期刊文献+
共找到1,741篇文章
< 1 2 88 >
每页显示 20 50 100
Multi-scale feature fused stacked autoencoder and its application for soft sensor modeling
1
作者 Zhi Li Yuchong Xia +2 位作者 Jian Long Chensheng Liu Longfei Zhang 《Chinese Journal of Chemical Engineering》 2025年第5期241-254,共14页
Deep Learning has been widely used to model soft sensors in modern industrial processes with nonlinear variables and uncertainty.Due to the outstanding ability for high-level feature extraction,stacked autoencoder(SAE... Deep Learning has been widely used to model soft sensors in modern industrial processes with nonlinear variables and uncertainty.Due to the outstanding ability for high-level feature extraction,stacked autoencoder(SAE)has been widely used to improve the model accuracy of soft sensors.However,with the increase of network layers,SAE may encounter serious information loss issues,which affect the modeling performance of soft sensors.Besides,there are typically very few labeled samples in the data set,which brings challenges to traditional neural networks to solve.In this paper,a multi-scale feature fused stacked autoencoder(MFF-SAE)is suggested for feature representation related to hierarchical output,where stacked autoencoder,mutual information(MI)and multi-scale feature fusion(MFF)strategies are integrated.Based on correlation analysis between output and input variables,critical hidden variables are extracted from the original variables in each autoencoder's input layer,which are correspondingly given varying weights.Besides,an integration strategy based on multi-scale feature fusion is adopted to mitigate the impact of information loss with the deepening of the network layers.Then,the MFF-SAE method is designed and stacked to form deep networks.Two practical industrial processes are utilized to evaluate the performance of MFF-SAE.Results from simulations indicate that in comparison to other cutting-edge techniques,the proposed method may considerably enhance the accuracy of soft sensor modeling,where the suggested method reduces the root mean square error(RMSE)by 71.8%,17.1%and 64.7%,15.1%,respectively. 展开更多
关键词 Multi-scale feature fusion Soft sensors stacked autoencoders Computational chemistry Chemical processes Parameter estimation
在线阅读 下载PDF
An Auto Encoder-Enhanced Stacked Ensemble for Intrusion Detection in Healthcare Networks
2
作者 Fatma S.Alrayes Mohammed Zakariah +2 位作者 Mohammed K.Alzaylaee Syed Umar Amin Zafar Iqbal Khan 《Computers, Materials & Continua》 2025年第11期3457-3484,共28页
Healthcare networks prove to be an urgent issue in terms of intrusion detection due to the critical consequences of cyber threats and the extreme sensitivity of medical information.The proposed Auto-Stack ID in the st... Healthcare networks prove to be an urgent issue in terms of intrusion detection due to the critical consequences of cyber threats and the extreme sensitivity of medical information.The proposed Auto-Stack ID in the study is a stacked ensemble of encoder-enhanced auctions that can be used to improve intrusion detection in healthcare networks.TheWUSTL-EHMS 2020 dataset trains and evaluates themodel,constituting an imbalanced class distribution(87.46% normal traffic and 12.53% intrusion attacks).To address this imbalance,the study balances the effect of training Bias through Stratified K-fold cross-validation(K=5),so that each class is represented similarly on training and validation splits.Second,the Auto-Stack ID method combines many base classifiers such as TabNet,LightGBM,Gaussian Naive Bayes,Histogram-Based Gradient Boosting(HGB),and Logistic Regression.We apply a two-stage training process based on the first stage,where we have base classifiers that predict out-of-fold(OOF)predictions,which we use as inputs for the second-stage meta-learner XGBoost.The meta-learner learns to refine predictions to capture complicated interactions between base models,thus improving detection accuracy without introducing bias,overfitting,or requiring domain knowledge of the meta-data.In addition,the auto-stack ID model got 98.41% accuracy and 93.45%F1 score,better than individual classifiers.It can identify intrusions due to its 90.55% recall and 96.53% precision with minimal false positives.These findings identify its suitability in ensuring healthcare networks’security through ensemble learning.Ongoing efforts will be deployed in real time to improve response to evolving threats. 展开更多
关键词 Intrusion detection auto encoder stacked ensemble WUSTL-EHMS 2020 dataset class imbalance XGBoost
在线阅读 下载PDF
Electrochemical-driven activation by stacked layered sulfur-carbon anode for fast and stable sodium storage
3
作者 Huijuan Zhu Qiming Liu +1 位作者 Jie Wang Han Su 《Journal of Energy Chemistry》 2025年第8期819-831,共13页
Carbonaceous material has attracted much attention in the application of sodium-ion batteries(SIBs)anode.However,sluggish reaction kinetics and structure stability impede the application.Therefore,a stacked layered su... Carbonaceous material has attracted much attention in the application of sodium-ion batteries(SIBs)anode.However,sluggish reaction kinetics and structure stability impede the application.Therefore,a stacked layered sulfur-carbon complex with long-chain C–S_(x)–C bond(M-SC-S)is prepared.The layered structure ensures structural stability,and long-chain C–S_(x)–C bond expanding interlayer spacing boosts facile Na+diffusion.When assembled into cells,a high-quality solid-electrolyte interphase film would be formed due to a good match between the M-SC-S electrode and ether electrolyte.Moreover,an electrochemical activation process would happen between the Cu current collector and proper S-doped electrode material to in-situ form Cu_(2)S.The formation of Cu_(2)S in active material can not only provide more active sites for sodium storage and enhance pseudo-capacitance,but also reinforce the electrode/current collector interface and decrease the interfacial transfer resistance for rapid Na+kinetics.The synergistic effect of structure design and interface engineering optimizes the sodium storage system.Thus,the M-SC-S electrode delivers an excellent cyclic performance(321.6 mAh g^(−1)after 1000 cycles at 2 A g^(−1)with a capacity retention rate of 97.4%)and good rate capability(282.8 mAh g^(−1)after 4000 cycles even at a high current density of 10 A g^(−1)).The full cell also has an impressive cyclic performance(151.4 mAh g^(−1)after 500 cycles at 0.5 A g^(−1)). 展开更多
关键词 Heteroatom-doping stacked layered structure Cu current collector Electrochemical activation Sodium-ion batteries
在线阅读 下载PDF
Multi-Channel Multi-Step Spectrum Prediction Using Transformer and Stacked Bi-LSTM
4
作者 Pan Guangliang Li Jie Li Minglei 《China Communications》 2025年第5期1-13,共13页
Spectrum prediction is considered as a key technology to assist spectrum decision.Despite the great efforts that have been put on the construction of spectrum prediction,achieving accurate spectrum prediction emphasiz... Spectrum prediction is considered as a key technology to assist spectrum decision.Despite the great efforts that have been put on the construction of spectrum prediction,achieving accurate spectrum prediction emphasizes the need for more advanced solutions.In this paper,we propose a new multichannel multi-step spectrum prediction method using Transformer and stacked bidirectional LSTM(Bi-LSTM),named TSB.Specifically,we use multi-head attention and stacked Bi-LSTM to build a new Transformer based on encoder-decoder architecture.The self-attention mechanism composed of multiple layers of multi-head attention can continuously attend to all positions of the multichannel spectrum sequences.The stacked Bi-LSTM can learn these focused coding features by multi-head attention layer by layer.The advantage of this fusion mode is that it can deeply capture the long-term dependence of multichannel spectrum data.We have conducted extensive experiments on a dataset generated by a real simulation platform.The results show that the proposed algorithm performs better than the baselines. 展开更多
关键词 multi-head attention spectrum prediction stacked Bi-LSTM TRANSFORMER
在线阅读 下载PDF
Tailoring the number of lines for IGO-channel 2T0C DRAM comparable to conventional 2-line operation 1T1C structure for highly scaled cell volume
5
作者 Jae-Hyeok Kwag Su-Hwan Choi +5 位作者 Daejung Kim Jun-Yeoub Lee Taewon Hwang Hye-Jin Oh Chang-Kyun Park Jin-Seong Park 《International Journal of Extreme Manufacturing》 2025年第5期404-414,共11页
Capacitor-less 2T0C dynamic random-access memory(DRAM)employing oxide semiconductors(OSs)as a channel has great potential in the development of highly scaled three dimensional(3D)-structured devices.However,the use of... Capacitor-less 2T0C dynamic random-access memory(DRAM)employing oxide semiconductors(OSs)as a channel has great potential in the development of highly scaled three dimensional(3D)-structured devices.However,the use of OS and such device structures presents certain challenges,including the trade-off relationship between the field-effect mobility and stability of OSs.Conventional 4-line-based operation of the 2T0C enlarges the entire cell volume and complicates the peripheral circuit.Herein,we proposed an IGO(In-Ga-O)channel 2-line-based 2T0C cell design and operating sequences comparable to those of the conventional Si-channel 1 T1C DRAM.IGO was adopted to achieve high thermal stability above 800℃,and the process conditions were optimized to simultaneously obtain a high μFE of 90.7 cm^(2)·V^(-)1·s^(-1),positive Vth of 0.34 V,superior reliability,and uniformity.The proposed 2-line-based 2T0C DRAM cell successfully exhibited multi-bit operation,with the stored voltage varying from 0 V to 1 V at 0.1 V intervals.Furthermore,for stored voltage intervals of 0.1 V and 0.5 V,the refresh time was 10 s and 1000 s in multi-bit operation;these values were more than 150 and 15000 times longer than those of the conventional Si channel 1T1C DRAM,respectively.A monolithic stacked 2-line-based 2T0C DRAM was fabricated,and a multi-bit operation was confirmed. 展开更多
关键词 capacitor-less 2T0C DRAM cell design and operation atomic layer deposition oxide semiconductor monolithic stacked
在线阅读 下载PDF
A Novel Stacked Network Method for Enhancing the Performance of Side-Channel Attacks
6
作者 Zhicheng Yin Lang Li Yu Ou 《Computers, Materials & Continua》 2025年第4期1001-1022,共22页
The adoption of deep learning-based side-channel analysis(DL-SCA)is crucial for leak detection in secure products.Many previous studies have applied this method to break targets protected with countermeasures.Despite ... The adoption of deep learning-based side-channel analysis(DL-SCA)is crucial for leak detection in secure products.Many previous studies have applied this method to break targets protected with countermeasures.Despite the increasing number of studies,the problem of model overfitting.Recent research mainly focuses on exploring hyperparameters and network architectures,while offering limited insights into the effects of external factors on side-channel attacks,such as the number and type of models.This paper proposes a Side-channel Analysis method based on a Stacking ensemble,called Stacking-SCA.In our method,multiple models are deeply integrated.Through the extended application of base models and the meta-model,Stacking-SCA effectively improves the output class probabilities of the model,leading to better generalization.Furthermore,this method shows that the attack performance is sensitive to changes in the number of models.Next,five independent subsets are extracted from the original ASCAD database as multi-segment datasets,which are mutually independent.This method shows how these subsets are used as inputs for Stacking-SCA to enhance its attack convergence.The experimental results show that Stacking-SCA outperforms the current state-of-the-art results on several considered datasets,significantly reducing the number of attack traces required to achieve a guessing entropy of 1.Additionally,different hyperparameter sizes are adjusted to further validate the robustness of the method. 展开更多
关键词 Side-channel analysis deep learning STACKING ensemble learning model generalization
在线阅读 下载PDF
Interdigital MnO_(2)/PEDOT Alternating Stacked Microelectrodes for High-Performance On-Chip Microsupercapacitor and Humidity Sensing 被引量:1
7
作者 Muhammad Tahir Lihong Li +5 位作者 Liang He Zhongyuan Xiang Zeyu Ma Waqas Ali Haider Xiaoqiao Liao Yanlin Song 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期257-267,共11页
For microelectronic devices,the on-chip microsupercapacitors with facile construction and high performance,are attracting researchers'prior consideration due to their high compatibility with modern microsystems.He... For microelectronic devices,the on-chip microsupercapacitors with facile construction and high performance,are attracting researchers'prior consideration due to their high compatibility with modern microsystems.Herein,we proposed interchanging interdigital Au-/MnO_(2)/polyethylene dioxythiophene stacked microsupercapacitor based on a microfabrication process followed by successive electrochemical deposition.The stacked configuration of two pseudocapacitive active microelectrodes meritoriously leads to an enhanced contact area between MnO_(2)and the conductive and electroactive layer of polyethylene dioxythiophene,hence providing excellent electron transport and diffusion pathways of electrolyte ions,resulting in increased pseudocapacitance of MnO_(2)and polyethylene dioxythiophene.The stacked quasi-solid-state microsupercapacitors delivered the maximum specific capacitance of 43 mF cm^(-2)(211.9 F cm^(-3)),an energy density of 3.8μWh cm^(-2)(at a voltage window of 0.8 V)and 5.1μWh cm^(-2)(at a voltage window of 1.0 V)with excellent rate capability(96.6%at 2 mA cm^(-2))and cycling performance of 85.3%retention of initial capacitance after 10000 consecutive cycles at a current density of 5 mA cm^(-2),higher than those of ever reported polyethylene dioxythiophene and MnO_(2)-based planar microsupercapacitors.Benefiting from the favorable morphology,bilayer microsupercapacitor is utilized as a flexible humidity sensor with a response/relaxation time superior to those of some commercially available integrated microsensors.This strategy will be of significance in developing high-performance on-chip integrated microsupercapacitors/microsensors at low cost and environment-friendly routes. 展开更多
关键词 electrochemical polymerization MICROSENSOR microsupercapacitor stacked microelectrode
在线阅读 下载PDF
An attention graph stacked autoencoder for anomaly detection of electro-mechanical actuator using spatio-temporal multivariate signals
8
作者 Jianyu WANG Heng ZHANG Qiang MIAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第9期506-520,共15页
Health monitoring of electro-mechanical actuator(EMA)is critical to ensure the security of airplanes.It is difficult or even impossible to collect enough labeled failure or degradation data from actual EMA.The autoenc... Health monitoring of electro-mechanical actuator(EMA)is critical to ensure the security of airplanes.It is difficult or even impossible to collect enough labeled failure or degradation data from actual EMA.The autoencoder based on reconstruction loss is a popular model that can carry out anomaly detection with only consideration of normal training data,while it fails to capture spatio-temporal information from multivariate time series signals of multiple monitoring sensors.To mine the spatio-temporal information from multivariate time series signals,this paper proposes an attention graph stacked autoencoder for EMA anomaly detection.Firstly,attention graph con-volution is introduced into autoencoder to convolve temporal information from neighbor features to current features based on different weight attentions.Secondly,stacked autoencoder is applied to mine spatial information from those new aggregated temporal features.Finally,based on the bench-mark reconstruction loss of normal training data,different health thresholds calculated by several statistic indicators can carry out anomaly detection for new testing data.In comparison with tra-ditional stacked autoencoder,the proposed model could obtain higher fault detection rate and lower false alarm rate in EMA anomaly detection experiment. 展开更多
关键词 Anomaly detection Spatio-temporal informa-tion Multivariate time series signals Attention graph convolution stacked autoencoder
原文传递
SSA-over-array(SSoA):A stacked DRAM architecture for nearmemory computing
9
作者 Xiping Jiang Fujun Bai +6 位作者 Song Wang Yixin Guo Fengguo Zuo Wenwu Xiao Yubing Wang Jianguo Yang Ming Liu 《Journal of Semiconductors》 EI CAS CSCD 2024年第10期42-53,共12页
Aiming to enhance the bandwidth in near-memory computing,this paper proposes a SSA-over-array(SSoA)architecture.By relocating the secondary sense amplifier(SSA)from dynamic random access memory(DRAM)to the logic die a... Aiming to enhance the bandwidth in near-memory computing,this paper proposes a SSA-over-array(SSoA)architecture.By relocating the secondary sense amplifier(SSA)from dynamic random access memory(DRAM)to the logic die and repositioning the DRAM-to-logic stacking interface closer to the DRAM core,the SSoA overcomes the layout and area limitations of SSA and master DQ(MDQ),leading to improvements in DRAM data-width density and frequency,significantly enhancing bandwidth density.The quantitative evaluation results show a 70.18 times improvement in bandwidth per unit area over the baseline,with a maximum bandwidth of 168.296 Tbps/Gb.We believe the SSoA is poised to redefine near-memory computing development strategies. 展开更多
关键词 near-memory vertical stacking SSA bandwidth density
在线阅读 下载PDF
基于机器学习的煤系地层TBM掘进巷道围岩强度预测 被引量:3
10
作者 丁自伟 高成登 +6 位作者 景博宇 黄兴 刘滨 胡阳 桑昊旻 徐彬 秦立学 《西安科技大学学报》 北大核心 2025年第1期49-60,共12页
为研究全断面掘进机(TBM)掘进参数与煤系地层岩体力学参数之间的互馈关系,准确、实时预测巷道围岩强度特征,基于TBM掘进过程中的现场监测,通过岩-机互馈关系分析,确定模型的输入特征参数,并建立了对应的数据库;将梯度提升决策树(GBDT)... 为研究全断面掘进机(TBM)掘进参数与煤系地层岩体力学参数之间的互馈关系,准确、实时预测巷道围岩强度特征,基于TBM掘进过程中的现场监测,通过岩-机互馈关系分析,确定模型的输入特征参数,并建立了对应的数据库;将梯度提升决策树(GBDT)、随机森林(RF)、支持向量回归(SVR)3种机器学习算法作为基学习器,线性回归(LR)算法作为元学习器,提出了一种基于Stacking集成算法的预测模型,并对比分析了Stacking集成算法与单一机器学习算法模型的预测性能。结果表明:二值判别与箱线图可有效对原始数据进行预处理;模型的主要输入特征参数为刀盘推力F、刀盘扭矩T、贯入度FPI、刀盘转速RPM、刀盘振动加速度A;Stacking模型在测试集上的拟合优度可达0.976,而均方误差、平均绝对误差、平均绝对百分误差分别仅有0.031,0.148和0.092,与其他3种模型相比,其拟合优度最高,误差指标数值最小,集成模型具有更高的预测精度,能够有效地预测煤矿TBM掘进巷道围岩点荷载强度。研究验证了Stacking模型的准确性,可为煤矿TBM掘进参数控制和巷道支护参数调整提供科学的参考依据。 展开更多
关键词 煤矿全断面掘进机 TBM掘进参数 Stacking集成算法 数据预处理 围岩强度预测
在线阅读 下载PDF
基于改进Stacking算法的碳酸盐岩储层测井岩性识别方法与应用 被引量:1
11
作者 罗水亮 漆影强 +4 位作者 唐松 阮基富 高达 刘乾乾 李生 《特种油气藏》 北大核心 2025年第4期58-67,共10页
针对川中地区碳酸盐岩储层传统岩性识别方法精度低、模型泛化能力弱的问题,提出一种基于改进Stacking算法的测井岩性识别方法。该方法融合多种机器学习模型的优势,优化特征加权策略,可提高对测井曲线关键信息的提取能力,同时增强对复杂... 针对川中地区碳酸盐岩储层传统岩性识别方法精度低、模型泛化能力弱的问题,提出一种基于改进Stacking算法的测井岩性识别方法。该方法融合多种机器学习模型的优势,优化特征加权策略,可提高对测井曲线关键信息的提取能力,同时增强对复杂岩性的识别准确性和稳定性。相比传统方法,该模型能够更有效地捕捉测井数据的非线性关系,并降低不同岩性类别间的预测混淆度。研究结果表明:该方法在四川盆地川中地区碳酸盐岩储层的岩性识别精度达到96%,较传统模型提升6个百分点,且平均相对误差更低,预测效果更优。改进的Stacking算法结合高效计算框架,可显著提升训练和预测效率,使岩性识别更加高效、可靠。该方法可有效地识别复杂岩性,为碳酸盐岩储层岩性识别提供参考。 展开更多
关键词 STACKING 集成学习 特征加权 碳酸盐岩 岩性识别
在线阅读 下载PDF
基于改进Stacking融合模型的储层参数预测方法 被引量:1
12
作者 霍凤财 李青志 +1 位作者 董宏丽 陈怡 《地球物理学进展》 北大核心 2025年第2期691-704,共14页
准确预测储层孔隙度和渗透率对于储层评价具有重要的意义.对于储层参数的计算,传统的经验公式法仍具有较大误差,为了提高储层参数的预测精度并且提高模型的泛化能力,本文提出基于改进Stacking融合模型的集成学习算法,以不同算法对数据... 准确预测储层孔隙度和渗透率对于储层评价具有重要的意义.对于储层参数的计算,传统的经验公式法仍具有较大误差,为了提高储层参数的预测精度并且提高模型的泛化能力,本文提出基于改进Stacking融合模型的集成学习算法,以不同算法对数据观测和训练角度的不同作为基础原理,充分发挥模型的优势.首先,在传统Stacking集成学习模型的基础上,优化模型对第一层基学习器的输出结果,针对可能存在数据划分不均,而导致预测效果不佳的情况,根据基模型的测试精度对预测结果进行加权平均,得到结果作为第二层的特征;其次,针对新的组合训练集可能会丢失部分原始训练集中的信息,将原始数据集也作为次级学习器训练的一部分,使得元学习器学习到原始训练集与新训练集之间的隐含关系,从而提升模型预测效果;最后,通过Stacking融合模型将相互独立的各模型进行融合,增强模型泛化性.与传统Stacking集成学习模型相比,改进模型在孔隙度和渗透率的均方根误差预测上分别降低了7.7%和7.1%,验证了该模型具有良好的预测性能. 展开更多
关键词 参数预测 孔隙度 渗透率 Stacking融合模型 集成学习
原文传递
基于stacking融合机制的自动驾驶伦理决策模型 被引量:1
13
作者 刘国满 盛敬 罗玉峰 《计算机应用研究》 北大核心 2025年第2期462-468,共7页
虽然自动驾驶技术在线路规划和驾驶控制方面取得较大进展,但遇到伦理困境时,当前自动驾驶汽车仍然很难作出确定、合理的决策,导致人们对自动驾驶汽车安全驾驶产生怀疑和担忧。所以有必要研究自动驾驶伦理决策模型和机制,使得自动驾驶汽... 虽然自动驾驶技术在线路规划和驾驶控制方面取得较大进展,但遇到伦理困境时,当前自动驾驶汽车仍然很难作出确定、合理的决策,导致人们对自动驾驶汽车安全驾驶产生怀疑和担忧。所以有必要研究自动驾驶伦理决策模型和机制,使得自动驾驶汽车在伦理困境下能够作出合理决策。针对以上问题,设计了基于stacking融合机制的伦理决策模型,对机器学习和深度学习进行深度融合。一方面将基于特征依赖关系的朴素贝叶斯模型(ACNB)、加权平均一阶贝叶斯模型(WADOE)和自适应模糊模型(AFD)作为stacking融合机制上基学习器。依据先前准确率,设定各自模型权重,再运用加权平均法,计算决策结果。然后将该决策结果作为元学习器训练集,对元学习器进行训练,构建stacking融合模型。最后,运用验证集分别对深度学习模型和stacking融合模型进行验证,依据验证中平均损失率和准确率以及测试中正确率,评价和比较深度学习模型和stacking融合机制决策效果。结果表明,深度学习模型平均损失率最小为0.64,最大平均准确率为0.7,最高正确率为0.61。stacking融合机制平均损失率最小为0.35,最大平均准确率为0.90,最高正确率为0.75,说明stacking融合机制相对于深度学习模型,决策结果准确率和正确率方面有了较大改进。 展开更多
关键词 自动驾驶汽车 伦理决策 stacking融合机制 深度学习
在线阅读 下载PDF
Stacking算法对凝给水系统故障诊断的适用性研究 被引量:1
14
作者 陈砚桥 孙彤 顾任利 《舰船科学技术》 北大核心 2025年第1期138-142,共5页
针对船用凝给水系统设备之间耦合关系较强,对该系统的研究只是选取部分参数而并非像设备一样基本涵盖全部特征参数,且该系统在实际运行过程中可以通过自调节来掩盖某些已发生的故障从而无法准确形成运行参数和故障间的映射关系这一现状... 针对船用凝给水系统设备之间耦合关系较强,对该系统的研究只是选取部分参数而并非像设备一样基本涵盖全部特征参数,且该系统在实际运行过程中可以通过自调节来掩盖某些已发生的故障从而无法准确形成运行参数和故障间的映射关系这一现状,以传统单一机器学习算法为基础,通过拓展建立针对Stacking算法的多分类器性能评价指标,准确寻找运行参数和故障之间的映射关系,解决了多分类器性能评价难题。并利用样本数据设计出比较Stacking算法和单一算法综合性能的试验方法,验证了Stacking模型在凝给水系统故障诊断任务中的适用性和优越性。 展开更多
关键词 凝给水系统 Stacking算法 故障诊断
在线阅读 下载PDF
基于递归分析和Stacking集成学习的轴承故障诊断方法 被引量:1
15
作者 黄静静 武文媗 +2 位作者 田宇 王灿 王茂发 《南京信息工程大学学报》 北大核心 2025年第2期235-244,共10页
为了更加有效地挖掘滚动轴承信号中所具有的非线性信息并提高轴承故障诊断的准确率,提出一种基于递归分析和Stacking集成学习的轴承故障诊断方法.通过递归分析理论将轴承信号中的非线性信息映射到二维递归图中,分别从图像识别和递归定... 为了更加有效地挖掘滚动轴承信号中所具有的非线性信息并提高轴承故障诊断的准确率,提出一种基于递归分析和Stacking集成学习的轴承故障诊断方法.通过递归分析理论将轴承信号中的非线性信息映射到二维递归图中,分别从图像识别和递归定量分析的角度出发,对应建立了卷积神经网络和支持向量机两个子模型.使用Stacking方法将两个模型进行集成,可以在一定程度上结合两个模型的不同特点,充分发挥两个不同模型的优势.实验结果表明,该方法可以有效提高轴承振动信号的分类准确率,并在不同负载条件下表现出色且稳定,为轴承故障诊断提供了一种可靠的解决方案. 展开更多
关键词 故障诊断 滚动轴承 递归分析 Stacking集成学习
在线阅读 下载PDF
基于数据驱动的TBM掘进地层岩性识别预测方法 被引量:1
16
作者 丁自伟 高成登 +5 位作者 张玲 张旭 侯涛 翟剑平 王家行 董云俊 《采矿与安全工程学报》 北大核心 2025年第1期147-160,共14页
随着全断面硬岩掘进机(TBM)在煤矿巷道掘进施工中的广泛应用,地层信息的准确、实时识别已成为保证掘进效率的关键因素。为了研究掘进参数与地层岩性的相互作用关系,以西北矿业高家堡煤矿西区开拓大巷为工程背景,通过对稳定阶段掘进参数... 随着全断面硬岩掘进机(TBM)在煤矿巷道掘进施工中的广泛应用,地层信息的准确、实时识别已成为保证掘进效率的关键因素。为了研究掘进参数与地层岩性的相互作用关系,以西北矿业高家堡煤矿西区开拓大巷为工程背景,通过对稳定阶段掘进参数的深入分析,建立地层岩性与关键掘进参数之间的“机-岩”感知关系,提出基于数据驱动的TBM掘进地层岩性识别的Stacking集成预测算法,确定与地层岩性预测相关的主要输入特征参数,包括推进速度v、刀盘转速n、刀盘推力F、刀盘扭矩T和贯入度P。训练结果表明,Stacking预测模型在5个输入参数的平衡精度和训练时间下均获得了最佳性能;预测模型多元评价结果显示,Stacking模型的AUC曲线面积指数为0.97,比单一的XGBoost,ANN和SVM模型(0.94,0.94,0.95)预测精度更高,且在处理不均衡数据预测表现出明显的优势。因此,基于本研究的预测模型可以很好地指导现场TBM掘进参数的调整,可有效减少TBM故障停机和刀头的磨损,提高掘进效率。 展开更多
关键词 TBM掘进参数 岩性识别 机器学习 Stacking集成学习算法
原文传递
考虑复合指标优化模态分解和Stacking集成的综合能源系统多元负荷预测 被引量:1
17
作者 冉启武 石卓见 +2 位作者 刘阳 黄杰 张宇航 《电网技术》 北大核心 2025年第3期1098-1108,I0071-I0075,共16页
为提高综合能源系统多元负荷分解水平及预测模型的整体性能,提出考虑复合指标优化模态分解和Stacking集成的综合能源系统多元负荷预测方法。首先以排列熵结合互信息为适应度函数,利用金豺优化算法自适应获取变分模态分解的最优参数组合... 为提高综合能源系统多元负荷分解水平及预测模型的整体性能,提出考虑复合指标优化模态分解和Stacking集成的综合能源系统多元负荷预测方法。首先以排列熵结合互信息为适应度函数,利用金豺优化算法自适应获取变分模态分解的最优参数组合,进而将多元负荷序列分解为本征模态函数集合;其次,通过基于反向传播(back propagation,BP)神经网络扰动的平均影响值(mean impact value,MIV)算法对与多元负荷相关的气象、日期及负荷因素进行特征筛选,从而为多元负荷构建高耦合度的特征矩阵;充分考虑到各单一模型的差异性及优势性,在采用k折交叉验证法减少过拟合的基础上,构建Stacking集成学习模型对多元负荷进行预测;最后采用美国亚利桑那州立大学坦佩校区多元负荷数据集进行实例验证,结果显示所提方法在电、冷、热负荷预测中的平均绝对百分比误差分别达到了0.903%、2.713%和1.616%,预测精度相比其他预测模型具有较大提升。 展开更多
关键词 多元负荷预测 综合能源系统 平均影响值算法 Stacking集成学习 金豺优化算法 复合指标
原文传递
高维小样本下煤与瓦斯突出集成学习预测模型
18
作者 王超 张绍源 +4 位作者 刘宇 亓帅 金子浚 喻豪 宋大钊 《矿业科学学报》 北大核心 2025年第5期890-899,共10页
煤与瓦斯突出预测数据具有高维、小样本等特征,给预测建模带来巨大挑战。针对这一问题,通过构建包含瓦斯压力、瓦斯含量、煤体破坏类型等7个指标的60组样本数据库,采用排列重要性降维方法进行特征降维,筛选出5个关键特征(瓦斯放散初速... 煤与瓦斯突出预测数据具有高维、小样本等特征,给预测建模带来巨大挑战。针对这一问题,通过构建包含瓦斯压力、瓦斯含量、煤体破坏类型等7个指标的60组样本数据库,采用排列重要性降维方法进行特征降维,筛选出5个关键特征(瓦斯放散初速度、煤层厚度、瓦斯含量、瓦斯压力和煤的坚固系数),以减少弱相关特征对预测建模的影响;选取支持向量机(SVM)、随机森林(RF)、K最近邻(KNN)、逻辑回归(LR)和梯度提升算法(XGBoost)作为基学习器,XGBoost为元学习器构建Stacking集成模型,并结合贝叶斯优化(BO)算法对模型超参数进行全局寻优,构建一种煤与瓦斯突出预测的BO-Stacking集成模型,并采用沙普利加和解释(SHAP)方法对模型预测结果进行可解释性分析。结果表明:经过特征降维后的BO-Stacking模型准确率、F1值、Kappa系数和AUC值分别为92.4%、0.956、0.927和0.969,均优于各单一模型的预测性能;各特征指标对预测结果的影响大小排序为瓦斯放散初速度>瓦斯含量>瓦斯压力>煤的坚固系数>煤层厚度。BO-Stacking集成学习模型具有良好的预测性能和稳定性,为煤与瓦斯突出预测提供了一种新方法。 展开更多
关键词 煤与瓦斯突出预测 特征降维 Stacking集成学习 贝叶斯优化 SHAP可解释性
在线阅读 下载PDF
基于改进SVM的心音分类研究 被引量:1
19
作者 殷丽凤 赵敏 《云南民族大学学报(自然科学版)》 2025年第1期77-83,共7页
心血管疾病一直是威胁人类生命健康的重大因素,如果能将人类心音信号中蕴含的病理信息精准分类,则对疾病的诊断和控制会有很大的帮助.首先,采用粒子群优化算法对传统的支持向量机算法进行优化,提出1个二分类器模型,初级分类器是由基于St... 心血管疾病一直是威胁人类生命健康的重大因素,如果能将人类心音信号中蕴含的病理信息精准分类,则对疾病的诊断和控制会有很大的帮助.首先,采用粒子群优化算法对传统的支持向量机算法进行优化,提出1个二分类器模型,初级分类器是由基于Stacking方法融合3个算法Adaboost、RF和PSOA-SVM构成的分类器,次级分类器为LR模型;其次,利用改进后的灰狼优化算法寻找SVM最优参数组合得到新分类器模型;最后,利用心音数据集对两个分类器模型进行实验分析,通过实验证明这2种模型都表现出优秀的分类效果. 展开更多
关键词 支持向量机 PSO GWO STACKING 心音分类
在线阅读 下载PDF
基于IHHO-Stacking集成模型的车辆驾驶性评估
20
作者 莫易敏 王相 +2 位作者 王哲 蒋华梁 李琼 《汽车技术》 北大核心 2025年第3期39-45,共7页
为解决车辆驾驶性主观评价一致性差及客观评价无法反映主观感受的问题,提出了一种基于堆叠(Stacking)集成学习方法的评价模型,首先研究了车辆加速工况特性,定义了工况驾驶性客观评价指标,使用评价指标作为输入特征训练Stacking集成模型... 为解决车辆驾驶性主观评价一致性差及客观评价无法反映主观感受的问题,提出了一种基于堆叠(Stacking)集成学习方法的评价模型,首先研究了车辆加速工况特性,定义了工况驾驶性客观评价指标,使用评价指标作为输入特征训练Stacking集成模型,并且使用改进的哈里斯鹰优化(IHHO)算法优化了Stacking集成模型,提高了预测性能。最后通过道路试验表明,IHHO-Stacking集成模型的性能均优于单个机器学习模型,IHHO-Stacking集成模型预测合格率达95%,能够更有效完成驾驶性评价。 展开更多
关键词 驾驶性 主观评价 改进的哈里斯鹰算法 STACKING 集成模型 客观评价
在线阅读 下载PDF
上一页 1 2 88 下一页 到第
使用帮助 返回顶部