According to the physics of tokamak start-up,this study constructs a zero-dimensional(0D)model applicable to electron cyclotron(EC)wave assisted start-up in NCST spherical torus(spherical tokamak)and CN-H1 stellarator...According to the physics of tokamak start-up,this study constructs a zero-dimensional(0D)model applicable to electron cyclotron(EC)wave assisted start-up in NCST spherical torus(spherical tokamak)and CN-H1 stellarators.Using the constructed 0D model,the results obtained in this study under the same conditions are compared and validated against reference results for pure hydrogen plasma start-up in tokamak.The results are in good agreement,especially regarding electron temperature,ion temperature and plasma current.In the presence of finite Ohmic electric field in the spherical tokamak,a study on the EC wave assisted start-up of the NCST plasma at frequency of 28 GHz is conducted.The impact of the vertical magnetic field B_(v)on EC wave assisted start-up,the relationship between EC wave injection power P_(inj),Ohmic electric field E,and initial hydrogen atom density n_(H0)are explored separately.It is found that under conditions of Ohmic electric field lower than ITER(~0.3 V m^(-1)),EC wave can expand the operational space to achieve better plasma parameters.Simulating the process of28 GHz EC wave start-up in the CN-H1 stellarator plasma,the plasma current in the zerodimensional model is replaced with the current in the poloidal coil of the stellarator.Plasma startup can be successfully achieved at injection powers in the hundreds of kilowatts range,resulting in electron densities on the order of 10^(17)-10^(18)m^(-3).展开更多
Solid rocket motors have important applications in the propulsion of trans-media vehicles and underwater launched rockets.In this paper,the ignition start-up process of an underwater solid rocket motor across a wide d...Solid rocket motors have important applications in the propulsion of trans-media vehicles and underwater launched rockets.In this paper,the ignition start-up process of an underwater solid rocket motor across a wide depth range has been numerically studied.A novel multi-domain integrated model has been developed by combining the solid propellant ignition and combustion model with the volume of fluid multiphase model.This integrated model enables the coupled simulation of the propellant combustion and gas flow inside the motor,along with the gas jet evolution in the external water environment.The detailed flow field developments in the combustion chamber,nozzle,and wake field are carefully analyzed.The variation rules of the internal ballistics and thrust performance are also obtained.The effects of environmental medium and operating depth on the ignition start-up process are systematically discussed.The results show that the influence of the operating environment on the internal ballistic characteristics is primarily reflected in the initial period after the nozzle closure opens.The development of the gas jet in water lags significantly compared with that in air.As the water depth increases,the ignition delay time of the motor is shortened,and the morphology evolution of the gas jet is significantly compressed and accelerated.Furthermore,the necking and bulging of the jet boundary near the nozzle outlet and the consequent shock oscillations are intensified,resulting in stronger fluctuations in the wake pressure field and motor thrust.展开更多
Y型模块化多电平换流器(modular multilevel converter in Y configuration,Y-MMC)的Y形结构,使其预充电及并网过程更为复杂,基于环流控制的一般启动策略不再适用。针对上述问题,设计基于模型预测控制的渐进预充电方法及无扰动并网方法...Y型模块化多电平换流器(modular multilevel converter in Y configuration,Y-MMC)的Y形结构,使其预充电及并网过程更为复杂,基于环流控制的一般启动策略不再适用。针对上述问题,设计基于模型预测控制的渐进预充电方法及无扰动并网方法,提出一种模型预测渐进启动控制策略。首先,建立桥臂电流和电容电压预测模型,通过模型预测控制改变充电电流回路、幅值和相角,实现可控充电最大有功输入,对各个桥臂渐进充电。其次,根据电流误差灵活投切子模块,逐渐平衡充电回路电势差,辅助模型预测控制抑制冲击电流。然后,协调外环比例积分控制与内环模型预测控制,通过切换外环功率和电压控制模式,实现基于Y-MMC的柔性低频输电系统无扰动并网过程。最后,通过Matlab/Simulink对双端柔性低频输电系统进行仿真分析,所提控制策略保障了启动过程较低的电流冲击和较高的充电速度,使系统平稳快速进入稳定运行状态。展开更多
The biotreatment of mine drainage containing dissolved manganese(Mn)using Mn(II)-oxidizing bacteria is challenging.Sequencing-batch(SBRs)and continuous-flow reactors(CFRs)packed with limestones and inoculated with the...The biotreatment of mine drainage containing dissolved manganese(Mn)using Mn(II)-oxidizing bacteria is challenging.Sequencing-batch(SBRs)and continuous-flow reactors(CFRs)packed with limestones and inoculated with the mine-drainage microbial communitywere compared to determine the removal efficiency of Mn(II)from mine drainage.Mn(II)removal in CFRs was 11.4%±0.0%(mean±standard deviation)in the first two weeks and;it slightly increased to 13.6%±0.0%after four weeks,and more than 94%of Mn(II)was removed under the steady-state treatment phase.The performance of SBRs was more effective,wherein 24.4%±0.1%of Mn was removed in the first two weeks,and in four weeks,surpassed 66.6%±0.2%.Rapid Mn(II)removal observed in the start-up of SBR resulted from higher microbial metabolic activities.The adenosine triphosphate(ATP)content of the microbial community was four-fold more than in CFR,but comparable during the steady-state phase.The Mn-oxide deposits occurring in the SBR and CFR at steady-state were mixed phases of birnessite and woodruffite,and the average Mn oxidation valence in the SBR(+3.73)was slightly higher than that in the CFR(+3.54).During the start-up treatment,the closest relatives of Methyloversatilis,Methylibium,and Curvibacter dominated the SBR,whereas putative Mn oxidizers were associated with Hyphomicrobium,Pedobacter,Pedomicrobium,Terricaulis sp.,Sulfuritalea,and Terrimonas organisms.The growth of potential Mnoxidizing genera,including Mesorhizobium,Rhodococcus,Hydrogenophaga,Terricaulis sp.,and‘Candidatus Manganitrophus-noduliformans’was observed under the steady state.The SBR operation was effective as a prior start-up treatment for mine drainage-containing Mn(II),through which the CFR performed well as posterior bio-treatment.展开更多
To address the excessive complexity of monthly scheduling and the impact of uncertain net load on the chargeable energy of storage,a reduced time-period monthly scheduling model for thermal generators and energy stora...To address the excessive complexity of monthly scheduling and the impact of uncertain net load on the chargeable energy of storage,a reduced time-period monthly scheduling model for thermal generators and energy storage,incorporating daily minimum chargeable energy constraints,was developed.Firstly,considering the variations in the frequency of unit start-ups and shutdowns under different levels of net load fluctuation,a method was proposed to reduce decision time periods for unit start-up and shut-down operations.This approach,based on the characteristics of net load fluctuations,minimizes the decision variables of units,thereby simplifying the monthly schedulingmodel.Secondly,the relationship between energy storage charging and discharging power,net load,and the total maximum/minimum output of units was analyzed.Based on this,daily minimum chargeable energy constraints were established to ensure the energy storage system meets charging requirements under extreme net load scenarios.Finally,taking into account the operational costs of thermal generators and energy storage,load loss costs,and operational constraints,the reduced time-period monthly schedulingmodel was constructed.Case studies demonstrate that the proposedmethod effectively generates economical monthly operation plans for thermal generators and energy storage,significantly reduces model solution time,and satisfies the charging requirements of energy storage under extreme net load conditions.展开更多
The problems including excessive flow of attemperating water for boiler, failure of butterfly valve at the outlet of circulating water pump, burnt-out of thyristor for excitation regulator, load variation rate of CCS ...The problems including excessive flow of attemperating water for boiler, failure of butterfly valve at the outlet of circulating water pump, burnt-out of thyristor for excitation regulator, load variation rate of CCS not complying with the contract target, etc. occurred during start-up and debugging of two 600 MW generating units in Yangzhou No.2 Thermal Power Plant. Through analysis on these problems. the remedial measures were put forward, to which can be referred for similar units.展开更多
The anaerobic ammonia oxidation(Anammox) bioreactor was successfully started up with the nitrifying activated sludge. After anaerobically operated for 105 d, the bioreactor reached a good performance with removal perc...The anaerobic ammonia oxidation(Anammox) bioreactor was successfully started up with the nitrifying activated sludge. After anaerobically operated for 105 d, the bioreactor reached a good performance with removal percentage of both ammonia and nitrite higher than 95% and volumetric total nitrogen removal as high as 149.55 mmol/(L·d). The soft padding made an important contribution to the high efficiency and stability because it held a large amount of biomass in the bioreactor.展开更多
基金supported by the National Key Research and Development Program of China(Nos.2022YFE03070000 and 2022YFE03070003)National Natural Science Foundation of China(Nos.12375220 and 12075114)。
文摘According to the physics of tokamak start-up,this study constructs a zero-dimensional(0D)model applicable to electron cyclotron(EC)wave assisted start-up in NCST spherical torus(spherical tokamak)and CN-H1 stellarators.Using the constructed 0D model,the results obtained in this study under the same conditions are compared and validated against reference results for pure hydrogen plasma start-up in tokamak.The results are in good agreement,especially regarding electron temperature,ion temperature and plasma current.In the presence of finite Ohmic electric field in the spherical tokamak,a study on the EC wave assisted start-up of the NCST plasma at frequency of 28 GHz is conducted.The impact of the vertical magnetic field B_(v)on EC wave assisted start-up,the relationship between EC wave injection power P_(inj),Ohmic electric field E,and initial hydrogen atom density n_(H0)are explored separately.It is found that under conditions of Ohmic electric field lower than ITER(~0.3 V m^(-1)),EC wave can expand the operational space to achieve better plasma parameters.Simulating the process of28 GHz EC wave start-up in the CN-H1 stellarator plasma,the plasma current in the zerodimensional model is replaced with the current in the poloidal coil of the stellarator.Plasma startup can be successfully achieved at injection powers in the hundreds of kilowatts range,resulting in electron densities on the order of 10^(17)-10^(18)m^(-3).
基金supported by the National Level Project of China.
文摘Solid rocket motors have important applications in the propulsion of trans-media vehicles and underwater launched rockets.In this paper,the ignition start-up process of an underwater solid rocket motor across a wide depth range has been numerically studied.A novel multi-domain integrated model has been developed by combining the solid propellant ignition and combustion model with the volume of fluid multiphase model.This integrated model enables the coupled simulation of the propellant combustion and gas flow inside the motor,along with the gas jet evolution in the external water environment.The detailed flow field developments in the combustion chamber,nozzle,and wake field are carefully analyzed.The variation rules of the internal ballistics and thrust performance are also obtained.The effects of environmental medium and operating depth on the ignition start-up process are systematically discussed.The results show that the influence of the operating environment on the internal ballistic characteristics is primarily reflected in the initial period after the nozzle closure opens.The development of the gas jet in water lags significantly compared with that in air.As the water depth increases,the ignition delay time of the motor is shortened,and the morphology evolution of the gas jet is significantly compressed and accelerated.Furthermore,the necking and bulging of the jet boundary near the nozzle outlet and the consequent shock oscillations are intensified,resulting in stronger fluctuations in the wake pressure field and motor thrust.
文摘Y型模块化多电平换流器(modular multilevel converter in Y configuration,Y-MMC)的Y形结构,使其预充电及并网过程更为复杂,基于环流控制的一般启动策略不再适用。针对上述问题,设计基于模型预测控制的渐进预充电方法及无扰动并网方法,提出一种模型预测渐进启动控制策略。首先,建立桥臂电流和电容电压预测模型,通过模型预测控制改变充电电流回路、幅值和相角,实现可控充电最大有功输入,对各个桥臂渐进充电。其次,根据电流误差灵活投切子模块,逐渐平衡充电回路电势差,辅助模型预测控制抑制冲击电流。然后,协调外环比例积分控制与内环模型预测控制,通过切换外环功率和电压控制模式,实现基于Y-MMC的柔性低频输电系统无扰动并网过程。最后,通过Matlab/Simulink对双端柔性低频输电系统进行仿真分析,所提控制策略保障了启动过程较低的电流冲击和较高的充电速度,使系统平稳快速进入稳定运行状态。
基金funded by the JOGMEC Research Grant and JSPS KAKENHI(No.JP21H03636).
文摘The biotreatment of mine drainage containing dissolved manganese(Mn)using Mn(II)-oxidizing bacteria is challenging.Sequencing-batch(SBRs)and continuous-flow reactors(CFRs)packed with limestones and inoculated with the mine-drainage microbial communitywere compared to determine the removal efficiency of Mn(II)from mine drainage.Mn(II)removal in CFRs was 11.4%±0.0%(mean±standard deviation)in the first two weeks and;it slightly increased to 13.6%±0.0%after four weeks,and more than 94%of Mn(II)was removed under the steady-state treatment phase.The performance of SBRs was more effective,wherein 24.4%±0.1%of Mn was removed in the first two weeks,and in four weeks,surpassed 66.6%±0.2%.Rapid Mn(II)removal observed in the start-up of SBR resulted from higher microbial metabolic activities.The adenosine triphosphate(ATP)content of the microbial community was four-fold more than in CFR,but comparable during the steady-state phase.The Mn-oxide deposits occurring in the SBR and CFR at steady-state were mixed phases of birnessite and woodruffite,and the average Mn oxidation valence in the SBR(+3.73)was slightly higher than that in the CFR(+3.54).During the start-up treatment,the closest relatives of Methyloversatilis,Methylibium,and Curvibacter dominated the SBR,whereas putative Mn oxidizers were associated with Hyphomicrobium,Pedobacter,Pedomicrobium,Terricaulis sp.,Sulfuritalea,and Terrimonas organisms.The growth of potential Mnoxidizing genera,including Mesorhizobium,Rhodococcus,Hydrogenophaga,Terricaulis sp.,and‘Candidatus Manganitrophus-noduliformans’was observed under the steady state.The SBR operation was effective as a prior start-up treatment for mine drainage-containing Mn(II),through which the CFR performed well as posterior bio-treatment.
基金This study was supported by State Grid Corporation headquarters technology project(4000-202399368A-2-2-ZB).
文摘To address the excessive complexity of monthly scheduling and the impact of uncertain net load on the chargeable energy of storage,a reduced time-period monthly scheduling model for thermal generators and energy storage,incorporating daily minimum chargeable energy constraints,was developed.Firstly,considering the variations in the frequency of unit start-ups and shutdowns under different levels of net load fluctuation,a method was proposed to reduce decision time periods for unit start-up and shut-down operations.This approach,based on the characteristics of net load fluctuations,minimizes the decision variables of units,thereby simplifying the monthly schedulingmodel.Secondly,the relationship between energy storage charging and discharging power,net load,and the total maximum/minimum output of units was analyzed.Based on this,daily minimum chargeable energy constraints were established to ensure the energy storage system meets charging requirements under extreme net load scenarios.Finally,taking into account the operational costs of thermal generators and energy storage,load loss costs,and operational constraints,the reduced time-period monthly schedulingmodel was constructed.Case studies demonstrate that the proposedmethod effectively generates economical monthly operation plans for thermal generators and energy storage,significantly reduces model solution time,and satisfies the charging requirements of energy storage under extreme net load conditions.
文摘The problems including excessive flow of attemperating water for boiler, failure of butterfly valve at the outlet of circulating water pump, burnt-out of thyristor for excitation regulator, load variation rate of CCS not complying with the contract target, etc. occurred during start-up and debugging of two 600 MW generating units in Yangzhou No.2 Thermal Power Plant. Through analysis on these problems. the remedial measures were put forward, to which can be referred for similar units.
文摘The anaerobic ammonia oxidation(Anammox) bioreactor was successfully started up with the nitrifying activated sludge. After anaerobically operated for 105 d, the bioreactor reached a good performance with removal percentage of both ammonia and nitrite higher than 95% and volumetric total nitrogen removal as high as 149.55 mmol/(L·d). The soft padding made an important contribution to the high efficiency and stability because it held a large amount of biomass in the bioreactor.