期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Review on long-period stacking-ordered structures in Mg-Zn-RE alloys 被引量:14
1
作者 Lu, Fumin Ma, Aibin +2 位作者 Jiang, Jinghua Yang, Donghui Zhou, Qi 《Rare Metals》 SCIE EI CAS CSCD 2012年第3期303-310,共8页
The recent development of high-strength magnesium alloys is focused on the role of the strengthening phases with a novel long-period stacking-ordered (LPSO) structure. This review detailed the main factors influencing... The recent development of high-strength magnesium alloys is focused on the role of the strengthening phases with a novel long-period stacking-ordered (LPSO) structure. This review detailed the main factors influencing the formation of LPSO phases, including alloying ele-ments, preparation methods, and heat treatments. Furthermore, process control in structure types, formation and transformation behavior, strengthening and toughening mechanisms of the LPSO phase were discussed. Finally, the current problems and development trends of high-strength Mg-Zn-RE alloys were also put forward. 展开更多
关键词 magnesium alloys long-period stacking-ordered (LPSO) structure formation TRANSFORMATION strengthening mechanisms
在线阅读 下载PDF
Achieving high strength-ductility synergy in a Mg_(97)Y_(1)Zn_(1)Ho_(1) alloy via a nano-spaced long-period stacking-ordered phase 被引量:7
2
作者 Mingyu Fan Ye Cui +5 位作者 Yang Zhang Xinghao Wei Xue Cao Peter K.Liaw Yuansheng Yang Zhongwu Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第4期1321-1331,共11页
Achieving high strength in Mg alloys is usually accompanied by ductility loss.Here,a novel Mg97Y1Zn1Ho1 at.%alloy with a yield strength of 403 MPa and an elongation of 10%is developed.The strength-ductility synergy is... Achieving high strength in Mg alloys is usually accompanied by ductility loss.Here,a novel Mg97Y1Zn1Ho1 at.%alloy with a yield strength of 403 MPa and an elongation of 10%is developed.The strength-ductility synergy is obtained by a comprehensive strategy,including a lamella bimodal microstructure design and the introduction of nano-spaced solute-segregated 14H long-period stacking-ordered phase(14H LPSO phase)through rare-earth Ho alloying.The lamella bimodal microstructure consists of elongated un-recrystallized(un-DRXed)coarse grains and fine dynamically-recrystallized grains(DRXed regions).The nano-spaced solute-segregated 14H LPSO phase is distributed in DRXed regions.The outstanding yield strength is mainly contributed by grain-boundary strengthening,18R LPSO strengthening,and fiberlike reinforcement strengthening from the nano-spaced 14H LPSO phase.The high elongation is due primarily to the combined effects of the bimodal and lamellar microstructures through enhancing the work-hardening capability. 展开更多
关键词 Mg wrought alloy Mechanical properties Long-period stacking-ordered(LPSO)phase Age-strengthening behavior Strengthening mechanism
在线阅读 下载PDF
Formation mechanism of cluster-arranged layers in Mg-Y-Zn alloy:A density functional theory study
3
作者 Ryosuke Matsumoto Naoki Uemura 《Journal of Magnesium and Alloys》 2025年第8期3702-3712,共11页
A sparsely introduced basal intrinsic 2-type stacking fault(I_(2)-SF)with a dense segregation of clusters(cluster-arranged layer;CAL)inα-Mg exerts a sufficient strengthening effect with a reduced content of additive ... A sparsely introduced basal intrinsic 2-type stacking fault(I_(2)-SF)with a dense segregation of clusters(cluster-arranged layer;CAL)inα-Mg exerts a sufficient strengthening effect with a reduced content of additive elements.Moreover,the dynamic nucleation and growth of CALs during deformation largely improves the creep resistance.This paper analyzes the cosegregation behaviors of yttrium(Y)and zinc(Zn)atoms at an I_(2)-SF in bulk and at basal edge dislocations using density functional theory calculations.We also study the modification of the generalized stacking-fault energy(GSFE)curves associated with the cosegregation.The segregation energies of Y and Zn atoms in the I_(2)-SF are relatively small during the initial segregation of a cluster,but increases stepwise as the cluster grows.After introducing Y and Zn atoms in the I_(2)-SF in an energetically stable order,we obtain an L1_(2)-type cluster resembling that reported in the literature.Small structural changes driven by vacancy diffusion produce an exact L1_(2)-type cluster.Meanwhile,the core of the Shockley partial dislocation generates sufficient segregation energy for cluster nucleation.Migration of the Shockley partial dislocation and expansion of the I_(2)-SF part are observed at a specific cluster size.The migration is triggered by a large modification of the GSFE curve and destabilization of the hexagonal close-packed stacking(hcp)by the segregated atoms.At this point,the cluster has reached sufficient size and continues to follow the growth in the I_(2)-SF part.According to our findings,the CAL at elevated temperature is formed through repeated synchronized behavior of cluster nucleation at the Shockley partial dislocation,dislocation migration triggered by the destabilized hcp stacking,and following of cluster growth in the I_(2)-SF part of the dislocation. 展开更多
关键词 Generalized stacking-fault energy Basal dislocation Segregation Density functional theory Long-period stacking-ordered phase Cluster-arranged layer
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部