文摘董志塬地区位于黄土高原中心地带,滑坡灾害频发,亟需明确滑坡易发性分区,以支持该区域滑坡隐患的科学防控。因此,本文以董志塬为研究区,选取高程、坡向和NDVI等12个影响因素作为评价因子,基于频率比(frequency ratio,FR)模型,结合随机森林(random forest,RF)与人工神经网络(artificial neural network,ANN)模型开展滑坡静态易发性评价,并分析各因子对评价精度的贡献。结果表明,FRRF和FR-ANN模型的曲线下面积(area under the curve,AUC)值分别为0.922和0.918,表明FR-RF模型在董志塬滑坡易发性评价中的精度更高。坡度、坡向和道路密度对滑坡易发性的贡献率分别为16.7%、15.3%和1.4%。为克服地形复杂和数据更新滞后的问题,本文将FR-RF模型的易发性结果与InSAR Stacking结果相结合,将静态滑坡易发性评价精度由6.9%提升到8.1%。动态易发性结果表明,董志塬滑坡高易发区主要分布于河流沿岸,占总面积的6.5%,该区域的滑坡数量占总滑坡数的23.6%,滑坡密度15.7个/km^(2)。低易发区主要位于远离河流的中部区域,占总面积的81.7%,滑坡数量占总滑坡数的57.8%,滑坡密度4.7个/km^(2)。本研究通过融合InSAR Stacking方法,解决了静态滑坡易发性评价数据更新滞后问题,减少了假阴性错误,为传统滑坡易发性评价赋予了时效性,可以实现董志塬滑坡易发性动态评价,为灾害防治提供了重要数据支持。