The start-up process of Stokes' second problem of a viscoelastic material with fractional element is studied. The fluid above an infinite flat plane is set in motion by a sudden acceleration of the plate to steady os...The start-up process of Stokes' second problem of a viscoelastic material with fractional element is studied. The fluid above an infinite flat plane is set in motion by a sudden acceleration of the plate to steady oscillation. Exact solutions are obtained by using Laplace transform and Fourier transform. It is found that the relationship between the first peak value and the one of equal-amplitude oscillations depends on the distance from the plate. The amplitude decreases for increasing frequency and increasing distance.展开更多
A particle-in-cell Monte Carlo collision model of a discharge chamber is established to investigate the start-up process of a miniature ion thruster.We present the discharge characteristics at different stages(the ini...A particle-in-cell Monte Carlo collision model of a discharge chamber is established to investigate the start-up process of a miniature ion thruster.We present the discharge characteristics at different stages(the initial stage,development stage,and stable stage)according to the trend of the discharge current with time.The discharge current is the sum of the sidewall current and the backplate current.During the start-up process,the sidewall current lags behind the backplate current.The variation and distribution characteristics of the discharge current over time are determined by the electron density distribution and electric potential distribution.展开更多
Solid rocket motors have important applications in the propulsion of trans-media vehicles and underwater launched rockets.In this paper,the ignition start-up process of an underwater solid rocket motor across a wide d...Solid rocket motors have important applications in the propulsion of trans-media vehicles and underwater launched rockets.In this paper,the ignition start-up process of an underwater solid rocket motor across a wide depth range has been numerically studied.A novel multi-domain integrated model has been developed by combining the solid propellant ignition and combustion model with the volume of fluid multiphase model.This integrated model enables the coupled simulation of the propellant combustion and gas flow inside the motor,along with the gas jet evolution in the external water environment.The detailed flow field developments in the combustion chamber,nozzle,and wake field are carefully analyzed.The variation rules of the internal ballistics and thrust performance are also obtained.The effects of environmental medium and operating depth on the ignition start-up process are systematically discussed.The results show that the influence of the operating environment on the internal ballistic characteristics is primarily reflected in the initial period after the nozzle closure opens.The development of the gas jet in water lags significantly compared with that in air.As the water depth increases,the ignition delay time of the motor is shortened,and the morphology evolution of the gas jet is significantly compressed and accelerated.Furthermore,the necking and bulging of the jet boundary near the nozzle outlet and the consequent shock oscillations are intensified,resulting in stronger fluctuations in the wake pressure field and motor thrust.展开更多
Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim ...Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.展开更多
Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing addit...Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing additive-induced defects,and alleviating residual stress and deformation,all of which are critical for enhancing the mechanical performance of the manufactured parts.Integrating interlayer friction stir processing(FSP)into WAAM significantly enhances the quality of deposited materials.However,numerical simulation research focusing on elucidating the associated thermomechanical coupling mechanisms remains insufficient.A comprehensive numerical model was developed to simulate the thermomechanical coupling behavior in friction stir-assisted WAAM.The influence of post-deposition FSP on the coupled thermomechanical response of the WAAM process was analyzed quantitatively.Moreover,the residual stress distribution and deformation behavior under both single-layer and multilayer deposition conditions were investigated.Thermal analysis of different deposition layers in WAAM and friction stir-assisted WAAM was conducted.Results show that subsequent layer deposition induces partial remelting of the previously solidified layer,whereas FSP does not cause such remelting.Furthermore,thermal stress and deformation analysis confirm that interlayer FSP effectively mitigates residual stresses and distortion in WAAM components,thereby improving their structural integrity and mechanical properties.展开更多
The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurode...The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurodegenerative diseases are characterized by the progressive loss of neuronal structure and function.展开更多
The complexity of the seismicity pattern for the subduction zone along the oceanic plate triggered the outer rise events and revealed cyclic tectonic deformation conditions along the plate subduction zones.The outer r...The complexity of the seismicity pattern for the subduction zone along the oceanic plate triggered the outer rise events and revealed cyclic tectonic deformation conditions along the plate subduction zones.The outer rise earthquakes have been observed along the Sunda arc,following the estimated rupture area of the 2005 M_(W)8.6 Nias earthquakes.Here,we used kinematic waveform inversion(KIWI)to obtain the source parameters of the 14 May 2021 M_(W)6.6 event off the west coast of northern Sumatra and to define the fault plane that triggered this outer rise event.The KIWI algorithm allows two types of seismic source to be configured:the moment tensor model to describe the type of shear with six moment tensor components and the Eikonal model for the rupture of pure double-couple sources.This method was chosen for its flexibility to be applied for different sources of seismicity and also for the automated full-moment tensor solution with real-time monitoring.We used full waveform traces from 8 broadband seismic stations within 1000 km epicentral distances sourced from the Incorporated Research Institutions for Seismology(IRIS-IDA)and Geofon GFZ seismic record databases.The initial origin time and hypocenter values are obtained from the IRIS-IDA.The synthetic seismograms used in the inversion process are based on the existing regional green function database model and were accessed from the KIWI Tools Green's Function Database.The obtained scalar seismic moment value is 1.18×10^(19)N·m,equivalent to a moment magnitude M_(W)6.6.The source parameters are 140°,44°,and−99°for the strike,dip,and rake values at a centroid depth of 10.2 km,indicating that this event is a normal fault earthquake that occurred in the outer rise area.The outer rise events with normal faults typically occur at the shallow part of the plate,with nodal-plane dips predominantly in the range of 30°-60°on the weak oceanic lithosphere due to hydrothermal alteration.The stress regime around the plate subduction zone varies both temporally and spatially due to the cyclic influences of megathrust earthquakes.Tensional outer rise earthquakes tend to occur after the megathrust events.The relative timing of these events is not known due to the viscous relaxation of the down going slab and poroelastic response in the trench slope region.The occurrence of the 14 May 2021 earthquake shows the seismicity in the outer rise region in the strongly coupled Sunda arc subduction zone due to elastic bending stress within the duration of the seismic cycle.展开更多
To explore the best preparation process for terminal blend(TB)composite-modified asphalt and to filter its formulation with excellent performance,this study evaluates the performance of TB composite modified asphalt b...To explore the best preparation process for terminal blend(TB)composite-modified asphalt and to filter its formulation with excellent performance,this study evaluates the performance of TB composite modified asphalt by physical property index,microscopic morphology,rheological testing,and infrared spectroscopy on multiple scales.The results show that the best preparation process for TB-modified asphalt is stirring at 260℃ for 4 h at 400 rpm,which significantly reduces the modification time of the asphalt.From a physical property viewpoint,the TB composite-modified asphalt sample with 5% styrene-butadiene-styrene(SBS)+1% aromatics+0.1% sulfur exhibits high-comprehensive,high-and low-temperature properties.More-over,its crosslinked mesh structure comprises black rubber particles uniformly interwoven in the middle,which further enhances the performance of the asphalt and results in an excellent performance formulation.In addition,the sample with 5%SBS content has a higher G*value and smaller δ value than that with 3%SBS content,indicating that its high-temperature resistance is improved.The effect of adding 3%SBS content on the viscoelastic ratio is,to some extent,less than that caused by 20% rubber powder.展开更多
Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening pa...Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening particles also deteriorates the processability and it is of great importance to establish accurate processing maps to guide the thermomechanical processes to enhance the formability.In this study,we performed particle swarm optimization-based back propagation artificial neural network model to predict the high temperature flow behavior of 0.25wt%Al2O3 particle-reinforced Cu alloys,and compared the accuracy with that of derived by Arrhenius-type constitutive model and back propagation artificial neural network model.To train these models,we obtained the raw data by fabricating ODS Cu alloys using the internal oxidation and reduction method,and conducting systematic hot compression tests between 400 and800℃with strain rates of 10^(-2)-10 S^(-1).At last,processing maps for ODS Cu alloys were proposed by combining processing parameters,mechanical behavior,microstructure characterization,and the modeling results achieved a coefficient of determination higher than>99%.展开更多
N-dodecanoyl homoserine lactone(C(12)-HSL)was detected in the supernatant of an anammox granular sludge reactor(AGSR).C(12)-HSL could enhance the specific anammox activity of anammox biomass.Adding C(12)-HSL...N-dodecanoyl homoserine lactone(C(12)-HSL)was detected in the supernatant of an anammox granular sludge reactor(AGSR).C(12)-HSL could enhance the specific anammox activity of anammox biomass.Adding C(12)-HSL-containing AGSR supernatant into the continuously stirred tank reactors reduced the start-up time of the anammox process from80 to 66 days.Moreover,the nitrogen loading rate was also enhanced to 1.6 times that of the control reactor.AHLs could increase the secretion of extracellular polymeric substances and anammox obtained better enrichment with the addition of AHLs-containing AGSR supernatant.Denaturing gradient gel electrophoresis analysis further revealed that AHLs played a role in mediating microbial community parameters.In conclusion,adding AHL-containing supernatant could be an effective and economical way to accelerate the start-up of anammox.展开更多
Expanded granular sludge bed (EGSB) reactor and bioaugmentation were employed to investigate biohydrogen production with molasses wastewater. The start-up experiments consisted of two stages. In the first stage (0 ...Expanded granular sludge bed (EGSB) reactor and bioaugmentation were employed to investigate biohydrogen production with molasses wastewater. The start-up experiments consisted of two stages. In the first stage (0 - 24d) seeded with activated sludge, the butyric acid type-fermentation formed when the initial expanding rate, organic loading rate (OLR), the initial redox potential (ORP) and hydraulic retention time (HRT) were 10%, 10.0 kg COD/(m^3·d), -215 mV and 6.7 h, respectively. At the beginning of the second stage on day 25, the novel hydrogen-producing fermentative bacterial strain B49 (AF481148 in EMBL) were inoculated into the reactor under the condition of OLR 16. 0 kg COD/(m^3·d), ORP and HRT about - 139 mV and 6.7 h, respectively, and then the reaction system transformed to ethanol-type fermentation gradually with the increase in OLR. When OLR, ORP and HRT were about 94.3 kg COD/(m^3·d), -250 mV and 1.7 h, respectively, the system achieved the maximum hydrogen-producing rate of 282.6 mL H2/L reactor·h and hydrogen percentage of 51% -53% in the biogas.展开更多
A new dynamic non-equilibrium mixing-pool model for simulating start-up and dynamic re-sponse of a distillation column is reported.The proposed model is established on the basis ofconsidering the two dimensional flow/...A new dynamic non-equilibrium mixing-pool model for simulating start-up and dynamic re-sponse of a distillation column is reported.The proposed model is established on the basis ofconsidering the two dimensional flow/mixing behavior of actual trays in a distillation column.Com-parison is made among the computed results of the start-up time and the dynamic response time bythe proposed and five other typical models.It is found that the computed time for both dynamicprocesses is longer by the model which considers any flow/mixing pattern than by the model withoutsuch concern.The inertia effect of flow/mixing seems to be important and can not be ignored inmodeling the transient process of distillation.The proposed model,which is believed to be suitableto large column,seems somewhat useful in predicting industrial distillation dynamics.展开更多
Micro-mobile heat pipe-cooled nuclear power plants are promising candidates for distributed energy resource power genera-tors and can be flexibly deployed in remote places to meet increasing electric power demands.How...Micro-mobile heat pipe-cooled nuclear power plants are promising candidates for distributed energy resource power genera-tors and can be flexibly deployed in remote places to meet increasing electric power demands.However,previous steady-state simulations and experiments have deviated significantly from actual micronuclear system operations.Hence,a transient analysis is required for performance optimization and safety assessment.In this study,a hardware-in-the-loop(HIL)approach was used to investigate the dynamic behavior of scaled-down heat pipe-cooled systems.The real-time features of the HIL architecture were interpreted and validated,and an optimal time step of 500 ms was selected for the thermal transient.The power transient was modeled using point kinetic equations,and a scaled-down thermal prototype was set up to avoid mod-eling unpredictable heat transfer behaviors and feeding temperature samples into the main program running on a desktop PC.A series of dynamic test results showed significant power and temperature oscillations during the transient process,owing to the inconsistency of the rapid nuclear reaction rate and large thermal inertia.The proposed HIL approach is stable and effective for further studying of the dynamic characteristics and control optimization of solid-state small nuclear-powered systems at an early prototyping stage.展开更多
This research paper investigates the role of Italian venture capital in supporting innovative start-ups in their early-stage process,which is usually focused on the creation of a new product or the development of a ne...This research paper investigates the role of Italian venture capital in supporting innovative start-ups in their early-stage process,which is usually focused on the creation of a new product or the development of a new service.The aim of the study is to observe and assess the key economic features of innovative start-ups funded at the beginning of the early-stage by venture capital funds and thereafter analyze the level of development of target companies at four years since the capital injection.The sample of deals created to describe this dynamic process is composed by investments realized between 1996 and 2012 and,in this way,according to the chosen methodology,it is representative of Italian venture capital role and contribution in the years from 1996 to 2016.The authors used for their empirical study a proprietary database,Venture Capital Monitor—VeMTM.Through the analysis of collected data,the paper describes the strategic importance of venture capital investments in early-stage opportunities both for target companies and the Italian socio-economic environment,and finds aggregate values of reference to quantitatively define the socio-economic outcome of this kind of operations.A final further contribution is provided by comparing the present results to the ones of two previous studies conducted by the authors.展开更多
Recent reports suggest that aging is not solely a physiological process in living beings;instead, it should be considered a pathological process or disease(Amorim et al., 2022). Consequently, this process involves a w...Recent reports suggest that aging is not solely a physiological process in living beings;instead, it should be considered a pathological process or disease(Amorim et al., 2022). Consequently, this process involves a wide range of factors, spanning from genetic to environmental factors, and even includes the gut microbiome(GM)(Mayer et al., 2022). All these processes coincide at some point in the inflammatory process, oxidative stress, and apoptosis, at different degrees in various organs and systems that constitute a living organism(Mayer et al., 2022;AguilarHernández et al., 2023).展开更多
Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley a...Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.展开更多
Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the p...Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the performanceof PV modules gradually declines due to internal degradation and external environmental factors.This cumulativedegradation impacts the overall reliability of photovoltaic power generation. This study addresses the complexdegradation process of PV modules by developing a two-stage Wiener process model. This approach accountsfor the distinct phases of degradation resulting from module aging and environmental influences. A powerdegradation model based on the two-stage Wiener process is constructed to describe individual differences inmodule degradation processes. To estimate the model parameters, a combination of the Expectation-Maximization(EM) algorithm and the Bayesian method is employed. Furthermore, the Schwarz Information Criterion (SIC) isutilized to identify critical change points in PV module degradation trajectories. To validate the universality andeffectiveness of the proposed method, a comparative analysis is conducted against other established life predictiontechniques for PV modules.展开更多
Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network act...Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network active layer morphology,featuring a bulk p-in structure and proper vertical segregation achieved through additive-assisted layer-by-layer deposition.This optimized hierarchical gradient fibrillar morphology and optical management synergistically facilitates exciton diffusion,reduces recombination losses,and enhances light capture capability.This approach not only offers a solution to achieving high-efficiency devices but also demonstrates the potential for commercial applications of OSCs.展开更多
Fenton and Fenton-like processes,which could produce highly reactive species to degrade organic contaminants,have been widely used in the field of wastewater treatment.Therein,the chemistry of Fenton process including...Fenton and Fenton-like processes,which could produce highly reactive species to degrade organic contaminants,have been widely used in the field of wastewater treatment.Therein,the chemistry of Fenton process including the nature of active oxidants,the complicated reactions involved,and the behind reason for its strongly pH-dependent performance,is the basis for the application of Fenton and Fenton-like processes in wastewater treatment.Nevertheless,the conflicting views still exist about the mechanism of the Fenton process.For instance,reaching a unanimous consensus on the nature of active oxidants(hydroxyl radical or tetravalent iron)in this process remains challenging.This review comprehensively examined the mechanism of the Fenton process including the debate on the nature of active oxidants,reactions involved in the Fenton process,and the behind reason for the pH-dependent degradation of contaminants in the Fenton process.Then,we summarized several strategies that promote the Fe(Ⅱ)/Fe(Ⅲ)cycle,reduce the competitive consumption of active oxidants by side reactions,and replace the Fenton reagent,thus improving the performance of the Fenton process.Furthermore,advances for the future were proposed including the demand for the high-accuracy identification of active oxidants and taking advantages of the characteristic of target contaminants during the degradation of contaminants by the Fenton process.展开更多
文摘The start-up process of Stokes' second problem of a viscoelastic material with fractional element is studied. The fluid above an infinite flat plane is set in motion by a sudden acceleration of the plate to steady oscillation. Exact solutions are obtained by using Laplace transform and Fourier transform. It is found that the relationship between the first peak value and the one of equal-amplitude oscillations depends on the distance from the plate. The amplitude decreases for increasing frequency and increasing distance.
文摘A particle-in-cell Monte Carlo collision model of a discharge chamber is established to investigate the start-up process of a miniature ion thruster.We present the discharge characteristics at different stages(the initial stage,development stage,and stable stage)according to the trend of the discharge current with time.The discharge current is the sum of the sidewall current and the backplate current.During the start-up process,the sidewall current lags behind the backplate current.The variation and distribution characteristics of the discharge current over time are determined by the electron density distribution and electric potential distribution.
基金supported by the National Level Project of China.
文摘Solid rocket motors have important applications in the propulsion of trans-media vehicles and underwater launched rockets.In this paper,the ignition start-up process of an underwater solid rocket motor across a wide depth range has been numerically studied.A novel multi-domain integrated model has been developed by combining the solid propellant ignition and combustion model with the volume of fluid multiphase model.This integrated model enables the coupled simulation of the propellant combustion and gas flow inside the motor,along with the gas jet evolution in the external water environment.The detailed flow field developments in the combustion chamber,nozzle,and wake field are carefully analyzed.The variation rules of the internal ballistics and thrust performance are also obtained.The effects of environmental medium and operating depth on the ignition start-up process are systematically discussed.The results show that the influence of the operating environment on the internal ballistic characteristics is primarily reflected in the initial period after the nozzle closure opens.The development of the gas jet in water lags significantly compared with that in air.As the water depth increases,the ignition delay time of the motor is shortened,and the morphology evolution of the gas jet is significantly compressed and accelerated.Furthermore,the necking and bulging of the jet boundary near the nozzle outlet and the consequent shock oscillations are intensified,resulting in stronger fluctuations in the wake pressure field and motor thrust.
文摘Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.
基金National Key Research and Development Program of China(2022YFB4600902)Shandong Provincial Science Foundation for Outstanding Young Scholars(ZR2024YQ020)。
文摘Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing additive-induced defects,and alleviating residual stress and deformation,all of which are critical for enhancing the mechanical performance of the manufactured parts.Integrating interlayer friction stir processing(FSP)into WAAM significantly enhances the quality of deposited materials.However,numerical simulation research focusing on elucidating the associated thermomechanical coupling mechanisms remains insufficient.A comprehensive numerical model was developed to simulate the thermomechanical coupling behavior in friction stir-assisted WAAM.The influence of post-deposition FSP on the coupled thermomechanical response of the WAAM process was analyzed quantitatively.Moreover,the residual stress distribution and deformation behavior under both single-layer and multilayer deposition conditions were investigated.Thermal analysis of different deposition layers in WAAM and friction stir-assisted WAAM was conducted.Results show that subsequent layer deposition induces partial remelting of the previously solidified layer,whereas FSP does not cause such remelting.Furthermore,thermal stress and deformation analysis confirm that interlayer FSP effectively mitigates residual stresses and distortion in WAAM components,thereby improving their structural integrity and mechanical properties.
文摘The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurodegenerative diseases are characterized by the progressive loss of neuronal structure and function.
基金supported by the National Natural Science Foundation of China(Grant No.42130312)。
文摘The complexity of the seismicity pattern for the subduction zone along the oceanic plate triggered the outer rise events and revealed cyclic tectonic deformation conditions along the plate subduction zones.The outer rise earthquakes have been observed along the Sunda arc,following the estimated rupture area of the 2005 M_(W)8.6 Nias earthquakes.Here,we used kinematic waveform inversion(KIWI)to obtain the source parameters of the 14 May 2021 M_(W)6.6 event off the west coast of northern Sumatra and to define the fault plane that triggered this outer rise event.The KIWI algorithm allows two types of seismic source to be configured:the moment tensor model to describe the type of shear with six moment tensor components and the Eikonal model for the rupture of pure double-couple sources.This method was chosen for its flexibility to be applied for different sources of seismicity and also for the automated full-moment tensor solution with real-time monitoring.We used full waveform traces from 8 broadband seismic stations within 1000 km epicentral distances sourced from the Incorporated Research Institutions for Seismology(IRIS-IDA)and Geofon GFZ seismic record databases.The initial origin time and hypocenter values are obtained from the IRIS-IDA.The synthetic seismograms used in the inversion process are based on the existing regional green function database model and were accessed from the KIWI Tools Green's Function Database.The obtained scalar seismic moment value is 1.18×10^(19)N·m,equivalent to a moment magnitude M_(W)6.6.The source parameters are 140°,44°,and−99°for the strike,dip,and rake values at a centroid depth of 10.2 km,indicating that this event is a normal fault earthquake that occurred in the outer rise area.The outer rise events with normal faults typically occur at the shallow part of the plate,with nodal-plane dips predominantly in the range of 30°-60°on the weak oceanic lithosphere due to hydrothermal alteration.The stress regime around the plate subduction zone varies both temporally and spatially due to the cyclic influences of megathrust earthquakes.Tensional outer rise earthquakes tend to occur after the megathrust events.The relative timing of these events is not known due to the viscous relaxation of the down going slab and poroelastic response in the trench slope region.The occurrence of the 14 May 2021 earthquake shows the seismicity in the outer rise region in the strongly coupled Sunda arc subduction zone due to elastic bending stress within the duration of the seismic cycle.
基金Funded by the National Natural Science Foundation of China(No.52278446)。
文摘To explore the best preparation process for terminal blend(TB)composite-modified asphalt and to filter its formulation with excellent performance,this study evaluates the performance of TB composite modified asphalt by physical property index,microscopic morphology,rheological testing,and infrared spectroscopy on multiple scales.The results show that the best preparation process for TB-modified asphalt is stirring at 260℃ for 4 h at 400 rpm,which significantly reduces the modification time of the asphalt.From a physical property viewpoint,the TB composite-modified asphalt sample with 5% styrene-butadiene-styrene(SBS)+1% aromatics+0.1% sulfur exhibits high-comprehensive,high-and low-temperature properties.More-over,its crosslinked mesh structure comprises black rubber particles uniformly interwoven in the middle,which further enhances the performance of the asphalt and results in an excellent performance formulation.In addition,the sample with 5%SBS content has a higher G*value and smaller δ value than that with 3%SBS content,indicating that its high-temperature resistance is improved.The effect of adding 3%SBS content on the viscoelastic ratio is,to some extent,less than that caused by 20% rubber powder.
基金financial support of the National Natural Science Foundation of China(No.52371103)the Fundamental Research Funds for the Central Universities,China(No.2242023K40028)+1 种基金the Open Research Fund of Jiangsu Key Laboratory for Advanced Metallic Materials,China(No.AMM2023B01).financial support of the Research Fund of Shihezi Key Laboratory of AluminumBased Advanced Materials,China(No.2023PT02)financial support of Guangdong Province Science and Technology Major Project,China(No.2021B0301030005)。
文摘Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening particles also deteriorates the processability and it is of great importance to establish accurate processing maps to guide the thermomechanical processes to enhance the formability.In this study,we performed particle swarm optimization-based back propagation artificial neural network model to predict the high temperature flow behavior of 0.25wt%Al2O3 particle-reinforced Cu alloys,and compared the accuracy with that of derived by Arrhenius-type constitutive model and back propagation artificial neural network model.To train these models,we obtained the raw data by fabricating ODS Cu alloys using the internal oxidation and reduction method,and conducting systematic hot compression tests between 400 and800℃with strain rates of 10^(-2)-10 S^(-1).At last,processing maps for ODS Cu alloys were proposed by combining processing parameters,mechanical behavior,microstructure characterization,and the modeling results achieved a coefficient of determination higher than>99%.
基金supported by the Major State Science and Technology Water Projects (No. 2013ZX07202010)
文摘N-dodecanoyl homoserine lactone(C(12)-HSL)was detected in the supernatant of an anammox granular sludge reactor(AGSR).C(12)-HSL could enhance the specific anammox activity of anammox biomass.Adding C(12)-HSL-containing AGSR supernatant into the continuously stirred tank reactors reduced the start-up time of the anammox process from80 to 66 days.Moreover,the nitrogen loading rate was also enhanced to 1.6 times that of the control reactor.AHLs could increase the secretion of extracellular polymeric substances and anammox obtained better enrichment with the addition of AHLs-containing AGSR supernatant.Denaturing gradient gel electrophoresis analysis further revealed that AHLs played a role in mediating microbial community parameters.In conclusion,adding AHL-containing supernatant could be an effective and economical way to accelerate the start-up of anammox.
文摘Expanded granular sludge bed (EGSB) reactor and bioaugmentation were employed to investigate biohydrogen production with molasses wastewater. The start-up experiments consisted of two stages. In the first stage (0 - 24d) seeded with activated sludge, the butyric acid type-fermentation formed when the initial expanding rate, organic loading rate (OLR), the initial redox potential (ORP) and hydraulic retention time (HRT) were 10%, 10.0 kg COD/(m^3·d), -215 mV and 6.7 h, respectively. At the beginning of the second stage on day 25, the novel hydrogen-producing fermentative bacterial strain B49 (AF481148 in EMBL) were inoculated into the reactor under the condition of OLR 16. 0 kg COD/(m^3·d), ORP and HRT about - 139 mV and 6.7 h, respectively, and then the reaction system transformed to ethanol-type fermentation gradually with the increase in OLR. When OLR, ORP and HRT were about 94.3 kg COD/(m^3·d), -250 mV and 1.7 h, respectively, the system achieved the maximum hydrogen-producing rate of 282.6 mL H2/L reactor·h and hydrogen percentage of 51% -53% in the biogas.
文摘A new dynamic non-equilibrium mixing-pool model for simulating start-up and dynamic re-sponse of a distillation column is reported.The proposed model is established on the basis ofconsidering the two dimensional flow/mixing behavior of actual trays in a distillation column.Com-parison is made among the computed results of the start-up time and the dynamic response time bythe proposed and five other typical models.It is found that the computed time for both dynamicprocesses is longer by the model which considers any flow/mixing pattern than by the model withoutsuch concern.The inertia effect of flow/mixing seems to be important and can not be ignored inmodeling the transient process of distillation.The proposed model,which is believed to be suitableto large column,seems somewhat useful in predicting industrial distillation dynamics.
基金This work was financially supported by the National Key R&D Program of China(No.2020YFB1901900)National Natural Science Foundation of China(No.12275175)+2 种基金Special Fund for Strengthening Industry of Shanghai(No.GYQJ-2018-2-02)Shanghai Rising Star Program(No.21QA1404200)the LingChuang Research Project of the China National Nuclear Corporation.
文摘Micro-mobile heat pipe-cooled nuclear power plants are promising candidates for distributed energy resource power genera-tors and can be flexibly deployed in remote places to meet increasing electric power demands.However,previous steady-state simulations and experiments have deviated significantly from actual micronuclear system operations.Hence,a transient analysis is required for performance optimization and safety assessment.In this study,a hardware-in-the-loop(HIL)approach was used to investigate the dynamic behavior of scaled-down heat pipe-cooled systems.The real-time features of the HIL architecture were interpreted and validated,and an optimal time step of 500 ms was selected for the thermal transient.The power transient was modeled using point kinetic equations,and a scaled-down thermal prototype was set up to avoid mod-eling unpredictable heat transfer behaviors and feeding temperature samples into the main program running on a desktop PC.A series of dynamic test results showed significant power and temperature oscillations during the transient process,owing to the inconsistency of the rapid nuclear reaction rate and large thermal inertia.The proposed HIL approach is stable and effective for further studying of the dynamic characteristics and control optimization of solid-state small nuclear-powered systems at an early prototyping stage.
文摘This research paper investigates the role of Italian venture capital in supporting innovative start-ups in their early-stage process,which is usually focused on the creation of a new product or the development of a new service.The aim of the study is to observe and assess the key economic features of innovative start-ups funded at the beginning of the early-stage by venture capital funds and thereafter analyze the level of development of target companies at four years since the capital injection.The sample of deals created to describe this dynamic process is composed by investments realized between 1996 and 2012 and,in this way,according to the chosen methodology,it is representative of Italian venture capital role and contribution in the years from 1996 to 2016.The authors used for their empirical study a proprietary database,Venture Capital Monitor—VeMTM.Through the analysis of collected data,the paper describes the strategic importance of venture capital investments in early-stage opportunities both for target companies and the Italian socio-economic environment,and finds aggregate values of reference to quantitatively define the socio-economic outcome of this kind of operations.A final further contribution is provided by comparing the present results to the ones of two previous studies conducted by the authors.
基金funded by CONAHCYT grant(252808)to GFCONAHCYT’s“Estancias Posdoctorales por México”program(662350)to HTB。
文摘Recent reports suggest that aging is not solely a physiological process in living beings;instead, it should be considered a pathological process or disease(Amorim et al., 2022). Consequently, this process involves a wide range of factors, spanning from genetic to environmental factors, and even includes the gut microbiome(GM)(Mayer et al., 2022). All these processes coincide at some point in the inflammatory process, oxidative stress, and apoptosis, at different degrees in various organs and systems that constitute a living organism(Mayer et al., 2022;AguilarHernández et al., 2023).
基金supported by the General Program of the National Natural Science Foundation of China(No.52274326)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202109)the Seventh Batch of Ten Thousand Talents Plan of China(No.ZX20220553).
文摘Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.
基金supported by the National Natural Science Foundation of China(51767017)the Basic Research Innovation Group Project of Gansu Province(18JR3RA133)the Industrial Support and Guidance Project of Universities in Gansu Province(2022CYZC-22).
文摘Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the performanceof PV modules gradually declines due to internal degradation and external environmental factors.This cumulativedegradation impacts the overall reliability of photovoltaic power generation. This study addresses the complexdegradation process of PV modules by developing a two-stage Wiener process model. This approach accountsfor the distinct phases of degradation resulting from module aging and environmental influences. A powerdegradation model based on the two-stage Wiener process is constructed to describe individual differences inmodule degradation processes. To estimate the model parameters, a combination of the Expectation-Maximization(EM) algorithm and the Bayesian method is employed. Furthermore, the Schwarz Information Criterion (SIC) isutilized to identify critical change points in PV module degradation trajectories. To validate the universality andeffectiveness of the proposed method, a comparative analysis is conducted against other established life predictiontechniques for PV modules.
基金Technology Development Program of Jilin Province(YDZJ202201ZYTS640)the National Key Research and Development Program of China(2022YFB4200400)funded by MOST+4 种基金the National Natural Science Foundation of China(52172048 and 52103221)Shandong Provincial Natural Science Foundation(ZR2021QB024 and ZR2021ZD06)Guangdong Basic and Applied Basic Research Foundation(2023A1515012323,2023A1515010943,and 2024A1515010023)the Qingdao New Energy Shandong Laboratory open Project(QNESL OP 202309)the Fundamental Research Funds of Shandong University.
文摘Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network active layer morphology,featuring a bulk p-in structure and proper vertical segregation achieved through additive-assisted layer-by-layer deposition.This optimized hierarchical gradient fibrillar morphology and optical management synergistically facilitates exciton diffusion,reduces recombination losses,and enhances light capture capability.This approach not only offers a solution to achieving high-efficiency devices but also demonstrates the potential for commercial applications of OSCs.
基金supported by the National Natural Science Foundation of China(Nos.22206050 and 52270047).
文摘Fenton and Fenton-like processes,which could produce highly reactive species to degrade organic contaminants,have been widely used in the field of wastewater treatment.Therein,the chemistry of Fenton process including the nature of active oxidants,the complicated reactions involved,and the behind reason for its strongly pH-dependent performance,is the basis for the application of Fenton and Fenton-like processes in wastewater treatment.Nevertheless,the conflicting views still exist about the mechanism of the Fenton process.For instance,reaching a unanimous consensus on the nature of active oxidants(hydroxyl radical or tetravalent iron)in this process remains challenging.This review comprehensively examined the mechanism of the Fenton process including the debate on the nature of active oxidants,reactions involved in the Fenton process,and the behind reason for the pH-dependent degradation of contaminants in the Fenton process.Then,we summarized several strategies that promote the Fe(Ⅱ)/Fe(Ⅲ)cycle,reduce the competitive consumption of active oxidants by side reactions,and replace the Fenton reagent,thus improving the performance of the Fenton process.Furthermore,advances for the future were proposed including the demand for the high-accuracy identification of active oxidants and taking advantages of the characteristic of target contaminants during the degradation of contaminants by the Fenton process.