The scientific satellite SST (Space Solar Telescope) is an important research project strongly supported by the Chinese Academy of Sciences. Every day, SST acquires 50 GB of data (after processing) but only 10GB can b...The scientific satellite SST (Space Solar Telescope) is an important research project strongly supported by the Chinese Academy of Sciences. Every day, SST acquires 50 GB of data (after processing) but only 10GB can be transmitted to the ground because of limited time of satellite passage and limited channel volume. Therefore, the data must be compressed before transmission. Wavelets analysis is a new technique developed over the last 10 years, with great potential of application. We start with a brief introduction to the essential principles of wavelet analysis, and then describe the main idea of embedded zerotree wavelet coding, used for compressing the SST images. The results show that this coding is adequate for the job.展开更多
By employing the previous Voronoi approach and replacing its nearest neighbor approx- imation with Drizzle in iterative signal extraction, we develop a fast iterative Drizzle algorithm, namedfiDrizzle, to reconstruct ...By employing the previous Voronoi approach and replacing its nearest neighbor approx- imation with Drizzle in iterative signal extraction, we develop a fast iterative Drizzle algorithm, namedfiDrizzle, to reconstruct the underlying band-limited image from undersampled dithered frames. Compared with the existing iDrizzle, the new algorithm improves rate of convergence and accelerates the computational speed. Moreover, under the same conditions (e.g. the same number of dithers and iterations), fiDrizzle can make a better quality reconstruction than iDrizzle, due to the newly discov- ered High Sampling caused Decelerating Convergence (HSDC) effect in the iterative signal extraction process.fiDrizzle demonstrates its powerful ability to perform image deconvolution from undersampled dithers.展开更多
基金supported by the National 863 Foundation under grant 863-2.5.1.25.
文摘The scientific satellite SST (Space Solar Telescope) is an important research project strongly supported by the Chinese Academy of Sciences. Every day, SST acquires 50 GB of data (after processing) but only 10GB can be transmitted to the ground because of limited time of satellite passage and limited channel volume. Therefore, the data must be compressed before transmission. Wavelets analysis is a new technique developed over the last 10 years, with great potential of application. We start with a brief introduction to the essential principles of wavelet analysis, and then describe the main idea of embedded zerotree wavelet coding, used for compressing the SST images. The results show that this coding is adequate for the job.
基金supported by the National Basic Research Program of China (973 program, Nos. 2015CB857000 and 2013CB834900)the Foundation for Distinguished Young Scholars of Jiangsu Province (No. BK20140050)+1 种基金the ‘Strategic Priority Research Program the Emergence of Cosmological Structure’ of the CAS (No. XDB09010000)the National Natural Science Foundation of China (Nos. 11333008, 11233005, 11273061 and 11673065)
文摘By employing the previous Voronoi approach and replacing its nearest neighbor approx- imation with Drizzle in iterative signal extraction, we develop a fast iterative Drizzle algorithm, namedfiDrizzle, to reconstruct the underlying band-limited image from undersampled dithered frames. Compared with the existing iDrizzle, the new algorithm improves rate of convergence and accelerates the computational speed. Moreover, under the same conditions (e.g. the same number of dithers and iterations), fiDrizzle can make a better quality reconstruction than iDrizzle, due to the newly discov- ered High Sampling caused Decelerating Convergence (HSDC) effect in the iterative signal extraction process.fiDrizzle demonstrates its powerful ability to perform image deconvolution from undersampled dithers.