Space Technology Experiment and Climate Exploration (STECE) is a small satellite mis- sion of China for space technology experiment and climate exploration. A new test star tracker and one ASTRO 10 star tracker have...Space Technology Experiment and Climate Exploration (STECE) is a small satellite mis- sion of China for space technology experiment and climate exploration. A new test star tracker and one ASTRO 10 star tracker have been loaded on the STECE satellite to test the new star tracker's measurement performance. However, there is no autonomous precession nutation correction func- tion for the test star tracker, which causes an apparent periodic deflection in the inter-boresight angle between the two star trackers with respect to each other of up to - 500 arcsec, so the preces- sion and nutation effect needs to be considered while assessing the test star tracker. This paper researches on the precession-nutation correction for the test star traeker's attitude measurement and presents a precession-nutation correction method based on attitude quaternion data. The peri- odic deflection of the inter-boresight angle between the two star trackers has been greatly eliminated after the precession and nutation of the test star tracker's attitude data have been corrected by the proposed method and the validity of the proposed algorithm has been demonstrated. The in-flight accuracy of the test star tracker has been assessed like attitude noise and low-frequency errors after the precession-nutation correction.展开更多
The low-frequency periodic error of star tracker is one of the most critical problems for high-accuracy satellite attitude determination.In this paper an approach is proposed to identify and compensate the low-frequen...The low-frequency periodic error of star tracker is one of the most critical problems for high-accuracy satellite attitude determination.In this paper an approach is proposed to identify and compensate the low-frequency periodic error for star tracker in attitude measurement.The analytical expression between the estimated gyro drift and the low-frequency periodic error of star tracker is derived firstly.And then the low-frequency periodic error,which can be expressed by Fourier series,is identified by the frequency spectrum of the estimated gyro drift according to the solution of the first step.Furthermore,the compensated model of the low-frequency periodic error is established based on the identified parameters to improve the attitude determination accuracy.Finally,promising simulated experimental results demonstrate the validity and effectiveness of the proposed method.The periodic error for attitude determination is eliminated basically and the estimation precision is improved greatly.展开更多
This manuscript briefly summarizes the development trends and recent research focus of the star tracker.And the relevant technologies about dynamic performance of the star tracker are analyzed and discussed.These can ...This manuscript briefly summarizes the development trends and recent research focus of the star tracker.And the relevant technologies about dynamic performance of the star tracker are analyzed and discussed.These can provide reference for the star tracker and attitude measurement device researchers.展开更多
Global Navigation Satellite System(GNSS)can provide an approach for spacecraft autonomous navigation in earth-moon space to make up for the insufficiency of earth-based tracking,telemetry,and control systems.However,i...Global Navigation Satellite System(GNSS)can provide an approach for spacecraft autonomous navigation in earth-moon space to make up for the insufficiency of earth-based tracking,telemetry,and control systems.However,its weak power and poor observation geometry near the moon causes new problems.After the GNSS signal characteristics and satellite visibility were evaluated in Phasing Orbit and Lunar Transfer Orbit,we proposed an adaptive Kalman filter based on the Carrier-to-Noise ratio(C/N0)and innovation vector to weaken the influence of GNSS accuracy attenuation as much as possible.The experimental results show that the spacecraft position and velocity accuracy are better than 10 m and 0.1 m/s near the Earth,and better than 50 m and approximately 0.2 m/s near the moon use GNSS with the proposed adaptive algorithms.Additionally,because of the deterioration of navigation performance based on the orbit filter during orbital maneuvering,we used accelerometer data to compensate for the dynamic model to maintain navigation performance.The results of the experiment provide a reference for subsequent studies.展开更多
In order to solve the problem that the star point positioning accuracy of the star sensor in near space is decreased due to atmospheric background stray light and rapid maneuvering of platform, this paper proposes a s...In order to solve the problem that the star point positioning accuracy of the star sensor in near space is decreased due to atmospheric background stray light and rapid maneuvering of platform, this paper proposes a star point positioning algorithm based on the capsule network whose input and output are both vectors. First, a PCTL (Probability-Coordinate Transformation Layer) is designed to represent the mapping relationship between the probability output of the capsule network and the star point sub-pixel coordinates. Then, Coordconv Layer is introduced to implement explicit encoding of space information and the probability is used as the centroid weight to achieve the conversion between probability and star point sub-pixel coordinates, which improves the network’s ability to perceive star point positions. Finally, based on the dynamic imaging principle of star sensors and the characteristics of near-space environment, a star map dataset for algorithm training and testing is constructed. The simulation results show that the proposed algorithm reduces the MAE (Mean Absolute Error) and RMSE (Root Mean Square Error) of the star point positioning by 36.1% and 41.7% respectively compared with the traditional algorithm. The research results can provide important theory and technical support for the scheme design, index demonstration, test and evaluation of large dynamic star sensors in near space.展开更多
Subpixel centroid estimation is the most important star image location method of star tracker. This paper presents a theoretical analysis of the systematic error of subpixel centroid estimation algorithm utilizing fre...Subpixel centroid estimation is the most important star image location method of star tracker. This paper presents a theoretical analysis of the systematic error of subpixel centroid estimation algorithm utilizing frequency domain analysis under the con-sideration of sampling frequency limitation and sampling window limitation. Explicit expression of systematic error of cen-troid estimation is obtained, and the dependence of systematic error on Gaussian width of star image, actual star centroid loca-tion and the number of sampling pixels is derived. A systematic error compensation algorithm for star centroid estimation is proposed based on the result of theoretical analysis. Simulation results show that after compensation, the residual systematic errors of 3-pixel-and 5-pixel-windows’ centroid estimation are less than 2×10-3 pixels and 2×10-4 pixels respectively.展开更多
The star tracker is an optical attitude sensor with extremely high accuracy, the structure of which is mainly composed of the baffle, the lens, the image detector, and the processing unit, and it has been widely used ...The star tracker is an optical attitude sensor with extremely high accuracy, the structure of which is mainly composed of the baffle, the lens, the image detector, and the processing unit, and it has been widely used in satel- lites To realize attitude determination from the weak star captured by the image detector of the star tracker,展开更多
The star identification algorithm usually identifies stars by angular distance matching.However,under high dynamic conditions,the rolling shutter effect distorts the angular distances between the measured and true sta...The star identification algorithm usually identifies stars by angular distance matching.However,under high dynamic conditions,the rolling shutter effect distorts the angular distances between the measured and true star positions,leading to plethoric false matches and requiring complex and time-consuming verification for star identification.Low identification rate hinders the application of low-noise and cost-effective rolling shutter image sensors.In this work,we first study a rolling shutter distortion model of angular distances between stars,and then propose a novel three-stage star identification algorithm to identify distorted star images captured by the rolling shutter star sensor.The first stage uses a modified grid algorithm with adaptive error tolerance and an expanded pattern database to efficiently eliminate spurious matches.The second stage performs angular velocity estimation based on Hough transform to verify the matches that follow the same distortion pattern.The third stage applies a rolling shutter error correction method for further verification.Both the simulation and night sky image test demonstrate the effectiveness and efficiency of our algorithm under high dynamic conditions.The accuracy of angular velocity estimation method by Hough transform is evaluated and the root mean square error is below 0.5(°)/s.Our algorithm achieves a 95.7% identification rate at an angular velocity of 10(°)/s,which is much higher than traditional algorithms.展开更多
This paper addresses the challenges of insufficient navigation accuracy,low path-planning efficiency,and poor environmental adaptability faced by deep space rovers in complex extraterrestrial environments(e.g.,the Moo...This paper addresses the challenges of insufficient navigation accuracy,low path-planning efficiency,and poor environmental adaptability faced by deep space rovers in complex extraterrestrial environments(e.g.,the Moon and Mars).A novel autonomous navigation scheme is proposed that integrates laser Doppler velocimetry(LDV)with star trackers(ST)and inertial navigation system(INS).The scheme suppresses slip errors from wheel odometry through non-contact,high-precision laser speed measurement(accuracy better than 0.1%).By deeply fusing multi-source data via a Kalman filter algorithm,high-precision positioning is realized under extreme extraterrestrial conditions such as weak illumination and dust coverage.This solution features high accuracy,non-contact measurement,and anti-interference capabilities,significantly improving the navigation accuracy and autonomy of deep space rovers in complex environments.展开更多
We report in this paper the alignment calibration of the STAR pixel detector(PXL) prototype for the RHIC2013 run and performance study of the full PXL detector installed and commissioned in the RHIC 2014 run. PXL dete...We report in this paper the alignment calibration of the STAR pixel detector(PXL) prototype for the RHIC2013 run and performance study of the full PXL detector installed and commissioned in the RHIC 2014 run. PXL detector is the innermost two silicon layers of the STAR heavy flavor tracker aiming at high-precision reconstruction of secondary decay vertex of heavy flavor particles. To achieve the physics goals, the calibration work was done on the detector with high precision. A histogram-based method was successfully applied for the alignment calibration, and the detector efficiency after alignment was studied using both p t p collision data and cosmic ray data.展开更多
Dynamic tar simulator has been widely used in calibration and validation for star trackers.To achieve both high accuracy and large view field,a dynamic star simulatorbased on optical splicing technology with 2 1920 ...Dynamic tar simulator has been widely used in calibration and validation for star trackers.To achieve both high accuracy and large view field,a dynamic star simulatorbased on optical splicing technology with 2 1920 × 1080- LCDs and a half-transmission and half- reflection prisms was proposed in this paper.The physical principal and error model due to the splicing structure has been discussed and analyzed in detail.Based on the Tsinghua Micro star tracker,the error effect and system accuracy has been carefully tested and calibrated.The result showed that this simulator can get the accuracy of 10.4 "(3sigma) within a field of view of,which can meet the simulating requirement of modern star tracker,whose accuracy can reach 3"(3sigma) 。展开更多
基金supported by the National Natural Science Foundation of China (Nos. 61002033,61370013)
文摘Space Technology Experiment and Climate Exploration (STECE) is a small satellite mis- sion of China for space technology experiment and climate exploration. A new test star tracker and one ASTRO 10 star tracker have been loaded on the STECE satellite to test the new star tracker's measurement performance. However, there is no autonomous precession nutation correction func- tion for the test star tracker, which causes an apparent periodic deflection in the inter-boresight angle between the two star trackers with respect to each other of up to - 500 arcsec, so the preces- sion and nutation effect needs to be considered while assessing the test star tracker. This paper researches on the precession-nutation correction for the test star traeker's attitude measurement and presents a precession-nutation correction method based on attitude quaternion data. The peri- odic deflection of the inter-boresight angle between the two star trackers has been greatly eliminated after the precession and nutation of the test star tracker's attitude data have been corrected by the proposed method and the validity of the proposed algorithm has been demonstrated. The in-flight accuracy of the test star tracker has been assessed like attitude noise and low-frequency errors after the precession-nutation correction.
基金National Natural Science Foundation of China(61004081,11126033)School Advanced Research Foundation of National University of Defense Technology (JC11-02-22)
文摘The low-frequency periodic error of star tracker is one of the most critical problems for high-accuracy satellite attitude determination.In this paper an approach is proposed to identify and compensate the low-frequency periodic error for star tracker in attitude measurement.The analytical expression between the estimated gyro drift and the low-frequency periodic error of star tracker is derived firstly.And then the low-frequency periodic error,which can be expressed by Fourier series,is identified by the frequency spectrum of the estimated gyro drift according to the solution of the first step.Furthermore,the compensated model of the low-frequency periodic error is established based on the identified parameters to improve the attitude determination accuracy.Finally,promising simulated experimental results demonstrate the validity and effectiveness of the proposed method.The periodic error for attitude determination is eliminated basically and the estimation precision is improved greatly.
基金financially supported by the National High Technology Research and Development Program of China ( 863 Program ) ( No. 2012AA121503 and No. 2012AA120603 )the China Postdoctoral Science Foundation ( No. 2015M570091 )
文摘This manuscript briefly summarizes the development trends and recent research focus of the star tracker.And the relevant technologies about dynamic performance of the star tracker are analyzed and discussed.These can provide reference for the star tracker and attitude measurement device researchers.
基金funded by the National Key Research and Development Program of China (2020YFB0505804)National Natural Science Foundation of China (Grant Nos.42388102 and 42204015)Natural Science Foundation of Shandong Province (ZR2022QD094).
文摘Global Navigation Satellite System(GNSS)can provide an approach for spacecraft autonomous navigation in earth-moon space to make up for the insufficiency of earth-based tracking,telemetry,and control systems.However,its weak power and poor observation geometry near the moon causes new problems.After the GNSS signal characteristics and satellite visibility were evaluated in Phasing Orbit and Lunar Transfer Orbit,we proposed an adaptive Kalman filter based on the Carrier-to-Noise ratio(C/N0)and innovation vector to weaken the influence of GNSS accuracy attenuation as much as possible.The experimental results show that the spacecraft position and velocity accuracy are better than 10 m and 0.1 m/s near the Earth,and better than 50 m and approximately 0.2 m/s near the moon use GNSS with the proposed adaptive algorithms.Additionally,because of the deterioration of navigation performance based on the orbit filter during orbital maneuvering,we used accelerometer data to compensate for the dynamic model to maintain navigation performance.The results of the experiment provide a reference for subsequent studies.
文摘In order to solve the problem that the star point positioning accuracy of the star sensor in near space is decreased due to atmospheric background stray light and rapid maneuvering of platform, this paper proposes a star point positioning algorithm based on the capsule network whose input and output are both vectors. First, a PCTL (Probability-Coordinate Transformation Layer) is designed to represent the mapping relationship between the probability output of the capsule network and the star point sub-pixel coordinates. Then, Coordconv Layer is introduced to implement explicit encoding of space information and the probability is used as the centroid weight to achieve the conversion between probability and star point sub-pixel coordinates, which improves the network’s ability to perceive star point positions. Finally, based on the dynamic imaging principle of star sensors and the characteristics of near-space environment, a star map dataset for algorithm training and testing is constructed. The simulation results show that the proposed algorithm reduces the MAE (Mean Absolute Error) and RMSE (Root Mean Square Error) of the star point positioning by 36.1% and 41.7% respectively compared with the traditional algorithm. The research results can provide important theory and technical support for the scheme design, index demonstration, test and evaluation of large dynamic star sensors in near space.
文摘Subpixel centroid estimation is the most important star image location method of star tracker. This paper presents a theoretical analysis of the systematic error of subpixel centroid estimation algorithm utilizing frequency domain analysis under the con-sideration of sampling frequency limitation and sampling window limitation. Explicit expression of systematic error of cen-troid estimation is obtained, and the dependence of systematic error on Gaussian width of star image, actual star centroid loca-tion and the number of sampling pixels is derived. A systematic error compensation algorithm for star centroid estimation is proposed based on the result of theoretical analysis. Simulation results show that after compensation, the residual systematic errors of 3-pixel-and 5-pixel-windows’ centroid estimation are less than 2×10-3 pixels and 2×10-4 pixels respectively.
基金supported by the State Key Laboratory of Precision Instrument Measurement,Tsinghua University under the financial support of the National Natural Science Foundation of China(NSFC)(Nos.61377012,51522505,61605099,and 61505094)
文摘The star tracker is an optical attitude sensor with extremely high accuracy, the structure of which is mainly composed of the baffle, the lens, the image detector, and the processing unit, and it has been widely used in satel- lites To realize attitude determination from the weak star captured by the image detector of the star tracker,
基金supported by the National Key Research and Development Program of China(No.2019YFA0706002).
文摘The star identification algorithm usually identifies stars by angular distance matching.However,under high dynamic conditions,the rolling shutter effect distorts the angular distances between the measured and true star positions,leading to plethoric false matches and requiring complex and time-consuming verification for star identification.Low identification rate hinders the application of low-noise and cost-effective rolling shutter image sensors.In this work,we first study a rolling shutter distortion model of angular distances between stars,and then propose a novel three-stage star identification algorithm to identify distorted star images captured by the rolling shutter star sensor.The first stage uses a modified grid algorithm with adaptive error tolerance and an expanded pattern database to efficiently eliminate spurious matches.The second stage performs angular velocity estimation based on Hough transform to verify the matches that follow the same distortion pattern.The third stage applies a rolling shutter error correction method for further verification.Both the simulation and night sky image test demonstrate the effectiveness and efficiency of our algorithm under high dynamic conditions.The accuracy of angular velocity estimation method by Hough transform is evaluated and the root mean square error is below 0.5(°)/s.Our algorithm achieves a 95.7% identification rate at an angular velocity of 10(°)/s,which is much higher than traditional algorithms.
文摘This paper addresses the challenges of insufficient navigation accuracy,low path-planning efficiency,and poor environmental adaptability faced by deep space rovers in complex extraterrestrial environments(e.g.,the Moon and Mars).A novel autonomous navigation scheme is proposed that integrates laser Doppler velocimetry(LDV)with star trackers(ST)and inertial navigation system(INS).The scheme suppresses slip errors from wheel odometry through non-contact,high-precision laser speed measurement(accuracy better than 0.1%).By deeply fusing multi-source data via a Kalman filter algorithm,high-precision positioning is realized under extreme extraterrestrial conditions such as weak illumination and dust coverage.This solution features high accuracy,non-contact measurement,and anti-interference capabilities,significantly improving the navigation accuracy and autonomy of deep space rovers in complex environments.
基金supported in part by the National Natural Science Foundation of China(No.11421505)the Major State Basic Research Development Program in China(No.2014CB845400)
文摘We report in this paper the alignment calibration of the STAR pixel detector(PXL) prototype for the RHIC2013 run and performance study of the full PXL detector installed and commissioned in the RHIC 2014 run. PXL detector is the innermost two silicon layers of the STAR heavy flavor tracker aiming at high-precision reconstruction of secondary decay vertex of heavy flavor particles. To achieve the physics goals, the calibration work was done on the detector with high precision. A histogram-based method was successfully applied for the alignment calibration, and the detector efficiency after alignment was studied using both p t p collision data and cosmic ray data.
文摘Dynamic tar simulator has been widely used in calibration and validation for star trackers.To achieve both high accuracy and large view field,a dynamic star simulatorbased on optical splicing technology with 2 1920 × 1080- LCDs and a half-transmission and half- reflection prisms was proposed in this paper.The physical principal and error model due to the splicing structure has been discussed and analyzed in detail.Based on the Tsinghua Micro star tracker,the error effect and system accuracy has been carefully tested and calibrated.The result showed that this simulator can get the accuracy of 10.4 "(3sigma) within a field of view of,which can meet the simulating requirement of modern star tracker,whose accuracy can reach 3"(3sigma) 。