A stain-based screening method was developed to screen different catalyst coatings for their germicidal activity. A Baclight dead/live bacteria viability kit (invitrogen, molecular probes) was used for staining the ...A stain-based screening method was developed to screen different catalyst coatings for their germicidal activity. A Baclight dead/live bacteria viability kit (invitrogen, molecular probes) was used for staining the cell. The screening was carried out following a standard procedure. This included loading cell suspension to solid surface and maintaining contact for 30 min, then staining with a mixture containing dyes. The stained cells were observed using an epifluorescent microscope and photographed with a CCD camera under UV. Metal-doped TiO2 coatings on AI plates were prepared and tested for non-UV germicidal activity without using UV. It was tested using model microorganisms such as Bakers Yeast (Saccharomyces cerevisiae), Bacillus subtilis, Pseudomonas putida, and Escherichia coli. On the basis of the germicidal activity of catalyst and the degree of damage caused to the cells, the stained cells may appear green (viable), green with red or yellow nuclei and yellow (compromised) or red (nonviable). According to their stained color, cells were counted to calculate the percentage of dead, live, and compromised cells. Compromised cells are cells that grow very slowly after reculturing indicating a degree of reversible cell damage. Screening the germicidal activity using this staining method is accurate and efficient, and requires less time than the culture-based method. A modification to the procedure for measuring germicidal activity of rough surfaces or fibrous coatings was developed. Both TiO2 and metal-doped TiO2 (Ag, Pt, Au, Cu) possess non-UV based germicidal activity. The germicidal activity of TiO2 was found to be related with its wetting property and can be improved by UV irradiation before testing. It is not greatly affected by contact time, indicating a fast acting germicidal activity.展开更多
Iron(Ⅲ)-doped nanostructure TiO2-coated SiO2 (TiO2/SiO2) particles were prepared using the layer-by-layer assembly technique and their photocatalytic property was studied. TiO2 colloids were synthesized employing...Iron(Ⅲ)-doped nanostructure TiO2-coated SiO2 (TiO2/SiO2) particles were prepared using the layer-by-layer assembly technique and their photocatalytic property was studied. TiO2 colloids were synthesized employing the sol-gel method with TiChas a precursor. The samples were characterized by Fourier transform infrared spectroscopy (FTIR), SEM, EDS, XPS, and XRD. The experimental results show that TiO2 nanopowders on the surface of SiO2 particles are well distributed, the amount of TiO2 is increased with the adding of coating layers, the pure anatase-TiO2 coating layers are synthesized at 500℃, and the photocatalytic activity of Fe^3+-doped TiO2/SiO2 is higher than that of undoped TiO2/SiO2.展开更多
In this work, TiO2/Ti composite films were fabricated by 2-setp MCT and the following high temperature oxidation. Antibacterial activity of the composite films treated by ultrasonic cleaning to increase the performanc...In this work, TiO2/Ti composite films were fabricated by 2-setp MCT and the following high temperature oxidation. Antibacterial activity of the composite films treated by ultrasonic cleaning to increase the performance reliability was examined. The prepared TiO2/Ti composite films showed high photocatalytic activity in the degradation of methylene blue solution. It is obvious that? TiO2/Ti composite films have antibacterial activity under UV irradiation.展开更多
Different semiconductive SiC foam supports were prepared by varying the sintering temperature and atmosphere, and with or without alkaline solution treatment and high temperature oxidation following a macromolecule py...Different semiconductive SiC foam supports were prepared by varying the sintering temperature and atmosphere, and with or without alkaline solution treatment and high temperature oxidation following a macromolecule pyrogenation combined with reaction bonding method. Nano-TiO2 particles were immobilized onto these SiC foam supports by a composite sol-gel method. The phase, surface morphology, the type of conduction and the photocatalytic activity of the TiO2-SiC composite photocatalysts were studied. The TiO2 coated on p-type Si-free SiC support showed the highest photocatalytic efficiency in degradation of 4- aminobenzenesulfonic acid (4-ABS) in aqueous solution as compared to that coated on n-type SiC support and p-type SiC supports with residual Si or Si02 on the surface. The result showed that the TiO2 coatings immobilized on p-type semiconductive SiC foam supports exhibited obviously higher photocatalytic activity in comparison to that coated on n-type SiC foam support. The p-n heterojunctions formed between the p-type SiC supports and n-type TiO2 coatings might be able to account for the better charge separation and transfer as well as the photocatalytic activity of the TiO2-SiC composite photocatalyst.展开更多
Titania(TiO2) photocatalyst coatings have been fabricated by the low-cost approach of sulfuric-acid-bath pretreatment(SAP)followed soaked in sulfuric acid(SA) at room temperature then oxidated in air. The influence of...Titania(TiO2) photocatalyst coatings have been fabricated by the low-cost approach of sulfuric-acid-bath pretreatment(SAP)followed soaked in sulfuric acid(SA) at room temperature then oxidated in air. The influence of the SAP and soaked conditions on the surface morphology and photocatalytic activity of TiO2 on Ti coatings was investigated. With different SAP conditions,the surface morphologies of the TiO2 on Ti coatings clearly show the formed porous-like structure. With higher SA concentration,the porous-like structure becomes obviously. With extending soaked time,the porous-like structure tends to disappear. Raman spectroscopy reveals that the formed TiO2 coatings are with mixed-phase of anatase and rutile. Compared with those of SA concentration and SAP time,the influence of the soaked time on the phase transformation is obvious. Notably,the photocatalytic activity of TiO2 on Ti coatings had been efficiently enhanced by extending the soaked time,compared with those of higher SA concentration and longer SAP time. The enhanced photocatalytic activity of TiO2 on Ti coatings could be related with the changed surface morphology,mixed-phase of anatase and rutile,and formed hydroxyl groups.展开更多
基金Project supported by the HK Innovation and Technology Fund.
文摘A stain-based screening method was developed to screen different catalyst coatings for their germicidal activity. A Baclight dead/live bacteria viability kit (invitrogen, molecular probes) was used for staining the cell. The screening was carried out following a standard procedure. This included loading cell suspension to solid surface and maintaining contact for 30 min, then staining with a mixture containing dyes. The stained cells were observed using an epifluorescent microscope and photographed with a CCD camera under UV. Metal-doped TiO2 coatings on AI plates were prepared and tested for non-UV germicidal activity without using UV. It was tested using model microorganisms such as Bakers Yeast (Saccharomyces cerevisiae), Bacillus subtilis, Pseudomonas putida, and Escherichia coli. On the basis of the germicidal activity of catalyst and the degree of damage caused to the cells, the stained cells may appear green (viable), green with red or yellow nuclei and yellow (compromised) or red (nonviable). According to their stained color, cells were counted to calculate the percentage of dead, live, and compromised cells. Compromised cells are cells that grow very slowly after reculturing indicating a degree of reversible cell damage. Screening the germicidal activity using this staining method is accurate and efficient, and requires less time than the culture-based method. A modification to the procedure for measuring germicidal activity of rough surfaces or fibrous coatings was developed. Both TiO2 and metal-doped TiO2 (Ag, Pt, Au, Cu) possess non-UV based germicidal activity. The germicidal activity of TiO2 was found to be related with its wetting property and can be improved by UV irradiation before testing. It is not greatly affected by contact time, indicating a fast acting germicidal activity.
基金the Nationnal Natural Science Foundation of China (No. 50342016).
文摘Iron(Ⅲ)-doped nanostructure TiO2-coated SiO2 (TiO2/SiO2) particles were prepared using the layer-by-layer assembly technique and their photocatalytic property was studied. TiO2 colloids were synthesized employing the sol-gel method with TiChas a precursor. The samples were characterized by Fourier transform infrared spectroscopy (FTIR), SEM, EDS, XPS, and XRD. The experimental results show that TiO2 nanopowders on the surface of SiO2 particles are well distributed, the amount of TiO2 is increased with the adding of coating layers, the pure anatase-TiO2 coating layers are synthesized at 500℃, and the photocatalytic activity of Fe^3+-doped TiO2/SiO2 is higher than that of undoped TiO2/SiO2.
文摘In this work, TiO2/Ti composite films were fabricated by 2-setp MCT and the following high temperature oxidation. Antibacterial activity of the composite films treated by ultrasonic cleaning to increase the performance reliability was examined. The prepared TiO2/Ti composite films showed high photocatalytic activity in the degradation of methylene blue solution. It is obvious that? TiO2/Ti composite films have antibacterial activity under UV irradiation.
基金supported by the National Key Technology R&D Program of China(Grant No.2011BAE03B07)
文摘Different semiconductive SiC foam supports were prepared by varying the sintering temperature and atmosphere, and with or without alkaline solution treatment and high temperature oxidation following a macromolecule pyrogenation combined with reaction bonding method. Nano-TiO2 particles were immobilized onto these SiC foam supports by a composite sol-gel method. The phase, surface morphology, the type of conduction and the photocatalytic activity of the TiO2-SiC composite photocatalysts were studied. The TiO2 coated on p-type Si-free SiC support showed the highest photocatalytic efficiency in degradation of 4- aminobenzenesulfonic acid (4-ABS) in aqueous solution as compared to that coated on n-type SiC support and p-type SiC supports with residual Si or Si02 on the surface. The result showed that the TiO2 coatings immobilized on p-type semiconductive SiC foam supports exhibited obviously higher photocatalytic activity in comparison to that coated on n-type SiC foam support. The p-n heterojunctions formed between the p-type SiC supports and n-type TiO2 coatings might be able to account for the better charge separation and transfer as well as the photocatalytic activity of the TiO2-SiC composite photocatalyst.
文摘Titania(TiO2) photocatalyst coatings have been fabricated by the low-cost approach of sulfuric-acid-bath pretreatment(SAP)followed soaked in sulfuric acid(SA) at room temperature then oxidated in air. The influence of the SAP and soaked conditions on the surface morphology and photocatalytic activity of TiO2 on Ti coatings was investigated. With different SAP conditions,the surface morphologies of the TiO2 on Ti coatings clearly show the formed porous-like structure. With higher SA concentration,the porous-like structure becomes obviously. With extending soaked time,the porous-like structure tends to disappear. Raman spectroscopy reveals that the formed TiO2 coatings are with mixed-phase of anatase and rutile. Compared with those of SA concentration and SAP time,the influence of the soaked time on the phase transformation is obvious. Notably,the photocatalytic activity of TiO2 on Ti coatings had been efficiently enhanced by extending the soaked time,compared with those of higher SA concentration and longer SAP time. The enhanced photocatalytic activity of TiO2 on Ti coatings could be related with the changed surface morphology,mixed-phase of anatase and rutile,and formed hydroxyl groups.