Reptile fauna should be considered a conservation objective,especially in respect of the impacts of climate change on their distribution and range’s dynamics.Investigating the environmental drivers of reptile species...Reptile fauna should be considered a conservation objective,especially in respect of the impacts of climate change on their distribution and range’s dynamics.Investigating the environmental drivers of reptile species richness and identifying their suitable habitats is a fundamental prerequisite to setting efficient long-term conservation measures.This study focused on geographical patterns and estimations of species richness for herpetofauna widely spread Z.vivipara,N.natrix,V.berus,A.colchica,and protected in Latvia C.austriaca,E.orbicularis,L.agilis inhabiting northern(model territory Latvia)and southern(model territory Ukraine)part of their European range.The ultimate goal was to designate a conservation network that will meet long-term goals for survival of the target species in the context of climate change.We used stacked species distribution models for creating maps depicting the distribution of species richness under current and future(by 2050)climates for marginal reptilepopulations.Using cluster analysis,we showed that this herpeto-complex can be divided into“widespread species”and“forest species”.For all forest species we predicted a climate-driven reduction in their distribution range both North(Latvia)and South(Ukraine).The most vulnerable populations of“forest species”tend to be located in the South of their range,as a consequence of northward shifts by 2050.By 2050 the greatest reduction in range is predicted for currently widely spread Z.vivipara(by 1.4 times)and V.berus(by 2.2 times).In terms of designing an effective protected-area network,these results permit to identify priority conservation areas where the full ensemble of selected reptile species can be found,and confirms the relevance of abioticmulti-factor GIS-modelling for achieving this goal.展开更多
Yunnan's biodiversity is under considerable pressure and subtropical evergreen broad-leaved forests in this area have become increasingly fragmented through agriculture,logging,planting of economic plants,mining a...Yunnan's biodiversity is under considerable pressure and subtropical evergreen broad-leaved forests in this area have become increasingly fragmented through agriculture,logging,planting of economic plants,mining activities and changing environment.The aims of the study are to investigate climate changeinduced changes of subtropical evergreen broad-leaved forests in Yunnan and identify areas of current species richness centers for conservation preparation.Stacked species distribution models were created to generate ensemble forecasting of species distributions,alpha diversity and beta diversity for Yunnan's subtropical evergreen broad-leaved forests in both current and future climate scenarios.Under stacked species distribution models in rapid climate changes scenarios,changes of water-energy dynamics may possibly reduce beta diversity and increase alpha diversity.This point provides insight for future conservation of evergreen broad-leaved forest in Yunnan,highlighting the need to fully consider the problem of vegetation homogenization caused by transformation of water-energy dynamics.展开更多
文摘Reptile fauna should be considered a conservation objective,especially in respect of the impacts of climate change on their distribution and range’s dynamics.Investigating the environmental drivers of reptile species richness and identifying their suitable habitats is a fundamental prerequisite to setting efficient long-term conservation measures.This study focused on geographical patterns and estimations of species richness for herpetofauna widely spread Z.vivipara,N.natrix,V.berus,A.colchica,and protected in Latvia C.austriaca,E.orbicularis,L.agilis inhabiting northern(model territory Latvia)and southern(model territory Ukraine)part of their European range.The ultimate goal was to designate a conservation network that will meet long-term goals for survival of the target species in the context of climate change.We used stacked species distribution models for creating maps depicting the distribution of species richness under current and future(by 2050)climates for marginal reptilepopulations.Using cluster analysis,we showed that this herpeto-complex can be divided into“widespread species”and“forest species”.For all forest species we predicted a climate-driven reduction in their distribution range both North(Latvia)and South(Ukraine).The most vulnerable populations of“forest species”tend to be located in the South of their range,as a consequence of northward shifts by 2050.By 2050 the greatest reduction in range is predicted for currently widely spread Z.vivipara(by 1.4 times)and V.berus(by 2.2 times).In terms of designing an effective protected-area network,these results permit to identify priority conservation areas where the full ensemble of selected reptile species can be found,and confirms the relevance of abioticmulti-factor GIS-modelling for achieving this goal.
基金Acknowledgments The authors thank Ming-Gang Zhang and Katharina Filz for suggestions about problem of multicollinearity and thank Damien Georges for suggestions about modeling.
文摘Yunnan's biodiversity is under considerable pressure and subtropical evergreen broad-leaved forests in this area have become increasingly fragmented through agriculture,logging,planting of economic plants,mining activities and changing environment.The aims of the study are to investigate climate changeinduced changes of subtropical evergreen broad-leaved forests in Yunnan and identify areas of current species richness centers for conservation preparation.Stacked species distribution models were created to generate ensemble forecasting of species distributions,alpha diversity and beta diversity for Yunnan's subtropical evergreen broad-leaved forests in both current and future climate scenarios.Under stacked species distribution models in rapid climate changes scenarios,changes of water-energy dynamics may possibly reduce beta diversity and increase alpha diversity.This point provides insight for future conservation of evergreen broad-leaved forest in Yunnan,highlighting the need to fully consider the problem of vegetation homogenization caused by transformation of water-energy dynamics.