In this study, a stand-off and collinear double pulse laser-induced breakdown spectroscopy (DP LIBS) system was designed, and the magnesium alloy samples at a distance of 2.5 m away from the LIBS system were measure...In this study, a stand-off and collinear double pulse laser-induced breakdown spectroscopy (DP LIBS) system was designed, and the magnesium alloy samples at a distance of 2.5 m away from the LIBS system were measured. The effect of inter-pulse delay on spectra was studied, and the signal enhancement was observed compared to the single pulse LIBS (SP LIBS). The morphology of the ablated crater on the sample indicated a higher efficiency of surface pretreatment in DP LIBS. The calibration curves of Ytterbium (Y) and Zirconium (Zr) were investigated. The square of the correlation coefficient of the calibration curve of element Y reached up to 0.9998.展开更多
We derived a theoretical solution of the shock stand-off distance for a non-equilibrium flow over spheres based on Wen and Hornung's solution and Olivier's solution. Compared with previous approaches, the main advan...We derived a theoretical solution of the shock stand-off distance for a non-equilibrium flow over spheres based on Wen and Hornung's solution and Olivier's solution. Compared with previous approaches, the main advantage of the present approach is allowing an analytic solution without involving any semi-empirical parameter for the whole non-equilibrium flow regimes. The effects of some important physical quantities therefore can be fully revealed via the analytic solution. By combining the current solution with Ideal Dissociating Gas(IDG) model, we investigate the effects of free stream kinetic energy and free stream dissociation level(which can be very different between different facilities) on the shock stand-off distance.展开更多
This paper presents a design for a stand-alone photovoltaic (PV) system to provide the required electricity for a single residential household in rural area in Jordan. The complete design steps for the suggested house...This paper presents a design for a stand-alone photovoltaic (PV) system to provide the required electricity for a single residential household in rural area in Jordan. The complete design steps for the suggested household loads are carried out. Site radiation data and the electrical load data of a typical household in the considered site are taken into account during the design steps. The reliability of the system is quantified by the loss of load probability. A computer program is developed to simulate the PV system behavior and to numerically find an optimal combination of PV array and battery bank for the design of stand-alone photovoltaic systems in terms of reliability and costs. The program calculates life cycle cost and annualized unit electrical cost. Simulations results showed that a value of loss of load probability LLP can be met by several combinations of PV array and battery storage. The method developed here uniquely determines the optimum configuration that meets the load demand with the minimum cost. The difference between the costs of these combinations is very large. The optimal unit electrical cost of 1 kWh for LLP = 0.049 is $0.293;while for LLP 0.0027 it is $0.402. The results of the study encouraged the use of the PV systems to electrify the remote sites in Jordan.展开更多
In this paper, a stand-alone hybrid microgrid consisting of wind turbines, photovoltaic (PV) arrays and storage battery banks is developed for use in Qinghai Province, China. With the help of Software Homer and Matlab...In this paper, a stand-alone hybrid microgrid consisting of wind turbines, photovoltaic (PV) arrays and storage battery banks is developed for use in Qinghai Province, China. With the help of Software Homer and Matlab, different variables such as annual average wind speed, annual average load demand, and annual capacity shortage are considered. The net present value is then used during an entire project lifetime for the optimization solution.展开更多
This paper describes the characteristics and optimal methods for the planning of stand-alone microgrid system, in order to improve the power supply reliability, increase the coefficient of utilization of renewable ene...This paper describes the characteristics and optimal methods for the planning of stand-alone microgrid system, in order to improve the power supply reliability, increase the coefficient of utilization of renewable energy and reduce the cost of investment and operation. Next, the problems in the optimal planning for a stand-alone microgrid system are summarized, including the unique operational control targets, the flexible combination approaches and the operation strategies of distributed generation energy supply system, and the special requirements of the reliability of power supply quality factor from the different users. And then, centering on the operational control and the advanced energy management strategy, the optimal mathematical models and the solving methods, the reliability assessment approaches and the improvement measures of a stand-alone microgrid system, an overview of the general situation of the recent research at home and abroad and the limitations of the study are summarized. Finally, several problems, existing in the optimal planning of stand-alone microgrid system, to be urgently solved, are put forward.展开更多
Background: Forest ecosystem functioning is strongly influenced by the absorption of photosynthetically active radiation (APAR), and therefore, accurate predictions of APAR are critical for many process-based fores...Background: Forest ecosystem functioning is strongly influenced by the absorption of photosynthetically active radiation (APAR), and therefore, accurate predictions of APAR are critical for many process-based forest growth models. The Lambert-Beer law can be applied to estimate APAR for simple homogeneous canopies composed of one layer, one species, and no canopy gaps. However, the vertical and horizontal structure of forest canopies is rarely homogeneous. Detailed tree-level models can account for this heterogeneity but these often have high input and computational demands and work on finer temporal and spatial resolutions than required by stand-level growth models. The aim of this study was to test a stand-level light absorption model that can estimate APAR by individual species in mixed-species and multi-layered stands with any degree of canopy openness including open-grown trees to closed canopies. Methods: The stand-level model was compared with a detailed tree-level model that has already been tested in mixed-species stands using empirical data. Both models were parameterised for five different forests, including a wide range of species compositions, species proportions, stand densities, crown architectures and canopy structures. Results: The stand-level model performed well in all stands except in the stand where extinction coefficients were unusually variable and it appears unlikely that APAR could be predicted in such stands using (tree- or stand-level) models that do not allow individuals of a given species to have different extinction coefficients, leaf-area density or analogous parameters. Conclusion: This model is parameterised with species-specific information about extinction coefficients and mean crown length, diameter, height and leaf area. It could be used to examine light dynamics in complex canopies and in stand-level growth models.展开更多
基金supported by National Natural Science Foundation of China(No.61473279)the National High-Tech Research and Development Program of China(863 Program)(No.2012AA040608)Equipment Development Programs of the Chinese Academy of Sciences(No.YZ201247)
文摘In this study, a stand-off and collinear double pulse laser-induced breakdown spectroscopy (DP LIBS) system was designed, and the magnesium alloy samples at a distance of 2.5 m away from the LIBS system were measured. The effect of inter-pulse delay on spectra was studied, and the signal enhancement was observed compared to the single pulse LIBS (SP LIBS). The morphology of the ablated crater on the sample indicated a higher efficiency of surface pretreatment in DP LIBS. The calibration curves of Ytterbium (Y) and Zirconium (Zr) were investigated. The square of the correlation coefficient of the calibration curve of element Y reached up to 0.9998.
基金co-supported by the Research Grants Council of Hong Kong,China(No.C5010-14E)the National Natural Science Foundation of China(No.11372265)
文摘We derived a theoretical solution of the shock stand-off distance for a non-equilibrium flow over spheres based on Wen and Hornung's solution and Olivier's solution. Compared with previous approaches, the main advantage of the present approach is allowing an analytic solution without involving any semi-empirical parameter for the whole non-equilibrium flow regimes. The effects of some important physical quantities therefore can be fully revealed via the analytic solution. By combining the current solution with Ideal Dissociating Gas(IDG) model, we investigate the effects of free stream kinetic energy and free stream dissociation level(which can be very different between different facilities) on the shock stand-off distance.
文摘This paper presents a design for a stand-alone photovoltaic (PV) system to provide the required electricity for a single residential household in rural area in Jordan. The complete design steps for the suggested household loads are carried out. Site radiation data and the electrical load data of a typical household in the considered site are taken into account during the design steps. The reliability of the system is quantified by the loss of load probability. A computer program is developed to simulate the PV system behavior and to numerically find an optimal combination of PV array and battery bank for the design of stand-alone photovoltaic systems in terms of reliability and costs. The program calculates life cycle cost and annualized unit electrical cost. Simulations results showed that a value of loss of load probability LLP can be met by several combinations of PV array and battery storage. The method developed here uniquely determines the optimum configuration that meets the load demand with the minimum cost. The difference between the costs of these combinations is very large. The optimal unit electrical cost of 1 kWh for LLP = 0.049 is $0.293;while for LLP 0.0027 it is $0.402. The results of the study encouraged the use of the PV systems to electrify the remote sites in Jordan.
文摘In this paper, a stand-alone hybrid microgrid consisting of wind turbines, photovoltaic (PV) arrays and storage battery banks is developed for use in Qinghai Province, China. With the help of Software Homer and Matlab, different variables such as annual average wind speed, annual average load demand, and annual capacity shortage are considered. The net present value is then used during an entire project lifetime for the optimization solution.
文摘This paper describes the characteristics and optimal methods for the planning of stand-alone microgrid system, in order to improve the power supply reliability, increase the coefficient of utilization of renewable energy and reduce the cost of investment and operation. Next, the problems in the optimal planning for a stand-alone microgrid system are summarized, including the unique operational control targets, the flexible combination approaches and the operation strategies of distributed generation energy supply system, and the special requirements of the reliability of power supply quality factor from the different users. And then, centering on the operational control and the advanced energy management strategy, the optimal mathematical models and the solving methods, the reliability assessment approaches and the improvement measures of a stand-alone microgrid system, an overview of the general situation of the recent research at home and abroad and the limitations of the study are summarized. Finally, several problems, existing in the optimal planning of stand-alone microgrid system, to be urgently solved, are put forward.
基金part of the Lin~2 Value project(project number 033 L049) supported by the Federal Ministry of Education and Research(BMBF, Bundesministerium fr Bildung und Forschung)
文摘Background: Forest ecosystem functioning is strongly influenced by the absorption of photosynthetically active radiation (APAR), and therefore, accurate predictions of APAR are critical for many process-based forest growth models. The Lambert-Beer law can be applied to estimate APAR for simple homogeneous canopies composed of one layer, one species, and no canopy gaps. However, the vertical and horizontal structure of forest canopies is rarely homogeneous. Detailed tree-level models can account for this heterogeneity but these often have high input and computational demands and work on finer temporal and spatial resolutions than required by stand-level growth models. The aim of this study was to test a stand-level light absorption model that can estimate APAR by individual species in mixed-species and multi-layered stands with any degree of canopy openness including open-grown trees to closed canopies. Methods: The stand-level model was compared with a detailed tree-level model that has already been tested in mixed-species stands using empirical data. Both models were parameterised for five different forests, including a wide range of species compositions, species proportions, stand densities, crown architectures and canopy structures. Results: The stand-level model performed well in all stands except in the stand where extinction coefficients were unusually variable and it appears unlikely that APAR could be predicted in such stands using (tree- or stand-level) models that do not allow individuals of a given species to have different extinction coefficients, leaf-area density or analogous parameters. Conclusion: This model is parameterised with species-specific information about extinction coefficients and mean crown length, diameter, height and leaf area. It could be used to examine light dynamics in complex canopies and in stand-level growth models.