Based on the characteristics of pickling wastewater in the cold-rolling production of stainless steel, a new processing route, featuring source sludge reduction, wastewater two-stage treatment, heavy metal-contained s...Based on the characteristics of pickling wastewater in the cold-rolling production of stainless steel, a new processing route, featuring source sludge reduction, wastewater two-stage treatment, heavy metal-contained sludge and calcium salt sludge separating recovery, was proposed. As shown by the research results, after the two-stage process treatment, the effluent water can steadily reach the emission standards, the sludge yield can be decreased by more than 8% ; within the heavy metal-contained sludge, the recovery rates of Fc,Cr and Ni can either reach or surpass 95% ,and the total content ofF and S can drop to around 3%. Therefore,the sludge in the front part can be used as ferric dust. In the calcium salt sludge ,the recovery rate of F can either reach or surpass 85% ,and the total contents of Fe,Cr and Ni can fall below 0.5%. So the sludge in the rear part can be used as fluorgypsum or fluorite. Meanwhile,the results of the analysis on heavy metals leaching toxicity and morphologic distribution indicate that the two kinds of sectionalized sludge are not classified as hazardous wastes, which have a stable behavior and better utilization values compared with the former mixed- sludge.展开更多
Many industrial products are normally processed through multiple manufacturing process stages before it becomes a final product.Statistical process control techniques often utilize standard Shewhart control charts to ...Many industrial products are normally processed through multiple manufacturing process stages before it becomes a final product.Statistical process control techniques often utilize standard Shewhart control charts to monitor these process stages.If the process stages are independent,this is a meaningful procedure.However,they are not independent in many manufacturing scenarios.The standard Shewhart control charts can not provide the information to determine which process stage or group of process stages has caused the problems(i.e.,standard Shewhart control charts could not diagnose dependent manufacturing process stages).This study proposes a selective neural network ensemble-based cause-selecting system of control charts to monitor these process stages and distinguish incoming quality problems and problems in the current stage of a manufacturing process.Numerical results show that the proposed method is an improvement over the use of separate Shewhart control chart for each of dependent process stages,and even ordinary quality practitioners who lack of expertise in theoretical analysis can implement regression estimation and neural computing readily.展开更多
In this study, it is aimed to determine the ranking importance levels of the stages to be taken into consideration for new product development on a global scale in the automotive design process. New product design act...In this study, it is aimed to determine the ranking importance levels of the stages to be taken into consideration for new product development on a global scale in the automotive design process. New product design activity and stage-gate process differences between local automotive firms (serial production factory and stage-gate department in Turkey) and global automotive companies (serial production factory and stage-gate department in Turkey) are examined comparatively in the research area. In the automotive industry, which has been developing for a century, the question of how the local company products operating in the last sixty years have not been able to spread globally or how to develop global products is the background question of the research. For this purpose, one on one interviews were held with the managers of 3 national and 3 international automotive companies, who worked in the same region and who had previously designed a new vehicle, with design and product development departments.?According to?the data obtained by the AHP (Analytic Hierarchy Process) in the automotive design process, the importance of the criteria that should be taken into account for global product development has revealed. According to the results of the study, it was found that design validation stages were the most important globalization criterion in automotive design process as a new study area. In the comprehensive survey of the study, no other publication has been encountered to measure or evaluate the stages in the automotive design and new product development process in other sectors, including the vehicle industry. As in every industry sector, in the automotive industry, with the new product companies provide market development or competitive advantage. The new product is the life channel of a company and in the realization of this new vehicle;the disciplines of the automotive industry are formed by a hundred years of experience.展开更多
As the non-periodic inspections are common in practice,a two-stage inspection model based on a three-stage failure process is proposed. The two-stage inspection means that the system is inspected with the first inspec...As the non-periodic inspections are common in practice,a two-stage inspection model based on a three-stage failure process is proposed. The two-stage inspection means that the system is inspected with the first inspection interval T_1 and the second inspection interval T_2. Because of the three color schemes commonly used in industry,three stages are divided by the system lifetime:normal, minor defective and severe defective stages. Upon the failure of the system,replacement is carried out. Maintenance is done once identifying the severe defective stage. However,when the minor defective stage is identified by the second inspection interval T_2,action of halving the subsequent inspection interval is adopted.Otherwise,no action is required. Our objective function is to optimize the inspection intervals so as to minimize the expected cost per unit time. Finally,a numerical example is presented to illustrate the effectiveness of the proposed model.展开更多
The degradation process modeling is one of research hotspots of prognostic and health management(PHM),which can be used to estimate system reliability and remaining useful life(RUL).In order to study system degradatio...The degradation process modeling is one of research hotspots of prognostic and health management(PHM),which can be used to estimate system reliability and remaining useful life(RUL).In order to study system degradation process,cumulative damage model is used for degradation modeling.Assuming that damage increment is Gamma distribution,shock counting subjects to a homogeneous Poisson process(HPP)when degradation process is linear,and shock counting is a non-homogeneous Poisson process(NHPP)when degradation process is nonlinear.A two-stage degradation system is considered in this paper,for which the degradation process is linear in the first stage and the degradation process is nonlinear in the second stage.A nonlinear modeling method for considered system is put forward,and reliability model and remaining useful life model are established.A case study is given to validate the veracities of established models.展开更多
The suitable process parameters for a two-stage turbo air classifier are important for obtaining the ultrafine powder that has a narrow particle-size distribution, however little has been published internationally on ...The suitable process parameters for a two-stage turbo air classifier are important for obtaining the ultrafine powder that has a narrow particle-size distribution, however little has been published internationally on the classification process for the two-stage turbo air classifier in series. The influence of the process parameters of a two-stage turbo air classifier in series on classification performance is empirically studied by using aluminum oxide powders as the experimental material. The experimental results show the following: 1) When the rotor cage rotary speed of the first-stage classifier is increased from 2 300 r/min to 2 500 r/min with a constant rotor cage rotary speed of the second-stage classifier, classification precision is increased from 0.64 to 0.67. However, in this case, the final ultrafine powder yield is decreased from 79% to 74%, which means the classification precision and the final ultrafine powder yield can be regulated through adjusting the rotor cage rotary speed of the first-stage classifier. 2) When the rotor cage rotary speed of the second-stage classifier is increased from 2 500 r/min to 3 100 r/min with a constant rotor cage rotary speed of the first-stage classifier, the cut size is decreased from 13.16 μm to 8.76 μm, which means the cut size of the ultrafine powder can be regulated through adjusting the rotor cage rotary speed of the second-stage classifier. 3) When the feeding speed is increased from 35 kg/h to 50 kg/h, the 'fish-hook' effect is strengthened, which makes the ultrafine powder yield decrease. 4) To weaken the 'fish-hook' effect, the equalization of the two-stage wind speeds or the combination of a high first-stage wind speed with a low second-stage wind speed should be selected. This empirical study provides a criterion of process parameter configurations for a two-stage or multi-stage classifier in series, which offers a theoretical basis for practical production.展开更多
Chunguang oilfield is a new focus of the exploration in Junnggar Basin with the heavy crude oil distributing in Jurassic, Cretaceous and Tertiary strata. Based on the analysis of the geochemistry and fluid inclusion i...Chunguang oilfield is a new focus of the exploration in Junnggar Basin with the heavy crude oil distributing in Jurassic, Cretaceous and Tertiary strata. Based on the analysis of the geochemistry and fluid inclusion in the reservoirs, the source, accumulated period and process of the heavy crude oil reservoir has been investigated. The results indicate that the heavy crude oil can be divided into three types based on the degradation and sources. The heavy crude oil was mainly derived from the Permian source rocks, and latterly mixed by the heavy crude oil generated by the Jurassic source rocks. The accumulated period of the heavy crude oil has two stages. One was ranged from Cretaceous to Paleogene and the heavy crude oil was sourced from Permian source rocks of the Shawan depression and latterly mixed by the heavy crude oil generated by the Jurassic source rocks. The second period was from Neogene to present and the heavy crude oil was mainly derived from the Jurassic source rocks. Combined with the geological evolution, the heavy crude oil accumulated process has been recovered.展开更多
Springback of a SUS321 complex geometry part formed by the multi-stage rigid-flexible compound process was studied through numerical simulations and laboratory experiments in this work.The sensitivity analysis was pro...Springback of a SUS321 complex geometry part formed by the multi-stage rigid-flexible compound process was studied through numerical simulations and laboratory experiments in this work.The sensitivity analysis was provided to have an insight in the effect of the evaluated process parameters.Furthermore,in order to minimize the springback problem,an accurate springback simulation model of the part was established and validated.The effects of the element size and timesteps on springback model were further investigated.Results indicate that the custom mesh size is beneficial for the springback simulation,and the four timesteps are found suited for the springback analysis for the complex geometry part.Finally,a strategy for reducing the springback by changing the geometry of the blank is proposed.The optimal blank geometry is obtained and used for manufacturing the part.展开更多
The practical teaching management system is an important factor to ensure the quality of teaching.The training of systematic thinking needs a systematic teaching system,and a systematic process is a gradual process an...The practical teaching management system is an important factor to ensure the quality of teaching.The training of systematic thinking needs a systematic teaching system,and a systematic process is a gradual process and a standardized process.This paper discusses the process of establishing a standardized practice teaching system step by step through a progressive way.At the same time,taking test practice as an example,it describes how the practice teaching system enables students to gradually adapt to and benefit from the management of the system.Through project practice,students not only enhance their practical ability,but also learn the standardized practice process.These skills can help students adapt to the work pace of the enterprise faster,and make students’practical ability meet the requirements of the enterprise.展开更多
A survey of the population densities of rice planthoppers is important for forecasting decisions and efficient control. Tra- ditional manual surveying of rice planthoppers is time-consuming, fatiguing, and subjective....A survey of the population densities of rice planthoppers is important for forecasting decisions and efficient control. Tra- ditional manual surveying of rice planthoppers is time-consuming, fatiguing, and subjective. A new three-layer detection method was proposed to detect and identify white-backed planthoppers (WBPHs, Sogatella furcifera (Horvath)) and their developmental stages using image processing. In the first two detection layers, we used an AdaBoost classifier that was trained on a histogram of oriented gradient (HOG) features and a support vector machine (SVM) classifier that was trained on Gabor and Local Binary Pattern (LBP) features to detect WBPHs and remove impurities. We achieved a detection rate of 85.6% and a false detection rate of 10.2%. In the third detection layer, a SVM classifier that was trained on the HOG features was used to identify the different developmental stages of the WBPHs, and we achieved an identification rate of 73.1%, a false identification rate of 23.3%, and a 5.6% false detection rate for the images without WBPHs. The proposed three-layer detection method is feasible and effective for the identification of different developmental stages of planthoppers on rice plants in paddy fields.展开更多
God depeits occurring in metamorPhaed microclastic rocks are distributed exten-sively at home and abroad. Some deposits of this type are of superlarge tonnage. The formation of gold deposits in metamorphosed microclas...God depeits occurring in metamorPhaed microclastic rocks are distributed exten-sively at home and abroad. Some deposits of this type are of superlarge tonnage. The formation of gold deposits in metamorphosed microclastic rocks involves three stages: the sedimentary stage, the regionally metamorpphic stage, and the ore-forming stage. At the first stage, microclastic sedimentary source rocks were developed in a relatively semi-enclosed reducing sea basin and were enriched in carbon, sulfur and gold. At the second stage, the gold adsorbed on organic matter and clay minerals was released and poorly concentrated during the destruction of organic matter and the depletion of clay minerals by regional metamorphism with increase temperature and pressre. At the third stage, a tectono-hydrothermal event took place. As a result, gold was leached from metamorphosed microclastic rocks, transported to ore depositional locus and/or mixed with gold of other sources in the course of migration, and finally precipitated as ores. Gold deposits of this type were eventually formed at the third stage, and they also can be classified as the orognic belt type and the activation zone type. The gold deposits occurring in metamorphosed microclastic rocks are the products of reworking processes and the influence of magmatism should be taken into consideration in some cases.展开更多
Current research is concerned with the stability of stochastic logistic equation with Ornstein-Uhlenbeck process. First, this research proves that the stochastic logistic model with Ornstein-Uhlenbeck process has a po...Current research is concerned with the stability of stochastic logistic equation with Ornstein-Uhlenbeck process. First, this research proves that the stochastic logistic model with Ornstein-Uhlenbeck process has a positive solution. After that, it also introduces the sufficient conditions for stochastically stability of stochastic logistic model for cell growth of microorganism in fermentation process for positive equilibrium point by using Lyapunov function. In addition, this research establishes the sufficient conditions for zero solution as mentioned in Appendix A due to the cell growth of microorganism μmax, which cannot be negative in fermentation process. Furthermore, for numerical simulation, current research uses the 4-stage stochastic Runge-Kutta (SRK4) method to show the reality of the results.展开更多
文摘Based on the characteristics of pickling wastewater in the cold-rolling production of stainless steel, a new processing route, featuring source sludge reduction, wastewater two-stage treatment, heavy metal-contained sludge and calcium salt sludge separating recovery, was proposed. As shown by the research results, after the two-stage process treatment, the effluent water can steadily reach the emission standards, the sludge yield can be decreased by more than 8% ; within the heavy metal-contained sludge, the recovery rates of Fc,Cr and Ni can either reach or surpass 95% ,and the total content ofF and S can drop to around 3%. Therefore,the sludge in the front part can be used as ferric dust. In the calcium salt sludge ,the recovery rate of F can either reach or surpass 85% ,and the total contents of Fe,Cr and Ni can fall below 0.5%. So the sludge in the rear part can be used as fluorgypsum or fluorite. Meanwhile,the results of the analysis on heavy metals leaching toxicity and morphologic distribution indicate that the two kinds of sectionalized sludge are not classified as hazardous wastes, which have a stable behavior and better utilization values compared with the former mixed- sludge.
基金supported in part by the National Natural Science Foundation of China(No.51775279)the Fundamental Research Funds for the Central Universities(Nos. 1005-YAH15055,NS2017034)+2 种基金the China Postdoctoral Science Foundation(No.2016M591838)the Natural Science Foundation of Jiangsu Province (No.BK20150745)the Postdoctoral Science Foundation of of Jiangsu Province(No.1501024C)
文摘Many industrial products are normally processed through multiple manufacturing process stages before it becomes a final product.Statistical process control techniques often utilize standard Shewhart control charts to monitor these process stages.If the process stages are independent,this is a meaningful procedure.However,they are not independent in many manufacturing scenarios.The standard Shewhart control charts can not provide the information to determine which process stage or group of process stages has caused the problems(i.e.,standard Shewhart control charts could not diagnose dependent manufacturing process stages).This study proposes a selective neural network ensemble-based cause-selecting system of control charts to monitor these process stages and distinguish incoming quality problems and problems in the current stage of a manufacturing process.Numerical results show that the proposed method is an improvement over the use of separate Shewhart control chart for each of dependent process stages,and even ordinary quality practitioners who lack of expertise in theoretical analysis can implement regression estimation and neural computing readily.
文摘In this study, it is aimed to determine the ranking importance levels of the stages to be taken into consideration for new product development on a global scale in the automotive design process. New product design activity and stage-gate process differences between local automotive firms (serial production factory and stage-gate department in Turkey) and global automotive companies (serial production factory and stage-gate department in Turkey) are examined comparatively in the research area. In the automotive industry, which has been developing for a century, the question of how the local company products operating in the last sixty years have not been able to spread globally or how to develop global products is the background question of the research. For this purpose, one on one interviews were held with the managers of 3 national and 3 international automotive companies, who worked in the same region and who had previously designed a new vehicle, with design and product development departments.?According to?the data obtained by the AHP (Analytic Hierarchy Process) in the automotive design process, the importance of the criteria that should be taken into account for global product development has revealed. According to the results of the study, it was found that design validation stages were the most important globalization criterion in automotive design process as a new study area. In the comprehensive survey of the study, no other publication has been encountered to measure or evaluate the stages in the automotive design and new product development process in other sectors, including the vehicle industry. As in every industry sector, in the automotive industry, with the new product companies provide market development or competitive advantage. The new product is the life channel of a company and in the realization of this new vehicle;the disciplines of the automotive industry are formed by a hundred years of experience.
文摘As the non-periodic inspections are common in practice,a two-stage inspection model based on a three-stage failure process is proposed. The two-stage inspection means that the system is inspected with the first inspection interval T_1 and the second inspection interval T_2. Because of the three color schemes commonly used in industry,three stages are divided by the system lifetime:normal, minor defective and severe defective stages. Upon the failure of the system,replacement is carried out. Maintenance is done once identifying the severe defective stage. However,when the minor defective stage is identified by the second inspection interval T_2,action of halving the subsequent inspection interval is adopted.Otherwise,no action is required. Our objective function is to optimize the inspection intervals so as to minimize the expected cost per unit time. Finally,a numerical example is presented to illustrate the effectiveness of the proposed model.
基金National Outstanding Youth Science Fund Project,China(No.71401173)
文摘The degradation process modeling is one of research hotspots of prognostic and health management(PHM),which can be used to estimate system reliability and remaining useful life(RUL).In order to study system degradation process,cumulative damage model is used for degradation modeling.Assuming that damage increment is Gamma distribution,shock counting subjects to a homogeneous Poisson process(HPP)when degradation process is linear,and shock counting is a non-homogeneous Poisson process(NHPP)when degradation process is nonlinear.A two-stage degradation system is considered in this paper,for which the degradation process is linear in the first stage and the degradation process is nonlinear in the second stage.A nonlinear modeling method for considered system is put forward,and reliability model and remaining useful life model are established.A case study is given to validate the veracities of established models.
基金supported by National Natural Science Foundation of China (Grant Nos. 51074012, 51204009)
文摘The suitable process parameters for a two-stage turbo air classifier are important for obtaining the ultrafine powder that has a narrow particle-size distribution, however little has been published internationally on the classification process for the two-stage turbo air classifier in series. The influence of the process parameters of a two-stage turbo air classifier in series on classification performance is empirically studied by using aluminum oxide powders as the experimental material. The experimental results show the following: 1) When the rotor cage rotary speed of the first-stage classifier is increased from 2 300 r/min to 2 500 r/min with a constant rotor cage rotary speed of the second-stage classifier, classification precision is increased from 0.64 to 0.67. However, in this case, the final ultrafine powder yield is decreased from 79% to 74%, which means the classification precision and the final ultrafine powder yield can be regulated through adjusting the rotor cage rotary speed of the first-stage classifier. 2) When the rotor cage rotary speed of the second-stage classifier is increased from 2 500 r/min to 3 100 r/min with a constant rotor cage rotary speed of the first-stage classifier, the cut size is decreased from 13.16 μm to 8.76 μm, which means the cut size of the ultrafine powder can be regulated through adjusting the rotor cage rotary speed of the second-stage classifier. 3) When the feeding speed is increased from 35 kg/h to 50 kg/h, the 'fish-hook' effect is strengthened, which makes the ultrafine powder yield decrease. 4) To weaken the 'fish-hook' effect, the equalization of the two-stage wind speeds or the combination of a high first-stage wind speed with a low second-stage wind speed should be selected. This empirical study provides a criterion of process parameter configurations for a two-stage or multi-stage classifier in series, which offers a theoretical basis for practical production.
基金supported by the National Natural Science Foundation of China(No.41202105)the Open Research Foundation of Key Laboratory of Tectonics and Petroleum Resources Ministry of Education,China University of Geoscience(Wuhan)(No.TPR-2010-20)
文摘Chunguang oilfield is a new focus of the exploration in Junnggar Basin with the heavy crude oil distributing in Jurassic, Cretaceous and Tertiary strata. Based on the analysis of the geochemistry and fluid inclusion in the reservoirs, the source, accumulated period and process of the heavy crude oil reservoir has been investigated. The results indicate that the heavy crude oil can be divided into three types based on the degradation and sources. The heavy crude oil was mainly derived from the Permian source rocks, and latterly mixed by the heavy crude oil generated by the Jurassic source rocks. The accumulated period of the heavy crude oil has two stages. One was ranged from Cretaceous to Paleogene and the heavy crude oil was sourced from Permian source rocks of the Shawan depression and latterly mixed by the heavy crude oil generated by the Jurassic source rocks. The second period was from Neogene to present and the heavy crude oil was mainly derived from the Jurassic source rocks. Combined with the geological evolution, the heavy crude oil accumulated process has been recovered.
基金Project(2014ZX04002041)supported by the National Science and Technology Major Project,ChinaProject(51175024)supported by the National Natural Science Foundation of China
文摘Springback of a SUS321 complex geometry part formed by the multi-stage rigid-flexible compound process was studied through numerical simulations and laboratory experiments in this work.The sensitivity analysis was provided to have an insight in the effect of the evaluated process parameters.Furthermore,in order to minimize the springback problem,an accurate springback simulation model of the part was established and validated.The effects of the element size and timesteps on springback model were further investigated.Results indicate that the custom mesh size is beneficial for the springback simulation,and the four timesteps are found suited for the springback analysis for the complex geometry part.Finally,a strategy for reducing the springback by changing the geometry of the blank is proposed.The optimal blank geometry is obtained and used for manufacturing the part.
文摘The practical teaching management system is an important factor to ensure the quality of teaching.The training of systematic thinking needs a systematic teaching system,and a systematic process is a gradual process and a standardized process.This paper discusses the process of establishing a standardized practice teaching system step by step through a progressive way.At the same time,taking test practice as an example,it describes how the practice teaching system enables students to gradually adapt to and benefit from the management of the system.Through project practice,students not only enhance their practical ability,but also learn the standardized practice process.These skills can help students adapt to the work pace of the enterprise faster,and make students’practical ability meet the requirements of the enterprise.
基金financially supported by the National High Technology Research and Development Program of China (863 Program, 2013AA102402)the 521 Talent Project of Zhejiang Sci-Tech University, Chinathe Key Research and Development Program of Zhejiang Province, China (2015C03023)
文摘A survey of the population densities of rice planthoppers is important for forecasting decisions and efficient control. Tra- ditional manual surveying of rice planthoppers is time-consuming, fatiguing, and subjective. A new three-layer detection method was proposed to detect and identify white-backed planthoppers (WBPHs, Sogatella furcifera (Horvath)) and their developmental stages using image processing. In the first two detection layers, we used an AdaBoost classifier that was trained on a histogram of oriented gradient (HOG) features and a support vector machine (SVM) classifier that was trained on Gabor and Local Binary Pattern (LBP) features to detect WBPHs and remove impurities. We achieved a detection rate of 85.6% and a false detection rate of 10.2%. In the third detection layer, a SVM classifier that was trained on the HOG features was used to identify the different developmental stages of the WBPHs, and we achieved an identification rate of 73.1%, a false identification rate of 23.3%, and a 5.6% false detection rate for the images without WBPHs. The proposed three-layer detection method is feasible and effective for the identification of different developmental stages of planthoppers on rice plants in paddy fields.
文摘God depeits occurring in metamorPhaed microclastic rocks are distributed exten-sively at home and abroad. Some deposits of this type are of superlarge tonnage. The formation of gold deposits in metamorphosed microclastic rocks involves three stages: the sedimentary stage, the regionally metamorpphic stage, and the ore-forming stage. At the first stage, microclastic sedimentary source rocks were developed in a relatively semi-enclosed reducing sea basin and were enriched in carbon, sulfur and gold. At the second stage, the gold adsorbed on organic matter and clay minerals was released and poorly concentrated during the destruction of organic matter and the depletion of clay minerals by regional metamorphism with increase temperature and pressre. At the third stage, a tectono-hydrothermal event took place. As a result, gold was leached from metamorphosed microclastic rocks, transported to ore depositional locus and/or mixed with gold of other sources in the course of migration, and finally precipitated as ores. Gold deposits of this type were eventually formed at the third stage, and they also can be classified as the orognic belt type and the activation zone type. The gold deposits occurring in metamorphosed microclastic rocks are the products of reworking processes and the influence of magmatism should be taken into consideration in some cases.
文摘Current research is concerned with the stability of stochastic logistic equation with Ornstein-Uhlenbeck process. First, this research proves that the stochastic logistic model with Ornstein-Uhlenbeck process has a positive solution. After that, it also introduces the sufficient conditions for stochastically stability of stochastic logistic model for cell growth of microorganism in fermentation process for positive equilibrium point by using Lyapunov function. In addition, this research establishes the sufficient conditions for zero solution as mentioned in Appendix A due to the cell growth of microorganism μmax, which cannot be negative in fermentation process. Furthermore, for numerical simulation, current research uses the 4-stage stochastic Runge-Kutta (SRK4) method to show the reality of the results.