density, i.e. E(O) = mc2/22 where E is the energy, m is the mass and c is the speed of light. Consequently we conclude that the missing dark energy density must be E(D) = 1 - E(O) = mc2(21/22) in agreement with all known cosmological measurements and observations. This result could also be interpreted as a strong evidence for the self similarity of the geometry of spacetime, which is an expression of its basic fractal nature.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11574115 and 11704146)
文摘We theoretically investigate the excited state intramolecular proton transfer(ESIPT) behavior of the novel fluorophore bis-imine derivative molecule HNP which was designed based on the intersection of 1-(hydrazonomethyl)-naphthalene-2-ol and 1-pyrenecarboxaldehyde. Especially, the density functional theory(DFT) and time-dependent density functional theory(TDDFT) methods for HNP monomer are introduced. Moreover, the "our own n-layered integrated molecular orbital and molecular mechanics"(ONIOM) method(TDDFT:universal force field(UFF)) is used to reveal the aggregation-induced emission(AIE) effect on the ESIPT process for HNP in crystal. Our results confirm that the ESIPT process happens upon the photoexcitation for the HNP monomer and HNP in crystal, which is distinctly monitored by the optimized geometric structures and the potential energy curves. In addition, the results of potential energy curves reveal that the ESIPT process in HNP will be promoted by the AIE effect. Furthermore, the highest occupied molecular orbital(HOMO) and lowest unoccupied molecular orbital(LUMO) for the HNP monomer and HNP in crystal have been calculated. The calculation demonstrates that the electron density decrease of proton donor caused by excitation promotes the ESIPT process. In addition, we find that the variation of atomic dipole moment corrected Hirshfeld population(ADCH) charge for proton acceptor induced by the AIE effect facilitates the ESIPT process. The results will be expected to deepen the understanding of ESIPT dynamics for luminophore under the AIE effect and provide insight into future design of high-efficient AIE compounds.
文摘Starting from Wigner’s definition of the function named now after him we systematically develop different representation of this quasiprobability with emphasis on symmetric representations concerning the canonical variables (q,p) of phase space and using the known relation to the parity operator. One of the representations is by means of the Laguerre 2D polynomials which is particularly effective in quantum optics. For the coherent states we show that their Fourier transforms are again coherent states. We calculate the Wigner quasiprobability to the eigenstates of a particle in a square well with infinitely high impenetrable walls which is not smooth in the spatial coordinate and vanishes outside the wall boundaries. It is not well suited for the calculation of expectation values. A great place takes on the calculation of the Wigner quasiprobability for coherent phase states in quantum optics which is essentially new. We show that an unorthodox entire function plays there a role in most formulae which makes all calculations difficult. The Wigner quasiprobability for coherent phase states is calculated and graphically represented but due to the involved unorthodox function it may be considered only as illustration and is not suited for the calculation of expectation values. By another approach via the number representation of the states and using the recently developed summation formula by means of Generalized Eulerian numbers it becomes possible to calculate in approximations with good convergence the basic expectation values, in particular, the basic uncertainties which are additionally represented in graphics. Both considered examples, the square well and the coherent phase states, belong to systems with SU (1,1) symmetry with the same index K=1/2 of unitary irreducible representations.
文摘After developing the concept of displaced squeezed vacuum states in the non-unitary approach and establishing the connection to the unitary approach we calculate their quasiprobabilities and expectation values in general form. Then we consider the displacement of the squeezed vacuum states and calculate their photon statistics and their quasiprobabilities. The expectation values of the displaced states are related to the expectation values of the undisplaced states and are calculated for some simplest cases which are sufficient to discuss their categorization as sub-Poissonian and super-Poissonian statistics. A large set of these states do not belong to sub- or to super-Poissonian states but are also not Poissonian states. We illustrate in examples their photon distributions. This shows that the notions of sub- and of super-Poissonian statistics and their use for the definition of nonclassicality of states are problematic. In Appendix A we present the most important relations for SU (1,1) treatment of squeezing and the disentanglement of their operators. Some initial members of sequences of expectation values for squeezed vacuum states are collected in Appendix E.
文摘In this paper the results of dynamic NMR studies on ethylmethylamino-tertiary-butyl-phenylborane (EMABPB) with or without light are reported. The NMR data were recorded on a Bruker 400 MHz NMR equipped with our custom-made optical probe and with our custom-made 450 watts (W) monochromatic light sources. The molecular photochemistry including twisted intramolecular charge-transfer-excited-state (TICT) of the EMABPB in several solvents has been investigated. These results indicate that the aminoborane demonstrates multiple configurations in CD3Cl and CD2Cl2 resulting in the shifts of the signals of the alkyl groups on the nitrogen and boron. This indicates that there are some time-dependent changes at constant temperature over the irradiation interval. At ﹣60°C and the presence of light (λ = 265 nm), we observed a large change in the populations of the two sites, and this by itself indicates a modification in the rotation around the boron nitrogen bond in the excited state. By considering the existence of the TICT state, many important energy technologies may be developed with higher efficiency by controlling the back-electron transfer processes.
基金funded by the National Natural Science Foundation of China,No.81403455(to JQC)
文摘The specific mechanisms by which acupuncture affects the central nervous system are unclear. In the International Standard Scalp Acupuncture system, acupuncture needles are applied at the middle line of the vertex, anterior parietal-temporal oblique line, and the posterior parietal-temporal oblique line. We conducted a single-arm prospective clinical trial in which seven healthy elderly volunteers (three men and four women;50–70 years old) received International Standard Scalp Acupuncture at MS5 (the mid-sagittal line between Baihui (DU20) and Qianding (DU21)), the left MS6 (line joining Sishencong (EX-HN1) and Xuanli (GB6)), and the left MS7 (line joining DU20 and Qubin (GB7)). After acupuncture, resting-state functional magnetic resonance imaging demonstrated changes in the fractional amplitude of low frequency fluctuations and regional homogeneity in various areas, showing remarkable enhancement of regional homogeneity in the bilateral anterior cingulate, left medial frontal gyrus, supramarginal gyrus, right middle frontal gyrus, and inferior frontal gyrus. Functional connectivity based on a seed region at the right middle frontal gyrus (42, 51, 9) decreased at the bilateral medial superior frontal gyrus. Our data preliminarily indicates that the international standard scalp acupuncture in healthy elderly participants specifcally enhances the correlation between the brain regions involved in cognition and implementation of the brain network regulation system and the surrounding adjacent brain regions. The study was approved by the Ethics Committee of the China-Japan Union Hospital at Jilin University, China, on July 18, 2016 (approval No. 2016ks043).
文摘Heterogeneity of biological samples is usually considered a major obstacle for three-dimensional (3D) structure determination of macromolecular complexes. Heterogeneity may occur at the level of composition or conformational variability of complexes and affects most 3D structure determination methods that rely on signal averaging. Here, an approach is described that allows sorting structural states based on a 3D statistical approach, the 3D sampling and classification (3D-SC) of 3D structures derived from single particles imaged by cryo electron microscopy (cryo-EM). The method is based on jackknifing & bootstrapping of 3D sub-ensembles and 3D multivariate statistical analysis followed by 3D classification. The robustness of the statistical sorting procedure is corroborated using model data from an RNA polymerase structure and experimental data from a ribosome complex. It allows resolving multiple states within heterogeneous complexes that thus become amendable for a structural analysis despite of their highly flexible nature. The method has important implications for high-resolution structural studies and allows describing structure ensembles to provide insights into the dynamics of multi-component macromolecular assemblies.
基金supported by the Major Project for the Integration of ScienceEducation and Industry (Grant No.2025ZDZX02)。
文摘Classical computation of electronic properties in large-scale materials remains challenging.Quantum computation has the potential to offer advantages in memory footprint and computational scaling.However,general and viable quantum algorithms for simulating large-scale materials are still limited.We propose and implement random-state quantum algorithms to calculate electronic-structure properties of real materials.Using a random state circuit on a small number of qubits,we employ real-time evolution with first-order Trotter decomposition and Hadamard test to obtain electronic density of states,and we develop a modified quantum phase estimation algorithm to calculate real-space local density of states via direct quantum measurements.Furthermore,we validate these algorithms by numerically computing the density of states and spatial distributions of electronic states in graphene,twisted bilayer graphene quasicrystals,and fractal lattices,covering system sizes from hundreds to thousands of atoms.Our results manifest that the random-state quantum algorithms provide a general and qubit-efficient route to scalable simulations of electronic properties in large-scale periodic and aperiodic materials.
文摘Multitarget stool DNA(mt-sDNA) testing was approved for average risk colorectal cancer(CRC) screening by the United States Food and Drug Administration and thereafter reimbursed for use by the Medicare program(2014).The United States Preventive Services Task Force(USPSTF) October 2015 draft recommendation for CRC screening included mt-s DNA as an "alternative" screening test that "may be useful in select clinical circumstances",despite its very high sensitivity for early stage CRC.The evidence supporting mt-s DNA for routine screening use is robust.The clinical efficacy of mt-s DNA as measured by sensitivity,specificity,life-years gained(LYG),and CRC deaths averted is similar to or exceeds that of the other more specifically recommended screening options included in the draft document,especially those requiring annual testing adherence.In a population with primarily irregular screening participation,tests with the highest point sensitivity and reasonable specificity are more likely to favorably impact CRC related morbidity and mortality than those depending on annual adherence.This paper reviews the evidence supporting mt-s DNA for routine screening and demonstrates,using USPSTF's modeling data,that mt-s DNA at three-year intervals provides significant clinical net benefits and fewer complications per LYG than annual fecal immunochemical testing,high sensitivity guaiac based fecal occult blood testing and 10-year colonoscopy screening.
基金supported by the Natural Science Basic Research Program of Shaanxi Province (Grant Nos.2024JC-JCQN-06 and2025JC-QYCX-006)the National Natural Science Foundation of China (Grant No.12474337)Chinese Academy of Sciences Project (Grant Nos.E4BA270100,E4Z127010F,E4Z6270100,and E53327020D)。
文摘In conventional higher-order topological insulators(HOTIs),the emergence of topological states can be explained by using the nonzero bulk polarization index.However,corner states emerge in HOTIs with incomplete boundary unit cells(i.e.,boundary defects)even though the bulk polarization is zero,which challenges the conventional understanding of HOTIs.Here,based on a Kekul´e-distorted honeycomb lattice with incomplete unit cells,we reveal that incomplete unit cells exhibit fractional charges through the analysis of Wannier centers by developing a compensation method and creating the concept of Wannier center domain(WCD)which is the smallest region that one Wannier center occupies.This method compensates for the missing parts of these boundary incomplete unit cells with additional WCDs to make them complete.The compensated WCDs automatically carry the corresponding charge,and this charge together with that of the incomplete unit cell constitutes the total charge of the complete unit cell after compensation.We conclude that the emergence of corner states is attributed to the filling anomaly,which is a fundamental mechanism.Our results refresh the understanding of HOTIs,especially those with structural discontinuities,and provide a novel design for topological states which have application value in producing optical functional devices.
基金supported by the Jiangsu Maternal and Child Health Research Project of China,No.F201612(to HXL)Changzhou Science and Technology Support Plan of China,No.CE20165027(to HXL)+1 种基金Changzhou City Planning Commission Major Science and Technology Projects of China,No.ZD201515(to HXL)Changzhou High Level Training Fund for Health Professionals of China,No.2016CZBJ028(to HXL)
文摘Resting-state functional magnetic resonance imaging has revealed disrupted brain network connectivity in adults and teenagers with cerebral palsy. However, the specific brain networks implicated in neonatal cases remain poorly understood. In this study, we recruited 14 termborn infants with mild hypoxic ischemic encephalopathy and 14 term-born infants with severe hypoxic ischemic encephalopathy from Changzhou Children's Hospital, China. Resting-state functional magnetic resonance imaging data showed efficient small-world organization in whole-brain networks in both the mild and severe hypoxic ischemic encephalopathy groups. However, compared with the mild hypoxic ischemic encephalopathy group, the severe hypoxic ischemic encephalopathy group exhibited decreased local efficiency and a low clustering coefficient. The distribution of hub regions in the functional networks had fewer nodes in the severe hypoxic ischemic encephalopathy group compared with the mild hypoxic ischemic encephalopathy group. Moreover, nodal efficiency was reduced in the left rolandic operculum, left supramarginal gyrus, bilateral superior temporal gyrus, and right middle temporal gyrus. These results suggest that the topological structure of the resting state functional network in children with severe hypoxic ischemic encephalopathy is clearly distinct from that in children with mild hypoxic ischemic encephalopathy, and may be associated with impaired language, motion, and cognition. These data indicate that it may be possible to make early predictions regarding brain development in children with severe hypoxic ischemic encephalopathy, enabling early interventions targeting brain function. This study was approved by the Regional Ethics Review Boards of the Changzhou Children's Hospital(approval No. 2013-001) on January 31, 2013. Informed consent was obtained from the family members of the children. The trial was registered with the Chinese Clinical Trial Registry(registration number: ChiCTR1800016409) and the protocol version is 1.0.
基金supported by the National Natural Science Foundation of China,No.61401308,61572063(both to XHW)the Natural Science Foundation of Beijing of China,No.L172055(to XHW)+3 种基金the Beijing Municipal Science&Technology Commission Research Fund of China,No.Z171100000417004(to XHW)the China Postdoctoral Fund,No.2018M631755(to XHW)the Special Fund for Improving Comprehensive Strength of Hebei University in the Midwest of China,No.801260201011(to XHW)the High-Level Talent Funding Project—Selective Post-doctoral Research Project Fund of Hebei Province of China,No.B2018003002(to XHW)
文摘The main symptom of patients with Alzheimer’s disease is cognitive dysfunction. Alzheimer’s disease is mainly diagnosed based on changes in brain structure. Functional connectivity reflects the synchrony of functional activities between non-adjacent brain regions, and changes in functional connectivity appear earlier than those in brain structure. In this study, we detected resting-state functional connectivity changes in patients with Alzheimer’s disease to provide reference evidence for disease prediction. Functional magnetic resonance imaging data from patients with Alzheimer’s disease were used to show whether particular white and gray matter areas had certain functional connectivity patterns and if these patterns changed with disease severity. In nine white and corresponding gray matter regions, correlations of normal cognition, early mild cognitive impairment, and late mild cognitive impairment with blood oxygen level-dependent signal time series were detected. Average correlation coefficient analysis indicated functional connectivity patterns between white and gray matter in the resting state of patients with Alzheimer’s disease. Functional connectivity pattern variation correlated with disease severity, with some regions having relatively strong or weak correlations. We found that the correlation coefficients of five regions were 0.3–0.5 in patients with normal cognition and 0–0.2 in those developing Alzheimer’s disease. Moreover, in the other four regions, the range increased to 0.45–0.7 with increasing cognitive impairment. In some white and gray matter areas, there were specific connectivity patterns. Changes in regional white and gray matter connectivity patterns may be used to predict Alzheimer’s disease;however, detailed information on specific connectivity patterns is needed. All study data were obtained from the Alzheimer’s Disease Neuroimaging Initiative Library of the Image and Data Archive Database.
基金the framework of the Project 21T-4C045 of the Higher Education and Science Committee(RA)。
文摘The results of the 2022-2025 study conducted for the vulnerability assessment of pastures and for the development of improvement measures on the degraded land sections in the arid and semi-arid provinces of the Caucasus under the global climate change conditions are introduced in the current article.The main goal of our scientific work is to study and assess the current ecological and resource state of natural phytocenoses,pastures and hayfields in the arid and semi-arid landscapes under climate change.The paper presents the results of determining the areas and levels of degradation of the natural biogeocenoses and biogeocenoses of the pastures and hayfields in the mountain and highland landscapes.The results were obtained using remote sensing,field and laboratory studies and analyses.The conducted studies have revealed that along 34,174.5 ha pasture and 1342.0 meadows areas of the pastures at the Areni,Yeghegis,Yeghegnadzor and Vayq consolidated administrative territories situated in the arid and semi-arid zones of the Vayots Dzor Region high degradation was recorded in about 6508 hectares of pasture and 407 hectares of meadows areas,which is related to irregular and uncontrolled economic mismanagement of the local population and global climate change.To improve the ecological condition,accessibility and quality of ecosystem services of the pastures,hayfields and natural meadows,comprehensive restoration bioecological and agrotechnical measures have been proposed.They are aimed at improving the air,water and nutrient regimes of soils,at their bioprotection,as well as at the general increase in area and at improving the economic characteristics of the vegetation cover.Such measures on the ecosystem basis are appropriate in the context of enriching the qualitative composition of plants with useful ecological and economic bioecological characteristics,taking into account the characteristics of landscapes,weather and climatic conditions,and agricultural opportunities.
基金supported by the National Natural Science Foundation of China(Grant Nos.12222413,12174443,12274459,and 12404266)the National Key R&D Program of China(Grant Nos.2023YFA1406500,2022YFA1403800,and 2022YFA1403103)+3 种基金the Natural Science Foundation of Shanghai (Grant No.23ZR1482200)the Natural Science Foundation of Ningbo (Grant No.2024J019)the Science Research Project of Hebei Education Department (Grant No.BJ2025060)the funding of Ningbo Yongjiang Talent Program。
文摘Superconducting elect rides have attracted growing attention for their potential to achieve high superconducting transition temperatures(T_(C))under pressure.However,many known elect rides are chemically reactive and unstable,making high-quality single-crystal growth,characterization,and measurements difficult,and most do not exhibit superconductivity at ambient pressure.In contrast,La_(3) In stands out for its ambient-pressure superconductivity(T_(C)∼9.4 K)and the availability of high-quality single crystals.Here,we investigate its low-energy electronic structure using angle-resolved photoemission spectroscopy and first-principles calculations.The bands near the Fermi energy(E_(F))are mainly derived from La 5d and In 5p orbitals.A saddle point is directly observed at the Brillouin zone(BZ)boundary,while a three-dimensional Van Hove singularity crosses E_(F) at the BZ corner.First-principles calculations further reveal topological Dirac surface states within the bulk energy gap above E_(F).The coexistence of a high density of states and in-gap topological surface states near𝐸F suggests that La3In offers a promising platform for tuning superconductivity and exploring possible topological superconducting phases through doping or external pressure.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos.XDB28000000 and XDB0460000)the Quantum Science and Technology-National Science and Technology Major Project (Grant No.2021ZD0302600)the National Key Research and Development Program of China(Grant No.2024YFA1409002)。
文摘The hybridization gap in strained-layer InAs/In_(x)Ga_(1−x) Sb quantum spin Hall insulators(QSHIs)is significantly enhanced compared to binary InAs/GaSb QSHI structures,where the typical indium composition,x,ranges between 0.2 and 0.4.This enhancement prompts a critical question:to what extent can quantum wells(QWs)be strained while still preserving the fundamental QSHI phase?In this study,we demonstrate the controlled molecular beam epitaxial growth of highly strained-layer QWs with an indium composition of x=0.5.These structures possess a substantial compressive strain within the In_(0.5)Ga_(0.5)Sb QW.Detailed crystal structure analyses confirm the exceptional quality of the resulting epitaxial films,indicating coherent lattice structures and the absence of visible dislocations.Transport measurements further reveal that the QSHI phase in InAs/In_(0.5)Ga_(0.5)Sb QWs is robust and protected by time-reversal symmetry.Notably,the edge states in these systems exhibit giant magnetoresistance when subjected to a modest perpendicular magnetic field.This behavior is in agreement with the𝑍2 topological property predicted by the Bernevig–Hughes–Zhang model,confirming the preservation of topologically protected edge transport in the presence of enhanced bulk strain.
文摘An effective power quality prediction for regional power grid can provide valuable references and contribute to the discovering and solving of power quality problems. So a predicting model for power quality steady state index based on chaotic theory and least squares support vector machine (LSSVM) is proposed in this paper. At first, the phase space reconstruction of original power quality data is performed to form a new data space containing the attractor. The new data space is used as training samples for the LSSVM. Then in order to predict power quality steady state index accurately, the particle swarm algorithm is adopted to optimize parameters of the LSSVM model. According to the simulation results based on power quality data measured in a certain distribution network, the model applies to several indexes with higher forecasting accuracy and strong practicability.
基金the National Natural Science Foundation of China(No.71401016)the Shaanxi Provincial Natural Science Foundation of China(No.2019JM-495)the Fundamental Research Funds for Central Universities of Chang'an University(Nos.300102228110 and 300102228402)。
文摘Mahalanobis-Taguchi system(MTS)is a kind of data mining and pattern recognition method which can identify the attribute characteristics of multidimensional data by constructing Mahalanobis distance(MD)measurement scale.In this paper,considering the influence of irregular distribution of the sample data and abnormal variation of the normal data on accuracy of MTS,a feature recognition and selection model of the equipment state based on the improved MTS is proposed,and two aspects of the model namely construction of the original Mahalanobis space(MS)and determination of the threshold are studied.Firstly,the original training sample space is statistically controlled by the X-bar-S control chart,and extreme data of the single characteristic attribute is filtered to reduce the impact of extreme condition on the accuracy of the model,so as to construct a more robust MS.Furthermore,the box plot method is used to determine the threshold of the model.And the stability of the model and the tolerance to the extreme condition are improved by leaving sufficient range of the variation for the extreme condition which is identified as in the normal range.Finally,the improved model is compared with the traditional one based on the unimproved MTS by using the data from the literature.The result shows that compared with the traditional model,the accuracy and sensitivity of the improved model for state identification can be greatly enhanced.
基金Supported by The European Commissionthe James McDon-nell Foundation+5 种基金the European Space AgencyMind Science Foundationthe French Speaking Community Concerted Research Actionthe Belgian interuniversity attraction polethe Public Utility Foundation"Université Européenne du Travail""Fondazione Europea di Ricerca Biomedica"and the University and University Hospital of Liège
文摘Consciousness is a prismatic and ambiguous concept that still eludes any universal definition. Severe acquired brain injuries resulting in a disorder of con-sciousness(DOC) provide a model from which insights into consciousness can be drawn. A number of recent studies highlight the difficulty in making a diagnosis in patients with DOC based only on behavioral assessments. Here we aim to provide an overview of how neuroimaging techniques can help assess patients with DOC. Such techniques are expected to facilitate a more accurate understanding of brain function in states of unconsciousness and to improve the evaluation of thepatient's cognitive abilities by providing both diagnostic and prognostic indicators.
文摘This paper presents a method of thermal state calculation of combustion chamber in small thrust liquid rocket engine. The goal is to predict the thermal state of chamber wall by using basic parameters of engine: thrust level, propellants, chamber pressure, injection pattern, film cooling parameters, material of wall and their coating, etc. The difficulties in modeling the startup and shutdown processes of thrusters lie in the fact that there are the conjugated physical processes occurring at various parameters for non-design conditions. A mathematical model to predict the thermal state of the combustion chamber for different engine operation modes is developed. To simulate the startup and shutdown processes, a quasi-steady approach is applied by replacing the transient process with time-variant operating parameters of steady-state processes. The mathematical model is based on several principles and data commonly used for heat transfer modeling: geometry of flow part, gas dynamics of flow, thermodynamics of propellants and combustion spices, convective and radiation heat flows, conjugated heat transfer between hot gas and wall, and transient approach for calculation of thermal state of construction. Calculations of the thermal state of the combustion chamber in single-turn-on mode show good convergence with the experimental results. The results of pulsed modes indicate a large temperature gradient on the internal wall surface of the chamber between pulses and the thermal state of the wall strongly depends on the pulse duration and the interval.
文摘Modifiers have a broad array of influences on extraction with liquids in standard state, supercritical fluid extraction (SFE), trapping by SFE and supercritical fluid chromatography (SFC). They can significantly change the qualitative and quantitative results. Quantitative and qualitative results can be influenced by different extractants and modifiers in different ways as it was shown by Brondz et al. at 2007 in “The real nature of the indole alkaloids in Cortinarius infractus: Evaluation of artifact formation through solvent extraction method development”, J. Chromatography A, 1148, 1-7. The choice of correct extractant, modifier, and trapper to the bulk mobile phase for supercritical fluids (SFs) or for liquids in subcritical or in the liquids in standard state is a challenge in any extraction procedure. This is the second paper in a sequence that describes the influence of extractants and modifiers on the performance of SFs and results of extraction with liquids in standard state and SFE. Here, attention is given to possible mistakes in qualitative and quantitative results by poor understanding of the influence of extractants, modifiers, and trappers on extraction and trapping process by a careless choice of extractant, modifier, and trapper for extraction with liquids in standard state and SFE. The SF chosen for discussion in the paper is CO2. However, similar effects can be observed with use of other SFs and fluids in subcritical and standard states. In this paper, the discussion of lipids, fatty and carboxylic acids have been chosen as target analytes for extraction, trapping and analysis. Some examples from extraction with liquids in the standard state and trapping in the supercritical state (collection) have been furnished with the wrong extractant, modifier, or trapper which is presented for illustration of inappropriate choice of extractants, modifiers, and trappers.
文摘Condense matter methods and mathematical models used in solving problems in solid state physics are transformed to high energy quantum cosmology in order to estimate the magnitude of the missing dark energy of the universe. Looking at the problem from this novel viewpoint was rewarded by a rather unexpected result, namely that the gap labelling method of integrated density of states for three dimensional icosahedral quasicrystals is identical to the previously measured and theoretically concluded ordinary energy density of the universe, namely a mere 4.5 percent of Einstein’s energy density, i.e. E(O) = mc2/22 where E is the energy, m is the mass and c is the speed of light. Consequently we conclude that the missing dark energy density must be E(D) = 1 - E(O) = mc2(21/22) in agreement with all known cosmological measurements and observations. This result could also be interpreted as a strong evidence for the self similarity of the geometry of spacetime, which is an expression of its basic fractal nature.