Let X, Y be real or complex Banach spaces with dimension greater than 2 and A, B be standard operator algebras on X and Y, respectively. Let φ :A →B be a unital surjective map. In this paper, we characterize the m...Let X, Y be real or complex Banach spaces with dimension greater than 2 and A, B be standard operator algebras on X and Y, respectively. Let φ :A →B be a unital surjective map. In this paper, we characterize the map φ on .4 which satisfies (A - B)R = R(A-B) ξR ((A-B)→ (φ(B))φ(R) =φ(R)((A)- (B)) for A, B, R E .4 and for some scalar展开更多
We characterize the surjective additive maps compressing the spectral function Δ(·) between standard operator algebras acting on complex Banach spaces, where Δ(·) stands for any one of nine spectral fu...We characterize the surjective additive maps compressing the spectral function Δ(·) between standard operator algebras acting on complex Banach spaces, where Δ(·) stands for any one of nine spectral functions σ(·), σl(·), σr(·),σl(·) ∩ σr(·), δσ(·), ησ(·), σap(·), σs(·), and σap(·) ∩ σs(·).展开更多
Let A be a standard operator algebra on a Banach space of dimension 〉 1 and B be an arbitrary algebra over Q the field of rational numbers. Suppose that M : A → B and M^* : B → A are surjective maps such that {M...Let A be a standard operator algebra on a Banach space of dimension 〉 1 and B be an arbitrary algebra over Q the field of rational numbers. Suppose that M : A → B and M^* : B → A are surjective maps such that {M(r(aM^*(x)+M^*(x)a))=r(M(a)x+xM(a)), M^*(r(M(a)x+xM(a)))=r(aM^*(x)+M^*(x)a) for all a ∈ A, x ∈ B, where r is a fixed nonzero rational number. Then both M and M^* are additive.展开更多
Let X be a Banach space of dimension ≥ 2 over the real or complex field F and A a standard operator algebra in B(X). A map Ф : A→A is said to be strong 3-commutativity preserving if [Ф(A), Ф(B)]a = [A, B]3...Let X be a Banach space of dimension ≥ 2 over the real or complex field F and A a standard operator algebra in B(X). A map Ф : A→A is said to be strong 3-commutativity preserving if [Ф(A), Ф(B)]a = [A, B]3 for all A, B C .4, where [A, B]3 is the 3-commutator of A, B defined by [A, B]3 = [[[A, B], B], B] with [A, B] = AB - BA. The main result in this paper is shown that, if Ф is a surjective map on A, then Ф is strong 3-commutativity preserving if and only if there exist a functional h : A→F and a scalar λ∈F with λ^4 = 1 such that Ф(A) = λA + h(A)I for all A ∈A.展开更多
Let H be a Hilbert space and A be a standard *-subalgebra of B(H). We show that a bijective map Ф : A →A preserves the Lie-skew product AB - BA* if and only if there is a unitary or conjugate unitary operator U...Let H be a Hilbert space and A be a standard *-subalgebra of B(H). We show that a bijective map Ф : A →A preserves the Lie-skew product AB - BA* if and only if there is a unitary or conjugate unitary operator U ∈A(H) such that Ф(A) = UAU* for all A ∈ A, that is, Фis a linear * -isomorphism or a conjugate linear *-isomorphism.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No.111101250)Innovative Research Team,Department of Applied Mathematics,Shanxi University of Finance & Economics
文摘Let X, Y be real or complex Banach spaces with dimension greater than 2 and A, B be standard operator algebras on X and Y, respectively. Let φ :A →B be a unital surjective map. In this paper, we characterize the map φ on .4 which satisfies (A - B)R = R(A-B) ξR ((A-B)→ (φ(B))φ(R) =φ(R)((A)- (B)) for A, B, R E .4 and for some scalar
基金Natural Science Foundation of ChinaGrant for Returned Scholars of Shanxi
文摘We characterize the surjective additive maps compressing the spectral function Δ(·) between standard operator algebras acting on complex Banach spaces, where Δ(·) stands for any one of nine spectral functions σ(·), σl(·), σr(·),σl(·) ∩ σr(·), δσ(·), ησ(·), σap(·), σs(·), and σap(·) ∩ σs(·).
基金Supported by the National Natural Science Foundation of China (Grant Nos.10675086 10971117)the Natural Science Foundation of Shandong Province (Grant No.Y2006A03)
文摘Let A be a standard operator algebra on a Banach space of dimension 〉 1 and B be an arbitrary algebra over Q the field of rational numbers. Suppose that M : A → B and M^* : B → A are surjective maps such that {M(r(aM^*(x)+M^*(x)a))=r(M(a)x+xM(a)), M^*(r(M(a)x+xM(a)))=r(aM^*(x)+M^*(x)a) for all a ∈ A, x ∈ B, where r is a fixed nonzero rational number. Then both M and M^* are additive.
基金Supported by Natural Science Foundation of China(Grant No.11671294)
文摘Let X be a Banach space of dimension ≥ 2 over the real or complex field F and A a standard operator algebra in B(X). A map Ф : A→A is said to be strong 3-commutativity preserving if [Ф(A), Ф(B)]a = [A, B]3 for all A, B C .4, where [A, B]3 is the 3-commutator of A, B defined by [A, B]3 = [[[A, B], B], B] with [A, B] = AB - BA. The main result in this paper is shown that, if Ф is a surjective map on A, then Ф is strong 3-commutativity preserving if and only if there exist a functional h : A→F and a scalar λ∈F with λ^4 = 1 such that Ф(A) = λA + h(A)I for all A ∈A.
基金supported by Tianyuan Funds of China (Grant No. 10826065)Youth Funds of Shanxi (Grant No. 2009021002)+1 种基金 the second author is supported by National Natural Foundation of China (Grant No.10771157) Research Grant to Returned Scholars of Shanxi (2007-38)
文摘Let H be a Hilbert space and A be a standard *-subalgebra of B(H). We show that a bijective map Ф : A →A preserves the Lie-skew product AB - BA* if and only if there is a unitary or conjugate unitary operator U ∈A(H) such that Ф(A) = UAU* for all A ∈ A, that is, Фis a linear * -isomorphism or a conjugate linear *-isomorphism.