With the rapid economic development and continuous expansion of human activities,forest degradation—characterized by reduced forest stock within the forest including declining carbon storage—poses significant threat...With the rapid economic development and continuous expansion of human activities,forest degradation—characterized by reduced forest stock within the forest including declining carbon storage—poses significant threats to ecosystem stability.Understanding the current status of forest degradation and assessing potential carbon stocks in China are of strategic importance for making forest restoration efforts and enhancing carbon sequestration capacity.In this study,we used the national forest inventory data from 2009 to 2018 to develop a set of standard measures for assessing degraded forests across China,based on five key indicators:forest accumulation growth rate(FAGR),forest recruitment rate(FRR),tree species reduction rate(TSRR),forest canopy cover reduction rate(FCCRR),and forest disaster level(FDL).Additionally,we estimated standing carbon stock,potential carbon stock,and theoretical space to grow by developing a stand growth model,which accounts for stand density across different site classes,to evaluate the restoration potential of degraded forests.The results indicate that degraded forest area in China is 36.15 million hectares,accounting for 20.10% of a total forest area.Standing carbon stock and potential carbon stock of degraded forests in China are 23.93 million tons and 61.90 million tons,respectively.Overall,degraded forest varies significantly across different regions.The results highlight the important trade-offs among environmental factors,policy decisions,and forest conditions,providing a robust foundation for developing measures to enhance forest quality.展开更多
In this paper,inspired by the running motion gait of a cheetah,an H-shaped bionic piezoelectric robot(H-BPR)based on the standing wave principle is proposed and designed.The piezoelectric robot realizes linear motion,...In this paper,inspired by the running motion gait of a cheetah,an H-shaped bionic piezoelectric robot(H-BPR)based on the standing wave principle is proposed and designed.The piezoelectric robot realizes linear motion,turning motion,and turning motion with different radi by the voltage differential driving method.A prototype with a weight of 38 g and dimensions of 150×80×31 mm^(3) was fabricated.Firstly,the dynamics and kinematics of the piezoelectric robot were analyzed to obtain the trajectory of a point at the end of the piezoelectric robot leg.The motion principle of the piezo-electric robot was analyzed,and then the piezoelectric robot's modal analysis and harmonic response analysis were carried out using finite element analysis software.Finally,an experimental setup was built to verify the effectiveness and high efficiency of the robot's motion,and the effects of frequency,voltage,load,and height of the driving leg on the robot's motion performance were discussed.The performance test results show that the piezoelectric robot has a maximum veloc-ity of 66.79 mm/s at an excitation voltage of 320 V and a load capacity of 55 g.In addition,the H-BPR with unequal drive legs has better climbing performance,and the obtained conclusions are informative for selecting leg heights for piezoelectric robots.展开更多
The turbidity maximum zone(TMZ)is a distinctive aquatic environment marked by consistently higher turbidity compared to upstream and downstream section.In the TMZ,physicochemical properties such as intense light limit...The turbidity maximum zone(TMZ)is a distinctive aquatic environment marked by consistently higher turbidity compared to upstream and downstream section.In the TMZ,physicochemical properties such as intense light limitation,abundant nutrients,and rapid salinity shifts play a crucial role in shaping phytoplankton dynamics.The Qiantang River estuary-Hangzhou Bay(QRE-HZB)is a macrotidal estuary system known for its exceptionally high suspended solids concentration.To investigate the impact of TMZ on the standing crop and size structure of phytoplankton in the QRE-HZB,we conducted three cruises in dry,wet,and dry-to-wet transition seasons during 2022-2023,by assessing parameters including size fractionated chlorophyll a(chl a),turbidity,Secchi depth,temperature,salinity,nutrients,and mesozooplankton.Results reveal significant variations in the TMZ and associated environmental factors in different periods,which markedly influenced the phytoplankton chl-a concentration,size structure,and cell activity(pheophytin/chl a).The chl-a concentration was high with micro-phytoplankton predominance in wet season,while nano-phytoplankton dominated in dry season.Within the TMZ,lower chl-a concentrations and pico-chl-a contributions,alongside higher pheophytin/chl-a and micro-chl-a contributions,were observed.The Spearman’s rank correlation and generalized additive model analyses indicated strong correlations of chl-a concentrations with turbidity,nutrients,and mesozooplankton.Redundancy analysis further revealed that salinity,nutrients,and turbidity significantly regulated variations in size structure.Phytoplankton mortality within the TMZ was primarily driven by high turbidity and salinity fluctuations,reflecting the vigorous resuspension and mixing of freshwater and seawater in the QRE-HZB.These findings highlight that the standing crop and size structure of phytoplankton were strongly regulated by the TMZ and associated physicochemical factors in the macrotidal QRE-HZB.展开更多
In this study we theoretically demonstrate ultrahigh-resolution two-dimensional atomic localization within a three-levelλ-type atomic medium via superposition of asymmetric and symmetric standing wave fields.Our anal...In this study we theoretically demonstrate ultrahigh-resolution two-dimensional atomic localization within a three-levelλ-type atomic medium via superposition of asymmetric and symmetric standing wave fields.Our analysis provides an understanding of the precise spatial localization of atomic positions at the atomic level,utilizing advanced theoretical approaches and principles of quantum mechanics.The dynamical behavior of a three-level atomic system is thoroughly analyzed using the density matrix formalism within the realm of quantum mechanics.A theoretical approach is constructed to describe the interaction between the system and external fields,specifically a control field and a probe field.The absorption spectrum of the probe field is thoroughly examined to clarify the spatial localization of the atom within the proposed configuration.A theoretical investigation found that symmetric and asymmetric superposition phenomena significantly influence the localized peaks within a two-dimensional spatial domain.Specifically,the emergence of one and two sharp localized peaks was observed within a one-wavelength domain.We observed notable influences of the intensity of the control field,probe field detuning and decay rates on atomic localization.Ultimately,we have achieved an unprecedented level of ultrahigh resolution and precision in localizing an atom within an area smaller thanλ/35×λ/35.These findings hold promise for potential applications in fields such as Bose-Einstein condensation,nanolithography,laser cooling,trapping of neutral atoms and the measurement of center-of-mass wave functions.展开更多
When the free standing riser(FSR)is in service in the ocean,its mechanical properties are affected by various factors,including complex ocean current forces,buoyancy of the buoyancy can,and torque caused by the deflec...When the free standing riser(FSR)is in service in the ocean,its mechanical properties are affected by various factors,including complex ocean current forces,buoyancy of the buoyancy can,and torque caused by the deflection of the upper floating body.These loads have a great influence on the deformation and internal force of the FSR.The static performance of FSR is investigated in this research under various working conditions.The finite element model of FSR is established based on the co-rotational method.The arc length approach is used to solve the model.The load is exerted in increments.The current load on the riser changes with the configuration of the riser.The accuracy of the numerical method is verified by Abaqus software.The calculation time is also compared.Then,the effects of uniform current,actual current and floating body yaw motion on FSR are studied by parameter analysis.Additionally,the influence of the FSR on the ocean current after the failure of part of the buoyancy can chamber is analyzed.The results show that the numerical model based on the co-rotational method can effectively simulate the large rotation and torsion behavior of FSR.This method has high computational efficiency and precision,and this method can quickly improve the efficiency of numerical calculation of static analysis of deep-water riser.The proposed technology may serve as an alternative to the existing proprietary commercial software,which uses a complex graphical user interface.展开更多
The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standi...The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standing rotary cutting tests on granite in conjunction with high-fidelity numerical simulations based on a particle-type discrete element method(DEM)to explore the effects of key cutting parameters on the TBM cutter performance and the distribution of cutter-rock contact stresses.The assessment results of cutter performance obtained from the cutting tests and numerical simulations reveal similar dependencies on the key cutting parameters.More specifically,the normal and rolling forces exhibit a positive correlation with penetration but are slightly influenced by the cutting radius.In contrast,the side force decreases as the cutting radius increases.Additionally,the side force shows a positive relationship with the penetration for smaller cutting radii but tends to become negative as the cutting radius increases.The cutter's relative effectiveness in rock breaking is significantly impacted by the penetration but shows little dependency on the cutting radius.Consequently,an optimal penetration is identified,leading to a low boreability index and specific energy.A combined Hertz-Weibull function is developed to fit the cutter-rock contact stress distribution obtained in DEM simulations,whereby an improved CSM(Colorado School of Mines)model is proposed by replacing the original monotonic cutting force distribution with this combined Hertz-Weibull model.The proposed model outperforms the original CSM model as demonstrated by a comparison of the estimated cutting forces with those from the tests/simulations.The findings from this work that advance our understanding of TBM cutter performance have important implications for improving the efficiency and reliability of TBM tunnelling in granite.展开更多
Spraying nanocellulose onto films provides a quick and scalable way to create free-standing films with exceptional consistency and customizable thickness. This method increases the application of nanocellulose films i...Spraying nanocellulose onto films provides a quick and scalable way to create free-standing films with exceptional consistency and customizable thickness. This method increases the application of nanocellulose films in various industries and satisfies the requirements of large-scale production. In the field of biomedicine, spray-coated free-standing nanocellulose films hold great promise for applications such as drug delivery, tissue engineering, wound healing, device coatings, and biosensing. They are excellent nanomaterials for a variety of biomedical applications due to their special qualities, including biocompatibility, high mechanical strength, porous structure, large surface area, and adaptability. This paper reviewed the detailed exposure of the spray coating process of nanocellulose suspension onto free- standing films and its biomedical applications.展开更多
Food safety problems caused by excessive nitrite addition have been frequently reported and the detection of nitrite in food is particularly important. The standing time during the pretreatment of primary sample has a...Food safety problems caused by excessive nitrite addition have been frequently reported and the detection of nitrite in food is particularly important. The standing time during the pretreatment of primary sample has a great influence on the concentration of nitrite tested by spectrophotometric method. In this context, three kinds of food samples are prepared, including canned mustard, canned fish and home-made pickled water. A series of standing times are placed during the sample pretreatments and the corresponding nitrite contents in these samples are detected by spectrophotometric method based on N-ethylenediamine dihydrochloride. This study aims to find out a reasonable standing time during the pretreatment of food sample, providing influence factor for precise detection of nitrite.展开更多
In this paper, we study the existence of standing waves for the nonlinear Schrödinger equation with combined power-type nonlinearities and a partial harmonic potential. In the L<sup>2</sup>-supercriti...In this paper, we study the existence of standing waves for the nonlinear Schrödinger equation with combined power-type nonlinearities and a partial harmonic potential. In the L<sup>2</sup>-supercritical case, we obtain the existence and stability of standing waves. Our results are complements to the results of Carles and Il’yasov’s artical, where orbital stability of standing waves have been studied for the 2D Schrödinger equation with combined nonlinearities and harmonic potential.展开更多
正At the invitation of the Ministry of Foreign Affairs of Israel, Grand National Assembly of Turkey (TBMM) and Delhi Study Group of India, a delegation of the Chinese Association for International Understanding (CAFIU...正At the invitation of the Ministry of Foreign Affairs of Israel, Grand National Assembly of Turkey (TBMM) and Delhi Study Group of India, a delegation of the Chinese Association for International Understanding (CAFIU) headed展开更多
正The Understanding and Cooperation Dialogue, Sponsored by the Chinese Association for International Understanding (CAFIU) and the China Foundation for Peace and Development (CFPD), and Co-organized by the Chinese Peo...正The Understanding and Cooperation Dialogue, Sponsored by the Chinese Association for International Understanding (CAFIU) and the China Foundation for Peace and Development (CFPD), and Co-organized by the Chinese People' s Association for Peace and展开更多
A contact model for describing the contact mechanics between the stator and slider of the standing wave linear ultrasonic motor was presented. The proposed model starts from the assumption that the vibration character...A contact model for describing the contact mechanics between the stator and slider of the standing wave linear ultrasonic motor was presented. The proposed model starts from the assumption that the vibration characteristics of the stator is not affected by the contact process. A modified friction models was used to analyze the contact problems. Firstly, the dynamic normal contact force, interface friction force, and steady-state characteristics were analyzed. Secondly, the influences of the contact layer material, the dynamic characteristics of the stator, and the pre-load on motor performance were simulated. Finally, to validate the contact model, a linear ultrasonic motor based on in-plane modes was used as an example. The corresponding results show that a set of simulation of motor performances based on the proposed contact mechanism is in good agreement with experimental results. This model is helpful to understanding the operation principle of the standing wave linear motor and thus contributes to the design of these types of motor.展开更多
Standing of an Oblique Detonation Wave(ODW)on a wedge within combustor is the prerequisite of thrust generation for ODW engine which is regarded as a novel and conceptual propulsion device with hypersonic flight Mach ...Standing of an Oblique Detonation Wave(ODW)on a wedge within combustor is the prerequisite of thrust generation for ODW engine which is regarded as a novel and conceptual propulsion device with hypersonic flight Mach number.Usually a standing window of ODW is defined as the wedge angle ranged from the ODW detached angle from wedge(upper limit)to the angle that a Chapman-Jouguet(CJ)detonation occurs(lower limit).For pathological detonation cases,however,the CJ detonation cannot be achieved,and thus the lower limit of the standing window of ODW should be revisited.In present study,two types of reactions in hypersonic incoming flow that include the behavior of pathological detonation,that is,the single-step irreversible reaction with mole variation and the two-step irreversible reactions with exothermic process followed by endothermic process,have been used for studying standing behavior of ODW.The steady detonation polar analysis of ODW is carried out for both reaction systems.The results reveal that the reaction with more mole decrement and the reactions with stronger endothermic process show the pathological detonation feature and therefore modify the lower limit of standing window of ODW.Three equivalent parameters are proposed to quantitatively measure the standing window range of ODW from points of view of thermodynamics,Mach number of incoming flow and heat effect of reactions.It is found that the standing window of ODW is determined by the specific heat ratio,the overdrive degree of detonation and the endothermic level of the hypersonic incoming flow,regardless of whether the detonation is pathological or not.展开更多
The physical design and cooling test of a C-band 2MeV standing wave (SW) accelerating tube are described in this paper. The designed accelerating structure consists of 3-cell buncher and 4-cell accelerating section ...The physical design and cooling test of a C-band 2MeV standing wave (SW) accelerating tube are described in this paper. The designed accelerating structure consists of 3-cell buncher and 4-cell accelerating section with a total length of about 163mm, excited with 1MW magnetron. Dynamic simulation presents that about 150mA beam pulse current and 30% capture efficiency can be achieved. By means of nonlinear Gauss fit on electron transverse distribution, the diameter of beam spot FWHM (full width at half maximum of density distribution) is about 0.55mm. Cooling test results of the accelerating tube show that frequencies of cavities are tuned to 5527MHz and the field distribution of bunching section is about 3:9:10.展开更多
It was attempted to enhance and accelerate the separation of oxidation inclusions from magnesium alloy melt by virtue of ultrasonic agglomeration technology.In order to investigate the feasibility and effectiveness of...It was attempted to enhance and accelerate the separation of oxidation inclusions from magnesium alloy melt by virtue of ultrasonic agglomeration technology.In order to investigate the feasibility and effectiveness of standing waves for ultrasonic purification of magnesium alloy melt,numerical simulation and relevant experiment were carried out.The numerical simulation was broken into two main aspects.On one hand,the ultrasonic field propagations within the cells with various shapes were characterized by numerical solutions of the wave equation and with a careful choice of geometry a nearly idealized standing wave field was finally obtained.On the other hand,within such a standing wave field the agglomeration behavior of oxidation inclusions in magnesium alloy melt was analyzed and discussed.The agglomeration time and agglomeration position of oxidation inclusions were predicted with numerical simulation method.The results show that the oxidation inclusions whose apparent densities are close to the density of the melt can agglomerate at wave nodes in a short time which to a great extent enhances and accelerates the separation of oxidation inclusions from magnesium alloy melt.展开更多
This paper presents the development of an innovative standing support for underground mines.The main feature of this standing support is its exterior container,a combination of polyvinyl chloride(PVC)with large ruptur...This paper presents the development of an innovative standing support for underground mines.The main feature of this standing support is its exterior container,a combination of polyvinyl chloride(PVC)with large rupture strain and fibre-reinforced polymer(FRP)with high strength-to-weight ratio.To demonstrate the advantages of this cementitious grout filled PVC-FRP tubular(PFT)standing support,a series of compression tests were conducted.Test variables included the strength of cementitious grout infill material and the thickness of FRP jacket.Compression tests were also conducted on cementitious grout-filled PVC tubular(PT)support and cementitious grout-filled FRP tubular(FT)support.These tests showed that PFT support presents a typical strain-hardening behaviour together with an outstanding axial deformation ability(>20%of the overall height of the support).In addition,the maximum compressive strength of PFT support is much higher than that of the corresponding PT support and FT support.Furthermore,using thicker FRP jacket or high strength cementitious grout material can enhance the load carrying capacity of PFT support.These comparative results indicated that the high performance of PFT support is mainly attributed to the combination of confining constituents(i.e.PVC and FRP)and infill material.展开更多
Based on the theoretical high-order model with a dissipative term for non-linear and dispersive wave in water of varying depth, a 3-D mathematical model of non-linear wave propagation is presented. The model, which ca...Based on the theoretical high-order model with a dissipative term for non-linear and dispersive wave in water of varying depth, a 3-D mathematical model of non-linear wave propagation is presented. The model, which can be used to calculate the wave particle velocity and wave pressure, is suitable to the complicated topography whose relative depth (d/lambda(0), ratio of the characteristic water depth to the characteristic wavelength in deep-water) is equal to or smaller than one. The governing equations are discretized with the improved 2-D Crank-Nicolson method in which the first-order derivatives are corrected by Taylor series expansion, And the general boundary conditions with an arbitrary reflection coefficient and phase shift are adopted in the model. The surface elevation, horizontal and vertical velocity components and wave pressure of standing waves are numerically calculated. The results show that the numerical model can effectively simulate the complicated standing waves, and the general boundary conditions possess good adaptability.展开更多
Helicon wave plasma sources have the well-known advantages of high efficiency and high plasma density, with broad applications in many areas. The crucial mechanism lies with mode transitions, which has been an outstan...Helicon wave plasma sources have the well-known advantages of high efficiency and high plasma density, with broad applications in many areas. The crucial mechanism lies with mode transitions, which has been an outstanding issue for years. We have built a fluid simulation model and further developed the Peking University Helicon Discharge code. The mode transitions, also known as density jumps, of a single-loop antenna discharge are reproduced in simulations for the first time. It is found that large-amplitude standing helicon waves(SHWs) are responsible for the mode transitions, similar to those of a resonant cavity for laser generation.This paper intends to give a complete and quantitative SHW resonance theory to explain the relationship of the mode transitions and the SHWs. The SHW resonance theory reasonably explains several key questions in helicon plasmas, such as mode transition and efficient power absorption, and helps to improve future plasma generation methods.展开更多
In this paper bottom scours in front of vertical breakwaters by standing waves are systematically investigated, the scouring patterns, criterion for differentiating the scouring patterns and scouring mechanism are dis...In this paper bottom scours in front of vertical breakwaters by standing waves are systematically investigated, the scouring patterns, criterion for differentiating the scouring patterns and scouring mechanism are discussed ; a formula of maximum depth of scouring trough considering sediment size is given; and influence of mound foundation on bottom scours is investigated.展开更多
基金supported by National Key Research and Development Program of China(No.2021YFD2200405(S.R.L.))Natural Science Foundation of China(Grant No.31971653).
文摘With the rapid economic development and continuous expansion of human activities,forest degradation—characterized by reduced forest stock within the forest including declining carbon storage—poses significant threats to ecosystem stability.Understanding the current status of forest degradation and assessing potential carbon stocks in China are of strategic importance for making forest restoration efforts and enhancing carbon sequestration capacity.In this study,we used the national forest inventory data from 2009 to 2018 to develop a set of standard measures for assessing degraded forests across China,based on five key indicators:forest accumulation growth rate(FAGR),forest recruitment rate(FRR),tree species reduction rate(TSRR),forest canopy cover reduction rate(FCCRR),and forest disaster level(FDL).Additionally,we estimated standing carbon stock,potential carbon stock,and theoretical space to grow by developing a stand growth model,which accounts for stand density across different site classes,to evaluate the restoration potential of degraded forests.The results indicate that degraded forest area in China is 36.15 million hectares,accounting for 20.10% of a total forest area.Standing carbon stock and potential carbon stock of degraded forests in China are 23.93 million tons and 61.90 million tons,respectively.Overall,degraded forest varies significantly across different regions.The results highlight the important trade-offs among environmental factors,policy decisions,and forest conditions,providing a robust foundation for developing measures to enhance forest quality.
基金supported by the National Natural Science Foundation of China(No.12372005)the Aeronautical Science Foundation of China(No.ASFC-2024Z070050001)the Natural Science Foundation of Liaoning Province(2024-MSBA-32).
文摘In this paper,inspired by the running motion gait of a cheetah,an H-shaped bionic piezoelectric robot(H-BPR)based on the standing wave principle is proposed and designed.The piezoelectric robot realizes linear motion,turning motion,and turning motion with different radi by the voltage differential driving method.A prototype with a weight of 38 g and dimensions of 150×80×31 mm^(3) was fabricated.Firstly,the dynamics and kinematics of the piezoelectric robot were analyzed to obtain the trajectory of a point at the end of the piezoelectric robot leg.The motion principle of the piezo-electric robot was analyzed,and then the piezoelectric robot's modal analysis and harmonic response analysis were carried out using finite element analysis software.Finally,an experimental setup was built to verify the effectiveness and high efficiency of the robot's motion,and the effects of frequency,voltage,load,and height of the driving leg on the robot's motion performance were discussed.The performance test results show that the piezoelectric robot has a maximum veloc-ity of 66.79 mm/s at an excitation voltage of 320 V and a load capacity of 55 g.In addition,the H-BPR with unequal drive legs has better climbing performance,and the obtained conclusions are informative for selecting leg heights for piezoelectric robots.
基金Supported by the National Key Research and Development Program of China(No.2021 YFC 3101702)the Key R&D Program of Zhejiang(No.2022 C 03044)+2 种基金the Scientific Research Fund of the Second Institute of Oceanography,MNR(No.JG 1521)the Project of State Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography(No.SOEDZZ 2202)the National Program on Global Change and Air-Sea Interaction(Phase Ⅱ)-Hypoxia and Acidification Monitoring and Warning Project in the Changjiang River estuary,and Long-term Observation and Research Plan in the Changjiang River estuary and Adjacent East China Sea(LORCE)Project(No.SZ 2001)。
文摘The turbidity maximum zone(TMZ)is a distinctive aquatic environment marked by consistently higher turbidity compared to upstream and downstream section.In the TMZ,physicochemical properties such as intense light limitation,abundant nutrients,and rapid salinity shifts play a crucial role in shaping phytoplankton dynamics.The Qiantang River estuary-Hangzhou Bay(QRE-HZB)is a macrotidal estuary system known for its exceptionally high suspended solids concentration.To investigate the impact of TMZ on the standing crop and size structure of phytoplankton in the QRE-HZB,we conducted three cruises in dry,wet,and dry-to-wet transition seasons during 2022-2023,by assessing parameters including size fractionated chlorophyll a(chl a),turbidity,Secchi depth,temperature,salinity,nutrients,and mesozooplankton.Results reveal significant variations in the TMZ and associated environmental factors in different periods,which markedly influenced the phytoplankton chl-a concentration,size structure,and cell activity(pheophytin/chl a).The chl-a concentration was high with micro-phytoplankton predominance in wet season,while nano-phytoplankton dominated in dry season.Within the TMZ,lower chl-a concentrations and pico-chl-a contributions,alongside higher pheophytin/chl-a and micro-chl-a contributions,were observed.The Spearman’s rank correlation and generalized additive model analyses indicated strong correlations of chl-a concentrations with turbidity,nutrients,and mesozooplankton.Redundancy analysis further revealed that salinity,nutrients,and turbidity significantly regulated variations in size structure.Phytoplankton mortality within the TMZ was primarily driven by high turbidity and salinity fluctuations,reflecting the vigorous resuspension and mixing of freshwater and seawater in the QRE-HZB.These findings highlight that the standing crop and size structure of phytoplankton were strongly regulated by the TMZ and associated physicochemical factors in the macrotidal QRE-HZB.
文摘In this study we theoretically demonstrate ultrahigh-resolution two-dimensional atomic localization within a three-levelλ-type atomic medium via superposition of asymmetric and symmetric standing wave fields.Our analysis provides an understanding of the precise spatial localization of atomic positions at the atomic level,utilizing advanced theoretical approaches and principles of quantum mechanics.The dynamical behavior of a three-level atomic system is thoroughly analyzed using the density matrix formalism within the realm of quantum mechanics.A theoretical approach is constructed to describe the interaction between the system and external fields,specifically a control field and a probe field.The absorption spectrum of the probe field is thoroughly examined to clarify the spatial localization of the atom within the proposed configuration.A theoretical investigation found that symmetric and asymmetric superposition phenomena significantly influence the localized peaks within a two-dimensional spatial domain.Specifically,the emergence of one and two sharp localized peaks was observed within a one-wavelength domain.We observed notable influences of the intensity of the control field,probe field detuning and decay rates on atomic localization.Ultimately,we have achieved an unprecedented level of ultrahigh resolution and precision in localizing an atom within an area smaller thanλ/35×λ/35.These findings hold promise for potential applications in fields such as Bose-Einstein condensation,nanolithography,laser cooling,trapping of neutral atoms and the measurement of center-of-mass wave functions.
基金supported by the National Natural Science Foundation of China(Grant No.52271299).
文摘When the free standing riser(FSR)is in service in the ocean,its mechanical properties are affected by various factors,including complex ocean current forces,buoyancy of the buoyancy can,and torque caused by the deflection of the upper floating body.These loads have a great influence on the deformation and internal force of the FSR.The static performance of FSR is investigated in this research under various working conditions.The finite element model of FSR is established based on the co-rotational method.The arc length approach is used to solve the model.The load is exerted in increments.The current load on the riser changes with the configuration of the riser.The accuracy of the numerical method is verified by Abaqus software.The calculation time is also compared.Then,the effects of uniform current,actual current and floating body yaw motion on FSR are studied by parameter analysis.Additionally,the influence of the FSR on the ocean current after the failure of part of the buoyancy can chamber is analyzed.The results show that the numerical model based on the co-rotational method can effectively simulate the large rotation and torsion behavior of FSR.This method has high computational efficiency and precision,and this method can quickly improve the efficiency of numerical calculation of static analysis of deep-water riser.The proposed technology may serve as an alternative to the existing proprietary commercial software,which uses a complex graphical user interface.
基金supported by the National Natural Science Foundation of China(Grant Nos.52278407 and 52378407)the China Postdoctoral Science Foundation(Grant No.2023M732670)the support by the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation.
文摘The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standing rotary cutting tests on granite in conjunction with high-fidelity numerical simulations based on a particle-type discrete element method(DEM)to explore the effects of key cutting parameters on the TBM cutter performance and the distribution of cutter-rock contact stresses.The assessment results of cutter performance obtained from the cutting tests and numerical simulations reveal similar dependencies on the key cutting parameters.More specifically,the normal and rolling forces exhibit a positive correlation with penetration but are slightly influenced by the cutting radius.In contrast,the side force decreases as the cutting radius increases.Additionally,the side force shows a positive relationship with the penetration for smaller cutting radii but tends to become negative as the cutting radius increases.The cutter's relative effectiveness in rock breaking is significantly impacted by the penetration but shows little dependency on the cutting radius.Consequently,an optimal penetration is identified,leading to a low boreability index and specific energy.A combined Hertz-Weibull function is developed to fit the cutter-rock contact stress distribution obtained in DEM simulations,whereby an improved CSM(Colorado School of Mines)model is proposed by replacing the original monotonic cutting force distribution with this combined Hertz-Weibull model.The proposed model outperforms the original CSM model as demonstrated by a comparison of the estimated cutting forces with those from the tests/simulations.The findings from this work that advance our understanding of TBM cutter performance have important implications for improving the efficiency and reliability of TBM tunnelling in granite.
文摘Spraying nanocellulose onto films provides a quick and scalable way to create free-standing films with exceptional consistency and customizable thickness. This method increases the application of nanocellulose films in various industries and satisfies the requirements of large-scale production. In the field of biomedicine, spray-coated free-standing nanocellulose films hold great promise for applications such as drug delivery, tissue engineering, wound healing, device coatings, and biosensing. They are excellent nanomaterials for a variety of biomedical applications due to their special qualities, including biocompatibility, high mechanical strength, porous structure, large surface area, and adaptability. This paper reviewed the detailed exposure of the spray coating process of nanocellulose suspension onto free- standing films and its biomedical applications.
文摘Food safety problems caused by excessive nitrite addition have been frequently reported and the detection of nitrite in food is particularly important. The standing time during the pretreatment of primary sample has a great influence on the concentration of nitrite tested by spectrophotometric method. In this context, three kinds of food samples are prepared, including canned mustard, canned fish and home-made pickled water. A series of standing times are placed during the sample pretreatments and the corresponding nitrite contents in these samples are detected by spectrophotometric method based on N-ethylenediamine dihydrochloride. This study aims to find out a reasonable standing time during the pretreatment of food sample, providing influence factor for precise detection of nitrite.
文摘In this paper, we study the existence of standing waves for the nonlinear Schrödinger equation with combined power-type nonlinearities and a partial harmonic potential. In the L<sup>2</sup>-supercritical case, we obtain the existence and stability of standing waves. Our results are complements to the results of Carles and Il’yasov’s artical, where orbital stability of standing waves have been studied for the 2D Schrödinger equation with combined nonlinearities and harmonic potential.
文摘正At the invitation of the Ministry of Foreign Affairs of Israel, Grand National Assembly of Turkey (TBMM) and Delhi Study Group of India, a delegation of the Chinese Association for International Understanding (CAFIU) headed
文摘正The Understanding and Cooperation Dialogue, Sponsored by the Chinese Association for International Understanding (CAFIU) and the China Foundation for Peace and Development (CFPD), and Co-organized by the Chinese People' s Association for Peace and
基金Funded by the National Basic Research Program (973 program) (No. 2011CB707602)the Digital Manufacturing Equipment and Technology National Key Laboratory,Huazhong University of Science and Technology (No. DMETKF2009002)National Sciences Foundation-Guangdong Natural Science Foundation,China (No.U0934004)
文摘A contact model for describing the contact mechanics between the stator and slider of the standing wave linear ultrasonic motor was presented. The proposed model starts from the assumption that the vibration characteristics of the stator is not affected by the contact process. A modified friction models was used to analyze the contact problems. Firstly, the dynamic normal contact force, interface friction force, and steady-state characteristics were analyzed. Secondly, the influences of the contact layer material, the dynamic characteristics of the stator, and the pre-load on motor performance were simulated. Finally, to validate the contact model, a linear ultrasonic motor based on in-plane modes was used as an example. The corresponding results show that a set of simulation of motor performances based on the proposed contact mechanism is in good agreement with experimental results. This model is helpful to understanding the operation principle of the standing wave linear motor and thus contributes to the design of these types of motor.
基金co-supported by the National Natural Science Foundation of China(No.11872213)the Open Fund of Key Laboratory of Transient Physics,NJUST(No.6142604180205)the Opening Project of State Key Laboratory of Explosion Science and Technology(Beijing Institute of Technology)(No.KFJJ17-11M)。
文摘Standing of an Oblique Detonation Wave(ODW)on a wedge within combustor is the prerequisite of thrust generation for ODW engine which is regarded as a novel and conceptual propulsion device with hypersonic flight Mach number.Usually a standing window of ODW is defined as the wedge angle ranged from the ODW detached angle from wedge(upper limit)to the angle that a Chapman-Jouguet(CJ)detonation occurs(lower limit).For pathological detonation cases,however,the CJ detonation cannot be achieved,and thus the lower limit of the standing window of ODW should be revisited.In present study,two types of reactions in hypersonic incoming flow that include the behavior of pathological detonation,that is,the single-step irreversible reaction with mole variation and the two-step irreversible reactions with exothermic process followed by endothermic process,have been used for studying standing behavior of ODW.The steady detonation polar analysis of ODW is carried out for both reaction systems.The results reveal that the reaction with more mole decrement and the reactions with stronger endothermic process show the pathological detonation feature and therefore modify the lower limit of standing window of ODW.Three equivalent parameters are proposed to quantitatively measure the standing window range of ODW from points of view of thermodynamics,Mach number of incoming flow and heat effect of reactions.It is found that the standing window of ODW is determined by the specific heat ratio,the overdrive degree of detonation and the endothermic level of the hypersonic incoming flow,regardless of whether the detonation is pathological or not.
文摘The physical design and cooling test of a C-band 2MeV standing wave (SW) accelerating tube are described in this paper. The designed accelerating structure consists of 3-cell buncher and 4-cell accelerating section with a total length of about 163mm, excited with 1MW magnetron. Dynamic simulation presents that about 150mA beam pulse current and 30% capture efficiency can be achieved. By means of nonlinear Gauss fit on electron transverse distribution, the diameter of beam spot FWHM (full width at half maximum of density distribution) is about 0.55mm. Cooling test results of the accelerating tube show that frequencies of cavities are tuned to 5527MHz and the field distribution of bunching section is about 3:9:10.
基金Projects(2007CB613701,2007CB613702)supported by the National Basic Research Program of ChinaProjects(50974037,50904018)supported by the National Natural Science Foundation of ChinaProject(NCET-08-0098)supported by the Program for New Century Excellent Talents in University of China
文摘It was attempted to enhance and accelerate the separation of oxidation inclusions from magnesium alloy melt by virtue of ultrasonic agglomeration technology.In order to investigate the feasibility and effectiveness of standing waves for ultrasonic purification of magnesium alloy melt,numerical simulation and relevant experiment were carried out.The numerical simulation was broken into two main aspects.On one hand,the ultrasonic field propagations within the cells with various shapes were characterized by numerical solutions of the wave equation and with a careful choice of geometry a nearly idealized standing wave field was finally obtained.On the other hand,within such a standing wave field the agglomeration behavior of oxidation inclusions in magnesium alloy melt was analyzed and discussed.The agglomeration time and agglomeration position of oxidation inclusions were predicted with numerical simulation method.The results show that the oxidation inclusions whose apparent densities are close to the density of the melt can agglomerate at wave nodes in a short time which to a great extent enhances and accelerates the separation of oxidation inclusions from magnesium alloy melt.
基金supported by the Australia government through the Australian Research Council’s Industrial Transformation Research Hub for nanoscience based construction material manufacturing(IH150100006)the Australia Coal Industry’s Research Program(C28068)。
文摘This paper presents the development of an innovative standing support for underground mines.The main feature of this standing support is its exterior container,a combination of polyvinyl chloride(PVC)with large rupture strain and fibre-reinforced polymer(FRP)with high strength-to-weight ratio.To demonstrate the advantages of this cementitious grout filled PVC-FRP tubular(PFT)standing support,a series of compression tests were conducted.Test variables included the strength of cementitious grout infill material and the thickness of FRP jacket.Compression tests were also conducted on cementitious grout-filled PVC tubular(PT)support and cementitious grout-filled FRP tubular(FT)support.These tests showed that PFT support presents a typical strain-hardening behaviour together with an outstanding axial deformation ability(>20%of the overall height of the support).In addition,the maximum compressive strength of PFT support is much higher than that of the corresponding PT support and FT support.Furthermore,using thicker FRP jacket or high strength cementitious grout material can enhance the load carrying capacity of PFT support.These comparative results indicated that the high performance of PFT support is mainly attributed to the combination of confining constituents(i.e.PVC and FRP)and infill material.
基金This subject was partly supported by the National Excellent Youth Foundation of China (Grant No. 49825161)
文摘Based on the theoretical high-order model with a dissipative term for non-linear and dispersive wave in water of varying depth, a 3-D mathematical model of non-linear wave propagation is presented. The model, which can be used to calculate the wave particle velocity and wave pressure, is suitable to the complicated topography whose relative depth (d/lambda(0), ratio of the characteristic water depth to the characteristic wavelength in deep-water) is equal to or smaller than one. The governing equations are discretized with the improved 2-D Crank-Nicolson method in which the first-order derivatives are corrected by Taylor series expansion, And the general boundary conditions with an arbitrary reflection coefficient and phase shift are adopted in the model. The surface elevation, horizontal and vertical velocity components and wave pressure of standing waves are numerically calculated. The results show that the numerical model can effectively simulate the complicated standing waves, and the general boundary conditions possess good adaptability.
基金supported by the National Key R&D Program of China(No.2017YFE0301201)National Natural Science Foundation of China(No.11975038)the funding support from the State Key Laboratory of Nuclear Physics and Technology,Peking University(No.NPT2021ZZ03)。
文摘Helicon wave plasma sources have the well-known advantages of high efficiency and high plasma density, with broad applications in many areas. The crucial mechanism lies with mode transitions, which has been an outstanding issue for years. We have built a fluid simulation model and further developed the Peking University Helicon Discharge code. The mode transitions, also known as density jumps, of a single-loop antenna discharge are reproduced in simulations for the first time. It is found that large-amplitude standing helicon waves(SHWs) are responsible for the mode transitions, similar to those of a resonant cavity for laser generation.This paper intends to give a complete and quantitative SHW resonance theory to explain the relationship of the mode transitions and the SHWs. The SHW resonance theory reasonably explains several key questions in helicon plasmas, such as mode transition and efficient power absorption, and helps to improve future plasma generation methods.
文摘In this paper bottom scours in front of vertical breakwaters by standing waves are systematically investigated, the scouring patterns, criterion for differentiating the scouring patterns and scouring mechanism are discussed ; a formula of maximum depth of scouring trough considering sediment size is given; and influence of mound foundation on bottom scours is investigated.