Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay di...Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data.展开更多
Cooperative multi-agent reinforcement learning(MARL)is a key technology for enabling cooperation in complex multi-agent systems.It has achieved remarkable progress in areas such as gaming,autonomous driving,and multi-...Cooperative multi-agent reinforcement learning(MARL)is a key technology for enabling cooperation in complex multi-agent systems.It has achieved remarkable progress in areas such as gaming,autonomous driving,and multi-robot control.Empowering cooperative MARL with multi-task decision-making capabilities is expected to further broaden its application scope.In multi-task scenarios,cooperative MARL algorithms need to address 3 types of multi-task problems:reward-related multi-task,arising from different reward functions;multi-domain multi-task,caused by differences in state and action spaces,state transition functions;and scalability-related multi-task,resulting from the dynamic variation in the number of agents.Most existing studies focus on scalability-related multitask problems.However,with the increasing integration between large language models(LLMs)and multi-agent systems,a growing number of LLM-based multi-agent systems have emerged,enabling more complex multi-task cooperation.This paper provides a comprehensive review of the latest advances in this field.By combining multi-task reinforcement learning with cooperative MARL,we categorize and analyze the 3 major types of multi-task problems under multi-agent settings,offering more fine-grained classifications and summarizing key insights for each.In addition,we summarize commonly used benchmarks and discuss future directions of research in this area,which hold promise for further enhancing the multi-task cooperation capabilities of multi-agent systems and expanding their practical applications in the real world.展开更多
Predicting the health status of stroke patients at different stages of the disease is a critical clinical task.The onset and development of stroke are affected by an array of factors,encompassing genetic predispositio...Predicting the health status of stroke patients at different stages of the disease is a critical clinical task.The onset and development of stroke are affected by an array of factors,encompassing genetic predisposition,environmental exposure,unhealthy lifestyle habits,and existing medical conditions.Although existing machine learning-based methods for predicting stroke patients’health status have made significant progress,limitations remain in terms of prediction accuracy,model explainability,and system optimization.This paper proposes a multi-task learning approach based on Explainable Artificial Intelligence(XAI)for predicting the health status of stroke patients.First,we design a comprehensive multi-task learning framework that utilizes the task correlation of predicting various health status indicators in patients,enabling the parallel prediction of multiple health indicators.Second,we develop a multi-task Area Under Curve(AUC)optimization algorithm based on adaptive low-rank representation,which removes irrelevant information from the model structure to enhance the performance of multi-task AUC optimization.Additionally,the model’s explainability is analyzed through the stability analysis of SHAP values.Experimental results demonstrate that our approach outperforms comparison algorithms in key prognostic metrics F1 score and Efficiency.展开更多
Tropical cyclones(TCs)are one of the most serious types of natural disasters,and accurate TC activity predictions are key to disaster prevention and mitigation.Recently,TC track predictions have made significant progr...Tropical cyclones(TCs)are one of the most serious types of natural disasters,and accurate TC activity predictions are key to disaster prevention and mitigation.Recently,TC track predictions have made significant progress,but the ability to predict their intensity is obviously lagging behind.At present,research on TC intensity prediction takes atmospheric reanalysis data as the research object and mines the relationship between TC-related environmental factors and intensity through deep learning.However,reanalysis data are non-real-time in nature,which does not meet the requirements for operational forecasting applications.Therefore,a TC intensity prediction model named TC-Rolling is proposed,which can simultaneously extract the degree of symmetry for strong TC convective cloud and convection intensity,and fuse the deviation-angle variance with satellite images to construct the correlation between TC convection structure and intensity.For TCs'complex dynamic processes,a convolutional neural network(CNN)is used to learn their temporal and spatial features.For real-time intensity estimation,multi-task learning acts as an implicit time-series enhancement.The model is designed with a rolling strategy that aims to moderate the long-term dependent decay problem and improve accuracy for short-term intensity predictions.Since multiple tasks are correlated,the loss function of 12 h and 24 h are corrected.After testing on a sample of TCs in the Northwest Pacific,with a 4.48 kt root-mean-square error(RMSE)of 6 h intensity prediction,5.78 kt for 12 h,and 13.94 kt for 24 h,TC records from official agencies are used to assess the validity of TC-Rolling.展开更多
As the group-buying model shows significant progress in attracting new users,enhancing user engagement,and increasing platform profitability,providing personalized recommendations for group-buying users has emerged as...As the group-buying model shows significant progress in attracting new users,enhancing user engagement,and increasing platform profitability,providing personalized recommendations for group-buying users has emerged as a new challenge in the field of recommendation systems.This paper introduces a group-buying recommendation model based on multi-head attention mechanisms and multi-task learning,termed the Multi-head Attention Mechanisms and Multi-task Learning Group-Buying Recommendation(MAMGBR)model,specifically designed to optimize group-buying recommendations on e-commerce platforms.The core dataset of this study comes from the Chinese maternal and infant e-commerce platform“Beibei,”encompassing approximately 430,000 successful groupbuying actions and over 120,000 users.Themodel focuses on twomain tasks:recommending items for group organizers(Task Ⅰ)and recommending participants for a given group-buying event(Task Ⅱ).In model evaluation,MAMGBR achieves an MRR@10 of 0.7696 for Task I,marking a 20.23%improvement over baseline models.Furthermore,in Task II,where complex interaction patterns prevail,MAMGBR utilizes auxiliary loss functions to effectively model the multifaceted roles of users,items,and participants,leading to a 24.08%increase in MRR@100 under a 1:99 sample ratio.Experimental results show that compared to benchmark models,such as NGCF and EATNN,MAMGBR’s integration ofmulti-head attentionmechanisms,expert networks,and gating mechanisms enables more accurate modeling of user preferences and social associations within group-buying scenarios,significantly enhancing recommendation accuracy and platform group-buying success rates.展开更多
Aerosol optical depth(AOD)and fine particulate matter with a diameter of less than or equal to 2.5μm(PM_(2.5))play crucial roles in air quality,human health,and climate change.However,the complex correlation of AOD–...Aerosol optical depth(AOD)and fine particulate matter with a diameter of less than or equal to 2.5μm(PM_(2.5))play crucial roles in air quality,human health,and climate change.However,the complex correlation of AOD–PM_(2.5)and the limitations of existing algorithms pose a significant challenge in realizing the accurate joint retrieval of these two parameters at the same location.On this point,a multi-task learning(MTL)model,which enables the joint retrieval of PM_(2.5)concentration and AOD,is proposed and applied on the top-of-the-atmosphere reflectance data gathered by the Fengyun-4A Advanced Geosynchronous Radiation Imager(FY-4A AGRI),and compared to that of two single-task learning models—namely,Random Forest(RF)and Deep Neural Network(DNN).Specifically,MTL achieves a coefficient of determination(R^(2))of 0.88 and a root-mean-square error(RMSE)of 0.10 in AOD retrieval.In comparison to RF,the R^(2)increases by 0.04,the RMSE decreases by 0.02,and the percentage of retrieval results falling within the expected error range(Within-EE)rises by 5.55%.The R^(2)and RMSE of PM_(2.5)retrieval by MTL are 0.84 and 13.76μg m~(-3)respectively.Compared with RF,the R^(2)increases by 0.06,the RMSE decreases by 4.55μg m~(-3),and the Within-EE increases by 7.28%.Additionally,compared to DNN,MTL shows an increase of 0.01 in R^(2)and a decrease of 0.02 in RMSE in AOD retrieval,with a corresponding increase of 2.89%in Within-EE.For PM_(2.5)retrieval,MTL exhibits an increase of 0.05 in R^(2),a decrease of 1.76μg m~(-3)in RMSE,and an increase of 6.83%in Within-EE.The evaluation suggests that MTL is able to provide simultaneously improved AOD and PM_(2.5)retrievals,demonstrating a significant advantage in efficiently capturing the spatial distribution of PM_(2.5)concentration and AOD.展开更多
Accurate short-term forecast of offshore wind fields is still challenging for numerical weather prediction models.Based on three years of 48-hour forecast data from the European Centre for Medium-Range Weather Forecas...Accurate short-term forecast of offshore wind fields is still challenging for numerical weather prediction models.Based on three years of 48-hour forecast data from the European Centre for Medium-Range Weather Forecasts Integrated Forecasting System global model(ECMWF-IFS)over 14 offshore weather stations along the coast of Shandong Province,this study introduces a multi-task learning(MTL)model(TabNet-MTL),which significantly improves the forecast bias of near-surface wind direction and speed simultaneously.TabNet-MTL adopts the feature engineering method,utilizes mean square error as the loss function,and employs the 5-fold cross validation method to ensure the generalization ability of the trained model.It demonstrates superior skills in wind field correction across different forecast lead times over all stations compared to its single-task version(TabNet-STL)and three other popular single-task learning models(Random Forest,LightGBM,and XGBoost).Results show that it significantly reduces root mean square error of the ECMWF-IFS wind speed forecast from 2.20 to 1.25 m s−1,and increases the forecast accuracy of wind direction from 50%to 65%.As an explainable deep learning model,the weather stations and long-term temporal statistics of near-surface wind speed are identified as the most influential variables for TabNet-MTL in constructing its feature engineering.展开更多
The accurate prediction of drug absorption,distribution,metabolism,excretion,and toxicity(ADMET)properties represents a crucial step in early drug development for reducing failure risk.Current deep learning approaches...The accurate prediction of drug absorption,distribution,metabolism,excretion,and toxicity(ADMET)properties represents a crucial step in early drug development for reducing failure risk.Current deep learning approaches face challenges with data sparsity and information loss due to single-molecule representation limitations and isolated predictive tasks.This research proposes molecular properties prediction with parallel-view and collaborative learning(MolP-PC),a multi-view fusion and multi-task deep learning framework that integrates 1D molecular fingerprints(MFs),2D molecular graphs,and 3D geometric representations,incorporating an attention-gated fusion mechanism and multi-task adaptive learning strategy for precise ADMET property predictions.Experimental results demonstrate that MolP-PC achieves optimal performance in 27 of 54 tasks,with its multi-task learning(MTL)mechanism significantly enhancing predictive performance on small-scale datasets and surpassing single-task models in 41 of 54 tasks.Additional ablation studies and interpretability analyses confirm the significance of multi-view fusion in capturing multi-dimensional molecular information and enhancing model generalization.A case study examining the anticancer compound Oroxylin A demonstrates MolP-PC’s effective generalization in predicting key pharmacokinetic parameters such as half-life(T0.5)and clearance(CL),indicating its practical utility in drug modeling.However,the model exhibits a tendency to underestimate volume of distribution(VD),indicating potential for improvement in analyzing compounds with high tissue distribution.This study presents an efficient and interpretable approach for ADMET property prediction,establishing a novel framework for molecular optimization and risk assessment in drug development.展开更多
In the realm of all-electric aircraft research,the integration of cathode-open proton exchange membrane fuel cells(PEMFC)with lithiumbatteries as a hybrid power source for small to medium-sized unmanned aerial vehicle...In the realm of all-electric aircraft research,the integration of cathode-open proton exchange membrane fuel cells(PEMFC)with lithiumbatteries as a hybrid power source for small to medium-sized unmanned aerial vehicles(UAVs)has garnered significant attention.The PEMFC,serving as the primary energy supply,markedly extends the UAV’s operational endurance.However,due to payload limitations and spatial constraints in the airframe layout of UAVs,the stack requires customized adaptation.Moreover,the implementation of auxiliary systems to facilitate cold starts of the PEMFC under low-temperature conditions is not feasible.Relying solely on thermal insulation measures also proves inadequate to address the challenges posed by complex low-temperature startup scenarios.To overcomethis,our study leverages the UAV’s lithium battery to heat the cathode inlet airflow,aiding the cathode-open PEMFC cold start process.To validate the feasibility of the proposed air-assisted heating strategy during the conceptual design phase,this study develops a transient,non-isothermal 3Dcathode-open PEMF Cunitmodel incorporating cathode air-assisted heating and gas-ice phase change.The model’s accuracy was verified against experimental cold-start data from a stack composed of identical single cells.This computational framework enables quantitative analysis of temperature fields and ice fraction distributions across domains under varying air-assisted heating powers during cold starts.Building upon this model,the study further investigates the improvement in cold start performance by heating the cathode intake air with varying power levels.The results demonstrate that the fuel cell achieves self-startup at temperatures as low as−13℃ under a constant current density of 100mA/cm^(2) without air-assisted heating.At an ambient temperature of−20℃,a successful start-up can be achieved with a heating power of 0.45 W/cm^(2).The temperature variation overtime during the cold start process can be represented by a sum of two exponential functions.The air-assisted heating scheme proposed in this study has significantly improved the cold start performance of fuel cells in low-temperature environments.Additionally,it provides critical reference data and validation support for component selection and feasibility assessment of hybrid power systems.展开更多
Accurate forecasting of blast furnace gas(BFG)production is an essential prerequisite for reasonable energy scheduling and management to reduce carbon emissions.Coupling forecasting between BFG generation and consumpt...Accurate forecasting of blast furnace gas(BFG)production is an essential prerequisite for reasonable energy scheduling and management to reduce carbon emissions.Coupling forecasting between BFG generation and consumption dynamics was taken as the research object.A multi-task learning(MTL)method for BFG forecasting was proposed,which integrated a coupling correlation coefficient(CCC)and an inverted transformer structure.The CCC method could enhance key information extraction by establishing relationships between multiple prediction targets and relevant factors,while MTL effectively captured the inherent correlations between BFG generation and consumption.Finally,a real-world case study was conducted to compare the proposed model with four benchmark models.Results indicated significant reductions in average mean absolute percentage error by 33.37%,achieving 1.92%,with a computational time of 76 s.The sensitivity analysis of hyperparameters such as learning rate,batch size,and units of the long short-term memory layer highlights the importance of hyperparameter tuning.展开更多
This paper investigates the start-up and shutdown phases of a five-bladed closed-impeller centrifugal pump through experimental analysis,capturing the temporal evolution of its hydraulic performances.The study also pr...This paper investigates the start-up and shutdown phases of a five-bladed closed-impeller centrifugal pump through experimental analysis,capturing the temporal evolution of its hydraulic performances.The study also predicts the transient characteristics of the pump under non-rated operating conditions to assess the accuracy of various machine learning methods in forecasting its instantaneous performance.Results indicate that the pump’s transient behavior in power-frequency mode markedly differs from that in frequency-conversion mode.Specifically,the power-frequency mode achieves steady-state values faster and exhibits smaller fluctuations before stabilization compared to the other mode.During the start-up phase,as the steady-state flow rate increases,inlet and outlet pressures and head also rise,while torque and shaft power decrease,with rotational speed remaining largely unchanged.Conversely,during the shutdown phase,no significant changes were observed in torque,shaft power,or rotational speed.Six machine learning models,including Gaussian Process Regression(GPR),Decision Tree Regression(DTR),and Deep Learning Networks(DLN),demonstrated high accuracy in predicting the hydraulic performance of the centrifugal pump during the start-up and shutdown phases in both power-frequency and frequency-conversion conditions.The findings provide a theoretical foundation for improved prediction of pump hydraulic performance.For instance,when predicting head and flow rate during power-frequency start-up,GPR achieved absolute and relative errors of 0.54 m(7.84%)and 0.21 m3/h(13.57%),respectively,while the Feedforward Neural Network(FNN)reported errors of 0.98 m(8.24%)and 0.10 m3/h(16.71%).By contrast,the Support Vector Machine Regression(SVMR)and Generalized Additive Model(GAM)generally yielded less satisfactory prediction accuracy compared to the other methods.展开更多
The ductile-to-brittle transition temperature(DBTT)of high strength steels can be optimized by tailoring microstructure and crystallographic orientation characteristics,where the start cooling temperature plays a key ...The ductile-to-brittle transition temperature(DBTT)of high strength steels can be optimized by tailoring microstructure and crystallographic orientation characteristics,where the start cooling temperature plays a key role.In this work,X70 steels with different start cooling temperatures were prepared through thermo-mechanical control process.The quasi-polygonal ferrite(QF),granular bainite(GB),bainitic ferrite(BF)and martensite-austenite constituents were formed at the start cooling temperatures of 780℃(C1),740℃(C2)and 700℃(C3).As start cooling temperature decreased,the amount of GB decreased,the microstructure of QF and BF increased.Microstructure characteristics of the three samples,such as high-angle grain boundaries(HAGBs),MA constituents and crystallographic orientation,also varied with the start cooling temperatures.C2 sample had the lowest DBTT value(−86℃)for its highest fraction of HAGBs,highest content of<110>oriented grains and lowest content of<001>oriented grains parallel to TD.The high density of{332}<113>and low density of rotated cube{001}<110>textures also contributed to the best impact toughness of C2 sample.In addition,a modified model was used in this paper to quantitatively predict the approximate DBTT value of steels.展开更多
With focus now placed on the learner, more attention is given to his learning style, multiple intelligence and developing learning strategies to enable him to make sense of and use of the target language appropriately...With focus now placed on the learner, more attention is given to his learning style, multiple intelligence and developing learning strategies to enable him to make sense of and use of the target language appropriately in varied contexts and with different uses of the language. To attain this, the teacher is tasked with designing, monitoring and processing language learning activities for students to carry out and in the process learn by doing and reflecting on the learning process they went through as they interacted socially with each other. This paper describes a task named"The Fishbowl Technique"and found to be effective in large ESL classes in the secondary level in the Philippines.展开更多
Purpose: This research aims to identify product search tasks in online shopplng ana analyze the characteristics of consumer multi-tasking search sessions. Design/methodology/approach: The experimental dataset contai...Purpose: This research aims to identify product search tasks in online shopplng ana analyze the characteristics of consumer multi-tasking search sessions. Design/methodology/approach: The experimental dataset contains 8,949 queries of 582 users from 3,483 search sessions. A sequential comparison of the Jaccard similarity coefficient between two adjacent search queries and hierarchical clustering of queries is used to identify search tasks. Findings: (1) Users issued a similar number of queries (1.43 to 1.47) with similar lengths (7.3-7.6 characters) per task in mono-tasking and multi-tasking sessions, and (2) Users spent more time on average in sessions with more tasks, but spent less time for each task when the number of tasks increased in a session. Research limitations: The task identification method that relies only on query terms does not completely reflect the complex nature of consumer shopping behavior.Practical implications: These results provide an exploratory understanding of the relationships among multiple shopping tasks, and can be useful for product recommendation and shopping task prediction. Originality/value: The originality of this research is its use of query clustering with online shopping task identification and analysis, and the analysis of product search session characteristics.展开更多
The Bypass Dual Throat Nozzle(BDTN)is a novel fluidic Thrust Vectoring(TV)nozzle,it switches to TV state by opening the valve in the bypass.To greatly manipulate the BDTN,the dynamic characteristics in the TV starting...The Bypass Dual Throat Nozzle(BDTN)is a novel fluidic Thrust Vectoring(TV)nozzle,it switches to TV state by opening the valve in the bypass.To greatly manipulate the BDTN,the dynamic characteristics in the TV starting process should be analyzed.This paper conducts numerical simulations to grasp the variation processes of performances and the flow field evolution of BDTN and Dual Throat Nozzle(DTN).The dynamic responses of TV starting in typical DTN models are investigated at first.Then,the TV starting processes of BDTN in different Nozzle Pressure Ratio(NPR)conditions are simulated,and the valve opening durations(T)are also considered.Before the expected TV direction is achieved in the DTN,the jet is deflected to the opposite direction at the beginning of the dynamic process,which is called the reverse TV phenomenon.However,this phenomenon disappears in the BDTN.The larger injection width of DTN intensifies unsteady oscillations,and the reverse TV phenomenon is strengthened.In the BDTN,T determines the delay degree of performance variations compared to the static results,which is called hysteresis effect.At NPR=10,the hysteresis affects the final stable performance of BDTN.This study analyses the dynamic characteristics in DTN and BDTN,laying a foundation for further design of nozzles and control strategies.展开更多
文摘Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data.
基金The National Natural Science Foundation of China(62136008,62293541)The Beijing Natural Science Foundation(4232056)The Beijing Nova Program(20240484514).
文摘Cooperative multi-agent reinforcement learning(MARL)is a key technology for enabling cooperation in complex multi-agent systems.It has achieved remarkable progress in areas such as gaming,autonomous driving,and multi-robot control.Empowering cooperative MARL with multi-task decision-making capabilities is expected to further broaden its application scope.In multi-task scenarios,cooperative MARL algorithms need to address 3 types of multi-task problems:reward-related multi-task,arising from different reward functions;multi-domain multi-task,caused by differences in state and action spaces,state transition functions;and scalability-related multi-task,resulting from the dynamic variation in the number of agents.Most existing studies focus on scalability-related multitask problems.However,with the increasing integration between large language models(LLMs)and multi-agent systems,a growing number of LLM-based multi-agent systems have emerged,enabling more complex multi-task cooperation.This paper provides a comprehensive review of the latest advances in this field.By combining multi-task reinforcement learning with cooperative MARL,we categorize and analyze the 3 major types of multi-task problems under multi-agent settings,offering more fine-grained classifications and summarizing key insights for each.In addition,we summarize commonly used benchmarks and discuss future directions of research in this area,which hold promise for further enhancing the multi-task cooperation capabilities of multi-agent systems and expanding their practical applications in the real world.
基金funded by the Excellent Talent Training Funding Project in Dongcheng District,Beijing,with project number 2024-dchrcpyzz-9.
文摘Predicting the health status of stroke patients at different stages of the disease is a critical clinical task.The onset and development of stroke are affected by an array of factors,encompassing genetic predisposition,environmental exposure,unhealthy lifestyle habits,and existing medical conditions.Although existing machine learning-based methods for predicting stroke patients’health status have made significant progress,limitations remain in terms of prediction accuracy,model explainability,and system optimization.This paper proposes a multi-task learning approach based on Explainable Artificial Intelligence(XAI)for predicting the health status of stroke patients.First,we design a comprehensive multi-task learning framework that utilizes the task correlation of predicting various health status indicators in patients,enabling the parallel prediction of multiple health indicators.Second,we develop a multi-task Area Under Curve(AUC)optimization algorithm based on adaptive low-rank representation,which removes irrelevant information from the model structure to enhance the performance of multi-task AUC optimization.Additionally,the model’s explainability is analyzed through the stability analysis of SHAP values.Experimental results demonstrate that our approach outperforms comparison algorithms in key prognostic metrics F1 score and Efficiency.
基金jointly supported by the National Natural Science Foundation of China(Grant Nos.42075138 and 42375147)the Program on Key Basic Research Project of Jiangsu(Grant No.BE2023829)。
文摘Tropical cyclones(TCs)are one of the most serious types of natural disasters,and accurate TC activity predictions are key to disaster prevention and mitigation.Recently,TC track predictions have made significant progress,but the ability to predict their intensity is obviously lagging behind.At present,research on TC intensity prediction takes atmospheric reanalysis data as the research object and mines the relationship between TC-related environmental factors and intensity through deep learning.However,reanalysis data are non-real-time in nature,which does not meet the requirements for operational forecasting applications.Therefore,a TC intensity prediction model named TC-Rolling is proposed,which can simultaneously extract the degree of symmetry for strong TC convective cloud and convection intensity,and fuse the deviation-angle variance with satellite images to construct the correlation between TC convection structure and intensity.For TCs'complex dynamic processes,a convolutional neural network(CNN)is used to learn their temporal and spatial features.For real-time intensity estimation,multi-task learning acts as an implicit time-series enhancement.The model is designed with a rolling strategy that aims to moderate the long-term dependent decay problem and improve accuracy for short-term intensity predictions.Since multiple tasks are correlated,the loss function of 12 h and 24 h are corrected.After testing on a sample of TCs in the Northwest Pacific,with a 4.48 kt root-mean-square error(RMSE)of 6 h intensity prediction,5.78 kt for 12 h,and 13.94 kt for 24 h,TC records from official agencies are used to assess the validity of TC-Rolling.
基金supported by the Key Research and Development Program of Heilongjiang Province(No.2022ZX01A35).
文摘As the group-buying model shows significant progress in attracting new users,enhancing user engagement,and increasing platform profitability,providing personalized recommendations for group-buying users has emerged as a new challenge in the field of recommendation systems.This paper introduces a group-buying recommendation model based on multi-head attention mechanisms and multi-task learning,termed the Multi-head Attention Mechanisms and Multi-task Learning Group-Buying Recommendation(MAMGBR)model,specifically designed to optimize group-buying recommendations on e-commerce platforms.The core dataset of this study comes from the Chinese maternal and infant e-commerce platform“Beibei,”encompassing approximately 430,000 successful groupbuying actions and over 120,000 users.Themodel focuses on twomain tasks:recommending items for group organizers(Task Ⅰ)and recommending participants for a given group-buying event(Task Ⅱ).In model evaluation,MAMGBR achieves an MRR@10 of 0.7696 for Task I,marking a 20.23%improvement over baseline models.Furthermore,in Task II,where complex interaction patterns prevail,MAMGBR utilizes auxiliary loss functions to effectively model the multifaceted roles of users,items,and participants,leading to a 24.08%increase in MRR@100 under a 1:99 sample ratio.Experimental results show that compared to benchmark models,such as NGCF and EATNN,MAMGBR’s integration ofmulti-head attentionmechanisms,expert networks,and gating mechanisms enables more accurate modeling of user preferences and social associations within group-buying scenarios,significantly enhancing recommendation accuracy and platform group-buying success rates.
基金supported by the National Natural Science Foundation of China(Grant Nos.42030708,42375138,42030608,42105128,42075079)the Opening Foundation of Key Laboratory of Atmospheric Sounding,China Meteorological Administration(CMA),and the CMA Research Center on Meteorological Observation Engineering Technology(Grant No.U2021Z03),and the Opening Foundation of the Key Laboratory of Atmospheric Chemistry,CMA(Grant No.2022B02)。
文摘Aerosol optical depth(AOD)and fine particulate matter with a diameter of less than or equal to 2.5μm(PM_(2.5))play crucial roles in air quality,human health,and climate change.However,the complex correlation of AOD–PM_(2.5)and the limitations of existing algorithms pose a significant challenge in realizing the accurate joint retrieval of these two parameters at the same location.On this point,a multi-task learning(MTL)model,which enables the joint retrieval of PM_(2.5)concentration and AOD,is proposed and applied on the top-of-the-atmosphere reflectance data gathered by the Fengyun-4A Advanced Geosynchronous Radiation Imager(FY-4A AGRI),and compared to that of two single-task learning models—namely,Random Forest(RF)and Deep Neural Network(DNN).Specifically,MTL achieves a coefficient of determination(R^(2))of 0.88 and a root-mean-square error(RMSE)of 0.10 in AOD retrieval.In comparison to RF,the R^(2)increases by 0.04,the RMSE decreases by 0.02,and the percentage of retrieval results falling within the expected error range(Within-EE)rises by 5.55%.The R^(2)and RMSE of PM_(2.5)retrieval by MTL are 0.84 and 13.76μg m~(-3)respectively.Compared with RF,the R^(2)increases by 0.06,the RMSE decreases by 4.55μg m~(-3),and the Within-EE increases by 7.28%.Additionally,compared to DNN,MTL shows an increase of 0.01 in R^(2)and a decrease of 0.02 in RMSE in AOD retrieval,with a corresponding increase of 2.89%in Within-EE.For PM_(2.5)retrieval,MTL exhibits an increase of 0.05 in R^(2),a decrease of 1.76μg m~(-3)in RMSE,and an increase of 6.83%in Within-EE.The evaluation suggests that MTL is able to provide simultaneously improved AOD and PM_(2.5)retrievals,demonstrating a significant advantage in efficiently capturing the spatial distribution of PM_(2.5)concentration and AOD.
基金the National Key Research and Development Plan of China[Grant No.2023YFB3002400]the Shanghai 2021 Natural Science Foundation[Grant Nos.21ZR1420400 and 21ZR1419800]+1 种基金the Shanghai 2023 Natural Science Foundation[Grant No.23ZR1463000]the Shandong Provincial Meteorological Bureau Scientific Research Project[Grant No.2023SDBD05].
文摘Accurate short-term forecast of offshore wind fields is still challenging for numerical weather prediction models.Based on three years of 48-hour forecast data from the European Centre for Medium-Range Weather Forecasts Integrated Forecasting System global model(ECMWF-IFS)over 14 offshore weather stations along the coast of Shandong Province,this study introduces a multi-task learning(MTL)model(TabNet-MTL),which significantly improves the forecast bias of near-surface wind direction and speed simultaneously.TabNet-MTL adopts the feature engineering method,utilizes mean square error as the loss function,and employs the 5-fold cross validation method to ensure the generalization ability of the trained model.It demonstrates superior skills in wind field correction across different forecast lead times over all stations compared to its single-task version(TabNet-STL)and three other popular single-task learning models(Random Forest,LightGBM,and XGBoost).Results show that it significantly reduces root mean square error of the ECMWF-IFS wind speed forecast from 2.20 to 1.25 m s−1,and increases the forecast accuracy of wind direction from 50%to 65%.As an explainable deep learning model,the weather stations and long-term temporal statistics of near-surface wind speed are identified as the most influential variables for TabNet-MTL in constructing its feature engineering.
基金supported by the research on key technologies for monitoring and identifying drug abuse of anesthetic drugs and psychotropic drugs,and intervention for addiction(No.2023YFC3304200)the program of a study on the diagnosis of addiction to synthetic cannabinoids and methods of assessing the risk of abuse(No.2022YFC3300905)+1 种基金the program of Ab initio design and generation of AI models for small molecule ligands based on target structures(No.2022PE0AC03)ZHIJIANG LAB.
文摘The accurate prediction of drug absorption,distribution,metabolism,excretion,and toxicity(ADMET)properties represents a crucial step in early drug development for reducing failure risk.Current deep learning approaches face challenges with data sparsity and information loss due to single-molecule representation limitations and isolated predictive tasks.This research proposes molecular properties prediction with parallel-view and collaborative learning(MolP-PC),a multi-view fusion and multi-task deep learning framework that integrates 1D molecular fingerprints(MFs),2D molecular graphs,and 3D geometric representations,incorporating an attention-gated fusion mechanism and multi-task adaptive learning strategy for precise ADMET property predictions.Experimental results demonstrate that MolP-PC achieves optimal performance in 27 of 54 tasks,with its multi-task learning(MTL)mechanism significantly enhancing predictive performance on small-scale datasets and surpassing single-task models in 41 of 54 tasks.Additional ablation studies and interpretability analyses confirm the significance of multi-view fusion in capturing multi-dimensional molecular information and enhancing model generalization.A case study examining the anticancer compound Oroxylin A demonstrates MolP-PC’s effective generalization in predicting key pharmacokinetic parameters such as half-life(T0.5)and clearance(CL),indicating its practical utility in drug modeling.However,the model exhibits a tendency to underestimate volume of distribution(VD),indicating potential for improvement in analyzing compounds with high tissue distribution.This study presents an efficient and interpretable approach for ADMET property prediction,establishing a novel framework for molecular optimization and risk assessment in drug development.
基金funded by Zhejiang Province Spearhead and Leading Goose Research and Development Key Program,grant number 2023C01239.
文摘In the realm of all-electric aircraft research,the integration of cathode-open proton exchange membrane fuel cells(PEMFC)with lithiumbatteries as a hybrid power source for small to medium-sized unmanned aerial vehicles(UAVs)has garnered significant attention.The PEMFC,serving as the primary energy supply,markedly extends the UAV’s operational endurance.However,due to payload limitations and spatial constraints in the airframe layout of UAVs,the stack requires customized adaptation.Moreover,the implementation of auxiliary systems to facilitate cold starts of the PEMFC under low-temperature conditions is not feasible.Relying solely on thermal insulation measures also proves inadequate to address the challenges posed by complex low-temperature startup scenarios.To overcomethis,our study leverages the UAV’s lithium battery to heat the cathode inlet airflow,aiding the cathode-open PEMFC cold start process.To validate the feasibility of the proposed air-assisted heating strategy during the conceptual design phase,this study develops a transient,non-isothermal 3Dcathode-open PEMF Cunitmodel incorporating cathode air-assisted heating and gas-ice phase change.The model’s accuracy was verified against experimental cold-start data from a stack composed of identical single cells.This computational framework enables quantitative analysis of temperature fields and ice fraction distributions across domains under varying air-assisted heating powers during cold starts.Building upon this model,the study further investigates the improvement in cold start performance by heating the cathode intake air with varying power levels.The results demonstrate that the fuel cell achieves self-startup at temperatures as low as−13℃ under a constant current density of 100mA/cm^(2) without air-assisted heating.At an ambient temperature of−20℃,a successful start-up can be achieved with a heating power of 0.45 W/cm^(2).The temperature variation overtime during the cold start process can be represented by a sum of two exponential functions.The air-assisted heating scheme proposed in this study has significantly improved the cold start performance of fuel cells in low-temperature environments.Additionally,it provides critical reference data and validation support for component selection and feasibility assessment of hybrid power systems.
基金supported by the National Natural Science Foundation of China(No.52474435)China Baowu Low Carbon Metallurgy Innovation Foundation(BWLCF202307).
文摘Accurate forecasting of blast furnace gas(BFG)production is an essential prerequisite for reasonable energy scheduling and management to reduce carbon emissions.Coupling forecasting between BFG generation and consumption dynamics was taken as the research object.A multi-task learning(MTL)method for BFG forecasting was proposed,which integrated a coupling correlation coefficient(CCC)and an inverted transformer structure.The CCC method could enhance key information extraction by establishing relationships between multiple prediction targets and relevant factors,while MTL effectively captured the inherent correlations between BFG generation and consumption.Finally,a real-world case study was conducted to compare the proposed model with four benchmark models.Results indicated significant reductions in average mean absolute percentage error by 33.37%,achieving 1.92%,with a computational time of 76 s.The sensitivity analysis of hyperparameters such as learning rate,batch size,and units of the long short-term memory layer highlights the importance of hyperparameter tuning.
基金financially supported by Science and Technology Project of Quzhou(Grant Nos.2023K256,2023NC08)Research Grants Program of Department of Education of Zhejiang Province(No.Y202455709)+1 种基金Zhejiang Provincial Natural Science Foundation of China(Grant No.LZY21E050001)University-Enterprise Cooperation Program for Visiting Engineers in Higher Education Institutions in Zhejiang Province(No.FG2020215).
文摘This paper investigates the start-up and shutdown phases of a five-bladed closed-impeller centrifugal pump through experimental analysis,capturing the temporal evolution of its hydraulic performances.The study also predicts the transient characteristics of the pump under non-rated operating conditions to assess the accuracy of various machine learning methods in forecasting its instantaneous performance.Results indicate that the pump’s transient behavior in power-frequency mode markedly differs from that in frequency-conversion mode.Specifically,the power-frequency mode achieves steady-state values faster and exhibits smaller fluctuations before stabilization compared to the other mode.During the start-up phase,as the steady-state flow rate increases,inlet and outlet pressures and head also rise,while torque and shaft power decrease,with rotational speed remaining largely unchanged.Conversely,during the shutdown phase,no significant changes were observed in torque,shaft power,or rotational speed.Six machine learning models,including Gaussian Process Regression(GPR),Decision Tree Regression(DTR),and Deep Learning Networks(DLN),demonstrated high accuracy in predicting the hydraulic performance of the centrifugal pump during the start-up and shutdown phases in both power-frequency and frequency-conversion conditions.The findings provide a theoretical foundation for improved prediction of pump hydraulic performance.For instance,when predicting head and flow rate during power-frequency start-up,GPR achieved absolute and relative errors of 0.54 m(7.84%)and 0.21 m3/h(13.57%),respectively,while the Feedforward Neural Network(FNN)reported errors of 0.98 m(8.24%)and 0.10 m3/h(16.71%).By contrast,the Support Vector Machine Regression(SVMR)and Generalized Additive Model(GAM)generally yielded less satisfactory prediction accuracy compared to the other methods.
基金Project(2018XK2301) supported by the Change-Zhu-Tan National Independent Innavation Demonstration Zone Special Program,China。
文摘The ductile-to-brittle transition temperature(DBTT)of high strength steels can be optimized by tailoring microstructure and crystallographic orientation characteristics,where the start cooling temperature plays a key role.In this work,X70 steels with different start cooling temperatures were prepared through thermo-mechanical control process.The quasi-polygonal ferrite(QF),granular bainite(GB),bainitic ferrite(BF)and martensite-austenite constituents were formed at the start cooling temperatures of 780℃(C1),740℃(C2)and 700℃(C3).As start cooling temperature decreased,the amount of GB decreased,the microstructure of QF and BF increased.Microstructure characteristics of the three samples,such as high-angle grain boundaries(HAGBs),MA constituents and crystallographic orientation,also varied with the start cooling temperatures.C2 sample had the lowest DBTT value(−86℃)for its highest fraction of HAGBs,highest content of<110>oriented grains and lowest content of<001>oriented grains parallel to TD.The high density of{332}<113>and low density of rotated cube{001}<110>textures also contributed to the best impact toughness of C2 sample.In addition,a modified model was used in this paper to quantitatively predict the approximate DBTT value of steels.
文摘With focus now placed on the learner, more attention is given to his learning style, multiple intelligence and developing learning strategies to enable him to make sense of and use of the target language appropriately in varied contexts and with different uses of the language. To attain this, the teacher is tasked with designing, monitoring and processing language learning activities for students to carry out and in the process learn by doing and reflecting on the learning process they went through as they interacted socially with each other. This paper describes a task named"The Fishbowl Technique"and found to be effective in large ESL classes in the secondary level in the Philippines.
基金supported by the National Science Foundation of China(NSFC)Grant(No.71373015)
文摘Purpose: This research aims to identify product search tasks in online shopplng ana analyze the characteristics of consumer multi-tasking search sessions. Design/methodology/approach: The experimental dataset contains 8,949 queries of 582 users from 3,483 search sessions. A sequential comparison of the Jaccard similarity coefficient between two adjacent search queries and hierarchical clustering of queries is used to identify search tasks. Findings: (1) Users issued a similar number of queries (1.43 to 1.47) with similar lengths (7.3-7.6 characters) per task in mono-tasking and multi-tasking sessions, and (2) Users spent more time on average in sessions with more tasks, but spent less time for each task when the number of tasks increased in a session. Research limitations: The task identification method that relies only on query terms does not completely reflect the complex nature of consumer shopping behavior.Practical implications: These results provide an exploratory understanding of the relationships among multiple shopping tasks, and can be useful for product recommendation and shopping task prediction. Originality/value: The originality of this research is its use of query clustering with online shopping task identification and analysis, and the analysis of product search session characteristics.
基金the continued support of Key Laboratory of Inlet and Exhaust system Technology (Nanjing University of Aeronautics and Astronautics), ChinaMinistry of Education, National Science and Technology Major Project of China (Nos. 2017-V-0004-0054, 2019-II-0007-0027, Y2022II-0005-0008)+6 种基金Defense Industrial Technology Development Program of China (No. JCKY2019605D001)Advanced Jet Propulsion Creativity Center of AEAC of China (No. HKCX2020-02-011)China Postdoctoral Science Foundation (No. 2022M721598)Jiangsu Funding Program for Excellent Postdoctoral Talent of China (No. 2022ZB214)the Youth Fund Project of Natural Science Foundation of Jiangsu Province of China (No. BK20230891)the National Natural Science Foundation of China (No. 12332018)Science Center for Gas Turbine Project, China (P2022-B-I-006-001) and some other related foundations
文摘The Bypass Dual Throat Nozzle(BDTN)is a novel fluidic Thrust Vectoring(TV)nozzle,it switches to TV state by opening the valve in the bypass.To greatly manipulate the BDTN,the dynamic characteristics in the TV starting process should be analyzed.This paper conducts numerical simulations to grasp the variation processes of performances and the flow field evolution of BDTN and Dual Throat Nozzle(DTN).The dynamic responses of TV starting in typical DTN models are investigated at first.Then,the TV starting processes of BDTN in different Nozzle Pressure Ratio(NPR)conditions are simulated,and the valve opening durations(T)are also considered.Before the expected TV direction is achieved in the DTN,the jet is deflected to the opposite direction at the beginning of the dynamic process,which is called the reverse TV phenomenon.However,this phenomenon disappears in the BDTN.The larger injection width of DTN intensifies unsteady oscillations,and the reverse TV phenomenon is strengthened.In the BDTN,T determines the delay degree of performance variations compared to the static results,which is called hysteresis effect.At NPR=10,the hysteresis affects the final stable performance of BDTN.This study analyses the dynamic characteristics in DTN and BDTN,laying a foundation for further design of nozzles and control strategies.