期刊文献+
共找到406篇文章
< 1 2 21 >
每页显示 20 50 100
Mechanical property and anisotropy of as-extruded Mg-Zn-Y-Mn alloys with different volume fraction of long-period stacking ordered(LPSO)phase 被引量:3
1
作者 Dahui Liang Mincong Chen +3 位作者 Chuanqiang Li Zhipei Tong Yong Dong Dong Bian 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第12期2259-2269,I0003,共12页
Effects of different volume fraction of long-period stacking ordered(LPSO)phase on the microstructure,mechanical property and anisotropy of the as-extruded Mg-xZn-yY-0.1Mn(x=1 wt%,2 wt%,4 wt%and y=2 wt%,4 wt%,8 wt%)al... Effects of different volume fraction of long-period stacking ordered(LPSO)phase on the microstructure,mechanical property and anisotropy of the as-extruded Mg-xZn-yY-0.1Mn(x=1 wt%,2 wt%,4 wt%and y=2 wt%,4 wt%,8 wt%)alloys were studied by an optical microscope,a scanning electron microscope,texture analysis,a transmission electron microscope and tensile testing.The results reveal that the volume fraction of LPSO phase increases from ZW12 to ZW24 to ZW48 alloys with the elevating Zn and Y content but constant Y/Zn value,and the mechanical strength of the LPSO-containing Mg-Zn-Y-Mn system is gradually improved when increasing LPSO phases.With the highest volume fraction of LPSO phase,ZW48 alloy presents the highest ultimate tensile strength(UTS)of 427 MPa along the extrusion direction(ED)when compared with those of ZW12 alloy with the UTS of 307 MPa and ZW24 alloy with the UTS of 347 MPa.Moreover,the elongation ratio of ZW48 alloy is maintained to moderate 9.9%,which is also the highest among three studied alloys.On the other hand,texture analysis demonstrates that the basal texture of the a-Mg phase in the ZW48 alloy is significantly weakened by the generation of more LPSO phases.On the contrary,a high texture intensity of a-Mg phase and obvious mechanical anisotropy can be observed for the ZW12 alloy.However,mechanical anisotropy still exists in the ZW48 alloy containing massive LPSO phases,which is attributed primarily to the zonal distribution of large LPSO along the ED. 展开更多
关键词 Microstructure Mg-Zn-Y-Mn alloy lpso phase Texture Mechanical anisotropy Rare earths
原文传递
The influence of heat-treatment on regulating the content and morphology of LPSO phase in Mg-Y-Al alloy and its strengthening mechanism at room temperature
2
作者 Qianlong Ren Jie Mi +2 位作者 Jinhui Wang Shengquan Liang Yunzhao Feng 《Journal of Magnesium and Alloys》 2025年第9期4412-4429,共18页
The LPSO phase can effectively enhance the mechanical properties of Mg alloys.To investigate the impact of different LPSO phase contents and morphologies on the mechanical properties and strengthening mechanisms of Mg... The LPSO phase can effectively enhance the mechanical properties of Mg alloys.To investigate the impact of different LPSO phase contents and morphologies on the mechanical properties and strengthening mechanisms of Mg-Y-Al alloys under room temperature deformation,this study prepared Mg-12Y-1Al(WA121)alloys containing Bulk-LPSO(B-LPSO),Lattice-LPSO(L-LPSO),and Needle-like LPSO(N-LPSO)with different contents through different heat-treatment processes.The results indicate that with the increase in heat treatment time,the contents of B-LPSO phases remain essentially unchanged,and the contents of L-LPSO and N-LPSO phases gradually increase.The increase in N-LPSO phase content is the most pronounced,with the highest content(7.29%)observed in the alloy treated for 4.5 h.Moreover,the alloy treated for 4.5 h exhibits the best mechanical properties,with ultimate tensile strength(UTS),tensile yield strength(TYS),and elongation(EL)values of 177 MPa,139 MPa,and 4.27%,respectively.Compared to the as-cast alloy,UTS,TYS,and EL increased by 9.94%,11.2%,and 27.1%,respectively.The study reveals that all three LPSO phases exhibit excellent dislocation hindering effects,effectively enhancing strength of the alloy.Additionally,the N-LPSO phase,due to its dense distribution,forms numerous dislocation channels within the grains,dispersing stress concentration within the grains to improve plasticity of the alloy.Furthermore,the interaction between the N-LPSO phase and the other phases in the alloy can also enhance plasticity of the alloy.Therefore,the alloy treated for 4.5 h demonstrates a synergistic improvement in strength and plasticity.Research has revealed that the precipitation mechanism of the N-LPSO phase in the as-cast WA121 alloy involves the formation of an Al-rich region adjacent to the needle-like Mg_(24)Y_(5) phase.Subsequently,the Y element provided by the dissolving Mg_(24)Y_(5) phase reacts with this region,ultimately leading to the formation of the needle-like LPSO phase. 展开更多
关键词 Mg alloy lpso phase Heat-treatment Mechanical property Strengthening mechanism
在线阅读 下载PDF
Needle-like χ phase precipitation induced by stacking fault in novel Co-based superalloys
3
作者 Qiu-zhi GAO Jun-ru WANG +4 位作者 Xu-ming ZHANG Qing-shuang MA Song-lin LI Hui-jun LI Hong-tao ZHU 《Transactions of Nonferrous Metals Society of China》 2025年第10期3402-3413,共12页
To explain the precipitation mechanism ofχphase in Co-based superalloys,the microstructural evolution of Co−Ti−Mo superalloys subjected to aging was investigated by X-ray diffraction(XRD),scanning electron microscope... To explain the precipitation mechanism ofχphase in Co-based superalloys,the microstructural evolution of Co−Ti−Mo superalloys subjected to aging was investigated by X-ray diffraction(XRD),scanning electron microscope(SEM)and transmission electron microscope(TEM).The results show that the needle-likeχphase is mainly composed ofD0_(19)-Co_(3)(Ti,Mo),which is transformed from L1_(2-γ′)phase,and a specific orientation relationship exists between them.χphase is nucleated through the shearing ofγ′phase due to the influence of stacking fault.The crystal orientation relationship between L1_(2) andD0_(19)can be confirmed as{111}L1_(2)//{0001}_(D0_(19)),and<112>_(L1_(2))//<1100>_(D0_(19)).The growth ofD0_(19-χ)phase depends on the diffusions of Ti and Mo,and consumes a large number of elements.This progress leads to the appearance ofγ′precipitation depletion zone(PDZ)aroundD0_(19-χ)phase.The addition of Ni improves the stability of L1_(2-γ′)phase and the mechanical properties of Co-based superalloys. 展开更多
关键词 Co-based superalloy χphase precipitation γ′phase stacking fault crystal orientation relationship
在线阅读 下载PDF
Microstructure evolution and mechanical properties of Mg−Gd−Zn alloy with and without LPSO phase processed by multi-directional forging
4
作者 Jing-yi HUANG Yao-ling LIU +3 位作者 Yu-xiang HAN Ying-chun WAN Chu-ming LIU Zhi-yong CHEN 《Transactions of Nonferrous Metals Society of China》 2025年第4期1075-1091,共17页
The homogenized Mg−5.6Gd−0.8Zn(wt.%)alloys were treated with water cooling and furnace cooling to obtain specimens without and with the 14H long-period stacking ordered(LPSO)phase.Subsequently,multi-directional forgin... The homogenized Mg−5.6Gd−0.8Zn(wt.%)alloys were treated with water cooling and furnace cooling to obtain specimens without and with the 14H long-period stacking ordered(LPSO)phase.Subsequently,multi-directional forging(MDF)experiments were carried out.The microstructure and mechanical properties of different regions(the center,middle and edge regions)in the MDFed alloys were systematically investigated,and the effect of LPSO phase on them was discussed.The results show that the alloys in different regions undergo significant grain refinement during the MDF process.Inhomogeneous microstructures with different degrees of dynamic recrystallization(DRX)are formed,resulting in microhardness heterogeneity.The alloy with the LPSO phase has higher microstructure homogeneity,a higher degree of recrystallization,and better comprehensive mechanical properties than the alloy without the LPSO phase.The furnace-cooled alloy after 18 passes of MDF has the best comprehensive mechanical properties,with an ultimate compressive strength of 488 MPa,yield strength of 258 MPa,and fracture strain of 21.2%.DRX behavior is closely related to the LPSO phase and deformation temperature.The kinked LPSO phase can act as a potential nucleation site for DRX grains,while the fragmented LPSO phase promotes DRX nucleation through the particle-stimulated nucleation mechanism. 展开更多
关键词 Mg−Gd−Zn alloy multi-directional forging lpso phase twinning kink dynamic recrystallization
在线阅读 下载PDF
Induction mechanisms of high-density nano twins during solidification process:Reducing stacking fault energy ofγphase by Re and forming highly mismatched B2(Re)/α_(2)interface
5
作者 Kexuan Li Hongze Fang +4 位作者 Lingyan Zhou Xiaokang Yang Xianfei Ding Yongchun Zou Ruirun Chen 《Journal of Materials Science & Technology》 2025年第13期269-284,共16页
It is extremely difficult to introduce high-density nano twins during the solidification process of TiAl alloy.In this study,high-density nanotwins are inducted in the as-cast Ti48Al2Cr alloyed by adding Re element.Ph... It is extremely difficult to introduce high-density nano twins during the solidification process of TiAl alloy.In this study,high-density nanotwins are inducted in the as-cast Ti48Al2Cr alloyed by adding Re element.Phase transformation,morphology characteristics of nano twins,compressive and tensile proper-ties,and the related mechanisms have been studied.Results show that B2 phase enriched with Re tends to precipitate along theα_(2)/γinterface within lamellar colony.The stacking fault energy(SFE)ofγphase decreases from 43 mJ/m^(2) to 16 mJ/m^(2) as Re content increases from 0 at.%to 0.6 at.%,decreasing the crit-ical shear stress for twin formation.Compared to the mismatch value ofα_(2)/γinterface(0.004),which of B2/α_(2) and B2/γinterfaces increase to 0.247 and 0.149,respectively.Driven by high interfacial stress,high-density dislocations are generated at the B2/α_(2) interface,providing the dislocation slip channel for the formation of stacking faults(SFs)and nanotwins at the B2/γinterface.Therefore,the mechanism of inducting high-density nanotwins is to reduce the stacking fault energy ofγphase by Re and form highly mismatched B2/α_(2) interface.Compressive strength and the strain increase from 1723 MPa to 2398 MPa and 29%to 39%as Re content increases from 0 at.%to 0.6 at.%,respectively.Tensile strength increases from 356 MPa to 452 MPa without sacrificing plasticity.The improvement in strength and plasticity are attributed to the nano-twinning strengthening and interfacial thermal mismatch strengthening.Forming nanotwins during solidification process serve as the nucleation sites for newly formed twins during de-formation process,increasing the deformation tolerance of TiAl alloy. 展开更多
关键词 TiAl alloy NANOTWINS stacking fault energy phase interface Microstructure evolution Mechanical properties
原文传递
Deep Learning-based InSAR Phase Gradient Stacking Method for Mapping Active Geohazards in the Lower Yarlung Tsangpo,China
6
作者 LI Bin LIU Xiaojie +6 位作者 ZHAO Chaoying GAO Yang WANG Wenda Roberto TOMÁS WANG Baohang CHEN Liquan YIN Yueping 《Acta Geologica Sinica(English Edition)》 2025年第5期1477-1493,共17页
The lower Yarlung Tsangpo River basin of the Qinghai-Tibet Plateau frequently experiences geo-hazardous occurrences such as landslides,ice/rock avalanches and debris flows,causing loss of human lives and damage to inf... The lower Yarlung Tsangpo River basin of the Qinghai-Tibet Plateau frequently experiences geo-hazardous occurrences such as landslides,ice/rock avalanches and debris flows,causing loss of human lives and damage to infrastructure.However,a comprehensive inventory map of geohazards is lacking for this region,due to the extreme challenges of the geomorphological and environmental conditions(i.e.,steep terrain,dense vegetation cover,and the presence of ice and snow).To this end,we propose a novel approach for mapping active geohazards in complex mountainous regions through InSAR phase gradient measurements based on a deep learning algorithm,which is then applied to the lower Yarlung Tsangpo River basin for the first time,in order to prepare an inventory map of active geohazards using ascending and descending Sentinel-1 SAR images acquired between March 2017 and July 2023.First,the InSAR phase gradient stacking method was introduced to estimate ground deformation,which offers significant advantages in minimizing the influence of InSAR decorrelation and effectively suppressing topographic residuals and atmospheric delays.InSAR phase gradient rates effectively retrieve patterns of localized ground deformation associated with geohazard activity.Then,a DeepLabv3 deep learning model was established and trained with phase gradient rate maps of manually labeled geohazards,in order to achieve the automatic identification of active geohazards.Our results show that there are 277 active geohazards within the lower Yarlung Tsangpo River basin,encompassing an area of~25600 km^(2).The DeepLabv3 model achieved good precision,recall rate and F1 scores at 92,86 and 90%,respectively.The distribution of detected geohazards is closely correlated with the topographic factors,faults and river system.Compared to the results derived from Small Baseline Subset InSAR(SBAS-InSAR)and optical images,the proposed approach can obtain high density pixels of InSAR measurement in low-coherence scenarios,thus enabling high-accuracy mapping of active geohazards in complex mountainous areas. 展开更多
关键词 GEOHAZARDS INSAR deep learning Yarlung Tsangpo phase gradient stacking Qinghai-Tibet Plateau
在线阅读 下载PDF
Achieving high-strength and high-damping Mg−Gd−Y−Zn−Zr−Nd alloy by regulating LPSO andβ′phases
7
作者 Cong DANG Jing-feng WANG +7 位作者 Jin-xing WANG Di YU Wen-xuan ZHENG Chang-bing XU Zi-hong WANG Le FENG Xian-hua CHEN Fu-sheng PAN 《Transactions of Nonferrous Metals Society of China》 2025年第4期1092-1108,共17页
Suitable heat treatment processes were adopted to regulate the precipitation of the lamellar LPSO phase andβ′phase in Mg−Gd−Y−Zn−Zr−Nd alloy.The effects of lamellar LPSO phase andβ′phase on the mechanical properti... Suitable heat treatment processes were adopted to regulate the precipitation of the lamellar LPSO phase andβ′phase in Mg−Gd−Y−Zn−Zr−Nd alloy.The effects of lamellar LPSO phase andβ′phase on the mechanical properties and damping capacity of the alloy were studied systematically.Experimental results demonstrate that the lamellar LPSO phase is more conducive to dynamic recrystallization processes,leading to a high degree of recrystallization and a weak texture intensity,resulting in a higher plasticity and damping capacity.After aging treatment,theβ′precipitates exhibit pronounced aging strengthening and increase the number of mobile interfaces,thus enhancing the strength and damping capacity at the same time.Through regulating lamellar LPSO and agedβ′phase,the alloy achieves high strength and high damping capacity:ultimate tensile strength of 498 MPa,yield strength of 371 MPa and damping capacity of 0.02 at strain amplitude of 1×10^(−3). 展开更多
关键词 Mg−Gd−Y−Zn−Zr−Nd alloy strength damping capacity β'precipitates lpso phase
在线阅读 下载PDF
Nanomechanics of Mg-Gd-Y-Nd-Zn alloy with LPSO and MgRE phases 被引量:4
8
作者 H.Vafaeenezhad S.Aliakbari-Sani +2 位作者 A.Kalaki G.R.Ebrahimi J.Hirsch 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第8期3370-3393,共24页
The mechanical properties of two main precipitating phases(LPSO and MgRE)and matrix in Mg-Gd-Y-Nd-Zn bioalloy were examined using nanoindentation method.A new is suggested for characterizing the elastic-plastic behavi... The mechanical properties of two main precipitating phases(LPSO and MgRE)and matrix in Mg-Gd-Y-Nd-Zn bioalloy were examined using nanoindentation method.A new is suggested for characterizing the elastic-plastic behavior,fracture toughness and strain rate sensitivity(SRS)of materials within micro/nanoscale.Firstly,a nanomechanical model was developed for extracting hardness(H),young’s modulus(E)and yield stress(σY)from the characteristic load points which were subsequently analyzed by atomic force microscope(AFM)images.The elasticity data and AFM data were then utilized for determination of plastic deformation in constituent phases.The displacement of the indentation gets the highest value for Mg matrix and between precipitates,depth is more in LPSO rather than that of MgRE.The serrated flow or the behavior of shear bands may originate from the side effect of the interface region in Mg alloys with precipitates.It can be deduced that the KIC produced by both L method and energy-based calculation are both reliable for KIC approximation.The maximum load in simulation withμ=0.2 friction is marginally lesser than that of the frictionless(μ=0)one while elastic recovery of indentation withμ=0.2 is higher to some extent. 展开更多
关键词 Long period stacking ordered(lpso)phase NANOINDENTATION Elastic-plastic behavior Finite element method(FEM) Fracture toughness Strain rate sensitivity(SRS)
在线阅读 下载PDF
Achieving exceptionally high strength and rapid degradation rate of Mg-Er-Ni alloy by strengthening with lamellar γ' and bulk LPSO phases 被引量:5
9
作者 Chaoneng Dai Jingfeng Wang +7 位作者 Yuanlang Pan Kai Ma Yinhong Peng Ye Wang Danqian Wang Chunhua Ran Jinxing Wang Yanlong Ma 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第1期88-102,共15页
As-extruded Mg-Er-Ni alloys with different volume fractions of long-period stacking ordered(LPSO)phase and density of lamellar γ' phase were prepared,and the microstructure,mechanical,and degradation properties w... As-extruded Mg-Er-Ni alloys with different volume fractions of long-period stacking ordered(LPSO)phase and density of lamellar γ' phase were prepared,and the microstructure,mechanical,and degradation properties were investigated.Coupling the bulk LPSO phase and the lamellar γ' phase,and controlling the dynamic recrystallization processes during deformation by adjusting the volume fraction of LPSO and the density of the γ' phase,a synergistic increase in strength and degradation rate can be achieved.On the one hand,the increase in corrosion rate was related to the increased volume fraction of the bulk LPSO phase and the densities of the lamellar γ' phase,which provide more galvanic corrosion.Moreover,high densities of the lamellar γ' phase can provide more corrosion interface by inhibiting the recrystallization process to refine dynamic recrystallized(DRXed)grains during the hot extrusion.On the other hand,the ultimate tensile strength(UTS)and tensile yield strength(TYS)of the Mg-Er-Ni alloy increased from 345 and 265 MPa to 514 MPa and 358 MPa,respectively,which was mainly attributed to grain boundary and texture strengthening,bulk LPSO phase and lamellar γ' phase strengthening.Overall,Mg^(-1)4Er-4Ni alloy,which contains the highest volume fraction bulk LPSO phase and the densities of lamellar γ' phase,re-alized a synergistic enhancement of strength and degradation rate.The UTS,TYS,and degradation rate of Mg^(-1)4Er-4Ni were 514 MPa,358 MPa,and 142.5 mg cm^(-2)h^(-1)(3 wt%KCl solution at 93◦C),respectively.This research provides new insight into developing Mg alloys with high strength and degradation rates for fracturing tool materials in the application of oil and gas exploitation in harsh environments. 展开更多
关键词 Mg-Er-Ni alloy Lamellarγ'and bulk lpso phases Rapid degradation rate High strength Mechanical and corrosion mechanism
原文传递
Deformation behavior of Mg-Y-Ni alloys containing different volume fraction of LPSO phase during tension and compression through in-situ synchrotron diffraction 被引量:2
10
作者 S.Z.Wu Y.Q.Chi +4 位作者 G.Garces X.H.Zhou H.G.Brokmeier X.G.Qiao M.Y.Zheng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第9期3631-3645,共15页
The deformation behavior of the as-extruded Mg-Y-Ni alloys with different volume fraction of long period stacking ordered(LPSO)phase during tension and compression was investigated by in-situ synchrotron diffraction.T... The deformation behavior of the as-extruded Mg-Y-Ni alloys with different volume fraction of long period stacking ordered(LPSO)phase during tension and compression was investigated by in-situ synchrotron diffraction.The micro-yielding,macro-yielding,tension-compression asymmetry and strain hardening behavior of the alloys were explored by combining with deformation mechanisms.The micro-yielding is dominated by basal slip of dynamic recrystallized(DRXed)grains in tension,while it is dominated by extension twinning of non-dynamic recrystallized(non-DRXed)grains in compression.At macro-yielding,the non-DRXed grains are still elastic deformed in tension and the basal slip of DRXed grains in compression are activated.Meanwhile,the LPSO phase still retains elastic deformation,but can bear more load,so the higher the volume fraction of hard LPSO phase,the higher the tensile/compressive macro-yield strength of the alloys.Benefiting from the low volume fraction of the non-DRXed grains and the delay effect of LPSO andγphases on extension twinning,the as-extruded alloys exhibit excellent tension-compression symmetry.When the volume fraction of LPSO phase reaches∼50%,tension-compression asymmetry is reversed,which is due to the fact that the LPSO phase is stronger in compression than in tension.The tensile strain hardening behavior is dominated by dislocation slip,while the dominate mechanism for compressive strain hardening changes from twinning in theα-Mg grains to kinking of the LPSO phase with increasing volume fraction of LPSO phase.The activation of kinking leads to the constant compressive strain hardening rate of∼2500 MPa,which is significantly higher than the tensile strain hardening rate. 展开更多
关键词 Mg-Y-Ni alloys lpso phase In-situ synchrotron diffraction Micro-yielding Tensile-compression asymmetry Strain hardening
在线阅读 下载PDF
Microstructure and damping properties of LPSO phase dominant Mg-Ni-Y and Mg-Zn-Ni-Y alloys 被引量:2
11
作者 Ruopeng Lu Kai Jiao +3 位作者 Nanting Li Hua Hou Jingfeng Wang Yuhong Zhao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1131-1153,共23页
This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period ... This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period stacked ordered(LPSO)phase in the two alloys during heat treatment was the focus.The morphology of the as-cast Mg_(95.34)Ni_(2)Y_(2.66)presented a disordered network.After heat treatment at 773 K for 2 hours,the eutectic phase was integrated into the matrix,and the LPSO phase maintained the 18R structure.As Zn partially replaced Ni,the crystal grains became rounded in the cast alloy,and lamellar LPSO phases and more solid solution atoms were contained in the matrix after heat treatment of the Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloy.Both Zn and the heat treatment had a significant effect on damping.Obvious dislocation internal friction peaks and grain boundary internal friction peaks were found after temperature-dependent damping of the Mg_(95.34)Ni_(2)Y_(2.66)and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys.After heat treatment,the dislocation peak was significantly increased,especially in the alloy Mg_(95.34)Ni_(2)Y_(2).66.The annealed Mg_(95.34)Ni_(2)Y_(2.66)alloy with a rod-shaped LPSO phase exhibited a good damping performance of 0.14 atε=10^(−3),which was due to the difference between the second phase and solid solution atom content.These factors also affected the dynamic modulus of the alloy.The results of this study will help in further development of high-damping magnesium alloys. 展开更多
关键词 Mg-Ni-Y alloys Mg-Zn-Ni-Y alloys lpso phase Heat treatment MICROSTRUCTURE Damping properties.
在线阅读 下载PDF
A new insight into LPSO phase transformation and mechanical properties uniformity of large-scale Mg-Gd-Y-Zn-Zr alloy prepared by multi-pass friction stir processing 被引量:1
12
作者 Xiaohu Guan Wen Wang +7 位作者 Ting Zhang Pai Peng Qiang Liu Peng Han Ke Qiao Jun Cai Liqiang Wang Kuaishe Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期2041-2056,共16页
A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long peri... A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long period stacking ordered(LPSO)phase were characterized,and the mechanical properties uniformity was investigated.Moreover,a quantitative relationship between the microstructure and tensile yield strength was established.The results showed that the grains in the processed zone(PZ)and interfacial zone(IZ)were refined from 50μm to 3μm and 4μm,respectively,and numerous original LPSO phases were broken.In IZ,some block-shaped 18R LPSO phases were transformed into needle-like 14H LPSO phases due to stacking faults and the short-range diffusion of solute atoms.The severe shear deformation in the form of kinetic energy caused profuse stacking fault to be generated and move rapidly,greatly increasing the transformation rate of LPSO phase.After MFSP,the ultimate tensile strength,yield strength and elongation to failure of the large-scale plate were 367 MPa,305 MPa and 18.0% respectively.Grain refinement and LPSO phase strengthening were the major strengthening mechanisms for the MFSP sample.In particularly,the strength of IZ was comparable to that of PZ because the strength contribution of the 14H LPSO phase offsets the lack of grain refinement strengthening in IZ.This result opposes the widely accepted notion that IZ is a weak region in MFSP-prepared large-scale fine-grained plate. 展开更多
关键词 Friction stir processing MULTI-PASS Mg-Gd-Y-Zn-Zr alloy lpso phase transformation Mechanical properties
在线阅读 下载PDF
Implementation of Balanced Strength and Toughness of VW93A Rare-Earth Magnesium Alloy with Regulating the Overlapping Structure of Lamellar LPSO Phase and β′Phase
13
作者 Chao Wang Xi Zhao +1 位作者 Yayun He Dingxia Zheng 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第10期1735-1751,共17页
Although extensive research has been conducted on the strengthening mechanism of rare-earth magnesium alloys,achieving a balance between strength and toughness has proven challenging.This paper introduces a method for... Although extensive research has been conducted on the strengthening mechanism of rare-earth magnesium alloys,achieving a balance between strength and toughness has proven challenging.This paper introduces a method for regulating the overlapping structure of the lamellar long-period stacking ordered(LPSO)phase andβ′phase to achieve a balance between strength and toughness in the alloy.By focusing on the extruded VW93A alloy cabin component,the study delves into the mechanism of the alloy's strength and toughness through a comparative analysis of the microstructure characteristics and room-temperature mechanical properties of the alloys in various states.Additionally,the molecular dynamics simulation is employed to clarify the mechanism of the alloy's strength and toughness balance induced by the overlapping structure.The findings reveal that when theβ′phase precipitates in the alloy alone,a significant increase in strength is achieved by pinning dislocations,albeit at the expense of reduced plasticity.Conversely,the presence of the lamellar LPSO phase disperses dislocations between the LPSO phase lamellae,thereby enhancing plasticity by avoiding stress concentration resulting from dislocation stacking.When both phases coexist in the alloy and form an overlapping structure,the dispersion of dislocations due to the lamellar LPSO phase weakens the pinning effect of theβ′phase,further reducing dislocation stacking and resulting in a balance of strength and toughness in the alloy.Ultimately,the alloy with the overlapping structure exhibits an ultimate tensile strength and elongation of 421 MPa and 20.1%,respectively. 展开更多
关键词 Extrusion Rare-earth magnesium alloys Cabin component Long-period stacking ordered(lpso)phase β'phase Molecular dynamics simulations
原文传递
High-Temperature Stability of Mg-1Al-12Y Alloy Containing LPSO Phase and Mechanism of Its Portevin-Le Chatelier(PLC)Effect
14
作者 Qian-Long Ren Shuai Yuan +3 位作者 Shi-Yu Luan Jin-Hui Wang Xiao-Wei Li Xiao-Yu Liu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第6期982-998,共17页
In this study,the high-temperature stability and the generation mechanism of the Portevin-Le Chatelier(PLC)effect in solid-solution Mg-1Al-12Y alloy with different heat treatment processes were investigated by adjusti... In this study,the high-temperature stability and the generation mechanism of the Portevin-Le Chatelier(PLC)effect in solid-solution Mg-1Al-12Y alloy with different heat treatment processes were investigated by adjusting the content of long-period stacking ordered(LPSO)phases.It was found that the content of LPSO phases in the alloys differed the most after heat treatment at 530℃for 16 h and 24 h,with values of 13.56%and 3.93%respectively.Subsequently,high-temperature tensile experiments were conducted on these two alloys at temperatures of 150℃,200℃,250℃,and 300℃.The results showed that both alloys exhibited the PLC effect at temperatures ranging from 150 to 250℃.However,at a temperature 300℃,only the alloy with a greater concentration of LPSO phases exhibited the PLC effect,whereas the alloy with a lower proportion of LPSO phases did not exhibit this phenomenon.Additionally,both alloys exhibited remarkable high-temperature stability,with the alloy containing a greater percentage of LPSO phases also demonstrating superior strength.The underlying mechanism for this phenomenon lies in the exceptional high-temperature stability exhibited by the second phase within the alloy.Furthermore,the LPSO phase effectively obstructs the movement of dislocations,and it also undergoing kinking to facilitate plastic deformation of the alloy.The results indicate that the PLC effect can be suppressed by reducing dislocation pile-up at grain boundaries,which leads to a decrease in alloy plasticity but an increase in strength.The presence of the PLC effect in the WA121 alloy is attributed to the abundant dispersed second phase within the alloy,which initially hinders the movement of dislocations,leading to an increase in stress,and subsequently releases the dislocations,allowing them to continue their movement and thereby reducing in stress. 展开更多
关键词 Magnesium alloy Long-period stacking ordered(lpso)phase Portevin-Le Chatelier effect High temperature
原文传递
Effect of solidification mode on microstructure evolution and properties of magnesium alloy with long-period stacking ordered phase
15
作者 Hao Li Hong-mei Chen +5 位作者 Xu Zhang Qian-hao Zang Jing Zhang Di Feng Yan-xin Qiao Yu-hang Guo 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第5期1127-1138,共12页
The solidification methods of electromagnetic stirring(EMS)and non-electromagnetic stirring were employed to prepare Mg–6Gd–3Y–xZn–0.6Zr(x=1,1.5,2,3)alloys.The evolution of alloy microstructures and the changes in... The solidification methods of electromagnetic stirring(EMS)and non-electromagnetic stirring were employed to prepare Mg–6Gd–3Y–xZn–0.6Zr(x=1,1.5,2,3)alloys.The evolution of alloy microstructures and the changes in properties were analyzed for different Zn contents.It has been observed that in alloys without electromagnetic stirring,as the Zn content increases,the alloy structure gradually refines.The primary second phase transitions from Mg5RE phase to long-period stacking ordered(LPSO)phase,resulting in improved hardness and elongation.In alloys subjected to electromagnetic stirring,there is a relatively higher content of the second phase,primarily consisting of LPSO phase.After applying electromagnetic stirring,the quantity and the type of LPSO phase in the alloy change.The alloy structure becomes more uniform with electromagnetic stirring,resulting in increased hardness and reduced hardness gradients within the grains.The mechanical properties of alloys with electromagnetic stirring are superior to those without electromagnetic stirring. 展开更多
关键词 Rare earth magnesium alloy lpso phase Electromagnetic stirring CASTING PROPERTY
原文传递
Dilute long period stacking/order(LPSO)-variant phases along the composition gradient in a Mg-Ho-Cu alloy 被引量:4
16
作者 Kai Guan Daisuke Egusa Eiji Abe 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第6期1573-1580,共8页
We have systematically investigated the microstructures of as-cast Mg_(97.49)Ho_(1.99)Cu_(0.43)Zr_(0.09)alloy by atomic resolution high-angle annular dark field scanning transmission electron microscopy(HAADF-STEM), r... We have systematically investigated the microstructures of as-cast Mg_(97.49)Ho_(1.99)Cu_(0.43)Zr_(0.09)alloy by atomic resolution high-angle annular dark field scanning transmission electron microscopy(HAADF-STEM), revealing the coexistence of 18R, 14H and 24R long period stacking/order(LPSO) phases with fully coherent interfaces along step-like composition gradient in a blocky intermetallic compound distributed at grain boundary. The short-range order(SRO) L1_(2)-type Cu_(6)Ho_(8)clusters embedded across AB’C’A-stacking fault layers are directly revealed at atomic scale. Importantly, the order degree of SRO clusters in the present dilute alloy is significant lower than previous 6M and 7M in-plane order reported in ternary Mg-TM(transition metal)-RE(rare earth) alloys, which can be well matched by 9M in-plane order. This directly demonstrates that SRO in-plane L1_(2)-type clusters can be expanded into more dilute composition regions bounded along the definite TM/RE ratio of 3/4. In addition, the estimated chemical compositions of solute enriched stacking fault(SESF) in all LPSO variants are almost identical with the ideal SESF composition of 9M in-plane order, regardless of the type of LPSO phases. The results further support the viewpoint that robust L1_(2)-type TM_(6)RE_(8)clusters play an important role in governing LPSO phase formation. 展开更多
关键词 Magnesium alloys Long period stacking/order(lpso)phases Short-range order(SRO)clusters High-angle annular dark field scanning transmission electron microscopy(HAADF-STEM)
在线阅读 下载PDF
退火温度对Mg-4.7Gd-3.4Y-1.2Zn-0.5Zr合金中LPSO相形态的影响
17
作者 林霞 陈志永 +2 位作者 尚振岗 邵建波 刘楚明 《热加工工艺》 北大核心 2025年第4期73-76,81,共5页
以Mg-4.7Gd-3.4Y-1.2Zn-0.5Zr(wt%)挤压态合金为研究对象,采用光学显微镜、透射电镜探究退火温度对其LPSO相形态的影响。结果表明:退火温度显著影响LPSO相的结构、形貌、尺寸及分布。其中,350℃退火态合金中析出了密集的薄片状亚稳态LPS... 以Mg-4.7Gd-3.4Y-1.2Zn-0.5Zr(wt%)挤压态合金为研究对象,采用光学显微镜、透射电镜探究退火温度对其LPSO相形态的影响。结果表明:退火温度显著影响LPSO相的结构、形貌、尺寸及分布。其中,350℃退火态合金中析出了密集的薄片状亚稳态LPSO相;随着退火温度的增加至450及500℃,退火态合金中LPSO相转变为稳态14H结构,LPSO相片层尺寸沿<0001>_(α)方向增加,沿<1010>_(α)方向减小,分布逐渐稀疏。LPSO相形态差异归因于不同温度下溶质原子固溶度和扩散行为的差异。 展开更多
关键词 Mg-4.7Gd-3.4Y-1.2Zn-0.5Zr合金 lpso 退火
原文传递
The effect of LPSO phase on the high-temperature oxidation of a stainless Mg-Y-Al alloy
18
作者 Zhipeng Wang Zhao Shen +7 位作者 Yang Liu Yahuan Zhao Qingchun Zhu Yiwen Chen Jingya Wang Yangxin Li Sergio Lozano-Perez Xiaoqin Zeng 《Journal of Magnesium and Alloys》 CSCD 2024年第10期4045-4052,共8页
In this study,we investigated the oxidation of the Mg-11Y-1Al alloy at 500℃in an Ar-20%O2environment.Multiscale analysis showed the network-like long-period stacking ordered(LPSO)phase transformed into needle-like LP... In this study,we investigated the oxidation of the Mg-11Y-1Al alloy at 500℃in an Ar-20%O2environment.Multiscale analysis showed the network-like long-period stacking ordered(LPSO)phase transformed into needle-like LPSO and polygonal Mg24Y5 phases,leading to the formation of a high-dense network of needle-like oxides at the oxidation front.These oxides grew laterally along the oxide/matrix interfaces,forming a thicker,continuous scale that effectively blocked elemental diffusion.Hence,the preferential oxidation along the needle-like LPSO is believed to accelerate the formation of a thicker and continuous oxide scale,further improving the oxidation resistance of the Mg-11Y-1Al alloy. 展开更多
关键词 Mg alloy lpso phase OXIDATION TEM TKD.
在线阅读 下载PDF
面向复杂矿区的Stacking技术辅助DS-InSAR地表形变监测方法
19
作者 李志 张书毕 +6 位作者 李鸣庚 陈强 卞和方 李世金 高延东 张艳锁 张帝 《自然资源遥感》 北大核心 2025年第4期12-20,共9页
合成孔径雷达干涉测量(interferometric synthetic aperture Radar,InSAR)技术在矿区植被覆盖密集且存在大梯度地表形变复杂环境下进行监测时,存在监测点数量不足、监测精度不高等问题。针对这些问题,该文提出一种Stacking技术辅助下的... 合成孔径雷达干涉测量(interferometric synthetic aperture Radar,InSAR)技术在矿区植被覆盖密集且存在大梯度地表形变复杂环境下进行监测时,存在监测点数量不足、监测精度不高等问题。针对这些问题,该文提出一种Stacking技术辅助下的改进分布式目标InSAR(distributed scatterer InSAR,DS-InSAR)方法。该方法采用置信区间假设检验算法识别同质像元并基于相位三角剖分算法完成相位优化,随后去除先期利用Stacking技术模拟的线性形变相位获取残余相位,进而稀疏形变相位条纹,提高后续DS-InSAR处理框架中时空滤波与三维解缠结果的精确性,最终补偿模拟相位获得完整形变场。通过处理2015年10月—2016年3月期间覆盖新巨龙煤矿的Sentinel-1A合成孔径雷达(synthetic aperture Radar,SAR)影像,解译了该时段内矿区时序地表形变特征,得到以下结论:监测期间,矿区存在3处显著形变,雷达视线向最大累积形变量达到-313 mm;所提方法相较常规短基线集干涉测量(small baseline subset InSAR,SBAS-InSAR)技术能够反演出分布更加均匀的监测点位信息,其密度约是SBAS-InSAR的12.9倍;对比水准数据的均方根误差(root mean squared error,RMSE)约为6.82 mm,精度较SBAS-InSAR提高了约3.0 mm。 展开更多
关键词 stacking DS-InSAR 地表形变 残余相位 矿区监测
在线阅读 下载PDF
LPSO相含量对挤压态Mg-Zn-Y-Mn合金导热和导电性的影响
20
作者 柯学韬 陈敏聪 李传强 《有色金属(中英文)》 北大核心 2025年第7期1105-1110,共6页
研究了长周期堆积有序相(LPSO)含量对挤压态Mg-1Zn-2Y-0.1Mn(ZW12)、Mg-2Zn-4Y-0.1Mn(ZW24)和Mg-4Zn-8Y-0.1Mn(ZW48)合金微观组织、导热和导电性能的影响。结果表明:在Y/Zn含量比值保持不变时,随着Zn和Y含量的升高,LPSO相含量逐渐增加,... 研究了长周期堆积有序相(LPSO)含量对挤压态Mg-1Zn-2Y-0.1Mn(ZW12)、Mg-2Zn-4Y-0.1Mn(ZW24)和Mg-4Zn-8Y-0.1Mn(ZW48)合金微观组织、导热和导电性能的影响。结果表明:在Y/Zn含量比值保持不变时,随着Zn和Y含量的升高,LPSO相含量逐渐增加,合金的热导率和电导率均呈现下降趋势,即ZW12合金(LPSO相体积分数最低)的热导率和电导率最高,其中TD面(横截面)的热导率为106.69 W/(m·K)、电导率为15.54 Ms/m;ZW48合金(LPSO相体积分数最高)的热导率和电导率最低,其中TD面的热导率仅为64.97 W/(m·K)、电导率为7.47 Ms/m。另外,热电各向异性研究表明,含有较少LPSO相的ZW12合金热电各向异性不明显,而含有较高含量LPSO相的ZW24和ZW48合金表现出明显的热电各向异性。 展开更多
关键词 微观组织 lpso 热导率 电导率 各向异性
在线阅读 下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部