期刊文献+
共找到1,783篇文章
< 1 2 90 >
每页显示 20 50 100
Multi-scale feature fused stacked autoencoder and its application for soft sensor modeling
1
作者 Zhi Li Yuchong Xia +2 位作者 Jian Long Chensheng Liu Longfei Zhang 《Chinese Journal of Chemical Engineering》 2025年第5期241-254,共14页
Deep Learning has been widely used to model soft sensors in modern industrial processes with nonlinear variables and uncertainty.Due to the outstanding ability for high-level feature extraction,stacked autoencoder(SAE... Deep Learning has been widely used to model soft sensors in modern industrial processes with nonlinear variables and uncertainty.Due to the outstanding ability for high-level feature extraction,stacked autoencoder(SAE)has been widely used to improve the model accuracy of soft sensors.However,with the increase of network layers,SAE may encounter serious information loss issues,which affect the modeling performance of soft sensors.Besides,there are typically very few labeled samples in the data set,which brings challenges to traditional neural networks to solve.In this paper,a multi-scale feature fused stacked autoencoder(MFF-SAE)is suggested for feature representation related to hierarchical output,where stacked autoencoder,mutual information(MI)and multi-scale feature fusion(MFF)strategies are integrated.Based on correlation analysis between output and input variables,critical hidden variables are extracted from the original variables in each autoencoder's input layer,which are correspondingly given varying weights.Besides,an integration strategy based on multi-scale feature fusion is adopted to mitigate the impact of information loss with the deepening of the network layers.Then,the MFF-SAE method is designed and stacked to form deep networks.Two practical industrial processes are utilized to evaluate the performance of MFF-SAE.Results from simulations indicate that in comparison to other cutting-edge techniques,the proposed method may considerably enhance the accuracy of soft sensor modeling,where the suggested method reduces the root mean square error(RMSE)by 71.8%,17.1%and 64.7%,15.1%,respectively. 展开更多
关键词 Multi-scale feature fusion Soft sensors stacked autoencoders Computational chemistry Chemical processes Parameter estimation
在线阅读 下载PDF
An Auto Encoder-Enhanced Stacked Ensemble for Intrusion Detection in Healthcare Networks
2
作者 Fatma S.Alrayes Mohammed Zakariah +2 位作者 Mohammed K.Alzaylaee Syed Umar Amin Zafar Iqbal Khan 《Computers, Materials & Continua》 2025年第11期3457-3484,共28页
Healthcare networks prove to be an urgent issue in terms of intrusion detection due to the critical consequences of cyber threats and the extreme sensitivity of medical information.The proposed Auto-Stack ID in the st... Healthcare networks prove to be an urgent issue in terms of intrusion detection due to the critical consequences of cyber threats and the extreme sensitivity of medical information.The proposed Auto-Stack ID in the study is a stacked ensemble of encoder-enhanced auctions that can be used to improve intrusion detection in healthcare networks.TheWUSTL-EHMS 2020 dataset trains and evaluates themodel,constituting an imbalanced class distribution(87.46% normal traffic and 12.53% intrusion attacks).To address this imbalance,the study balances the effect of training Bias through Stratified K-fold cross-validation(K=5),so that each class is represented similarly on training and validation splits.Second,the Auto-Stack ID method combines many base classifiers such as TabNet,LightGBM,Gaussian Naive Bayes,Histogram-Based Gradient Boosting(HGB),and Logistic Regression.We apply a two-stage training process based on the first stage,where we have base classifiers that predict out-of-fold(OOF)predictions,which we use as inputs for the second-stage meta-learner XGBoost.The meta-learner learns to refine predictions to capture complicated interactions between base models,thus improving detection accuracy without introducing bias,overfitting,or requiring domain knowledge of the meta-data.In addition,the auto-stack ID model got 98.41% accuracy and 93.45%F1 score,better than individual classifiers.It can identify intrusions due to its 90.55% recall and 96.53% precision with minimal false positives.These findings identify its suitability in ensuring healthcare networks’security through ensemble learning.Ongoing efforts will be deployed in real time to improve response to evolving threats. 展开更多
关键词 Intrusion detection auto encoder stacked ensemble WUSTL-EHMS 2020 dataset class imbalance XGBoost
在线阅读 下载PDF
Electrochemical-driven activation by stacked layered sulfur-carbon anode for fast and stable sodium storage
3
作者 Huijuan Zhu Qiming Liu +1 位作者 Jie Wang Han Su 《Journal of Energy Chemistry》 2025年第8期819-831,共13页
Carbonaceous material has attracted much attention in the application of sodium-ion batteries(SIBs)anode.However,sluggish reaction kinetics and structure stability impede the application.Therefore,a stacked layered su... Carbonaceous material has attracted much attention in the application of sodium-ion batteries(SIBs)anode.However,sluggish reaction kinetics and structure stability impede the application.Therefore,a stacked layered sulfur-carbon complex with long-chain C–S_(x)–C bond(M-SC-S)is prepared.The layered structure ensures structural stability,and long-chain C–S_(x)–C bond expanding interlayer spacing boosts facile Na+diffusion.When assembled into cells,a high-quality solid-electrolyte interphase film would be formed due to a good match between the M-SC-S electrode and ether electrolyte.Moreover,an electrochemical activation process would happen between the Cu current collector and proper S-doped electrode material to in-situ form Cu_(2)S.The formation of Cu_(2)S in active material can not only provide more active sites for sodium storage and enhance pseudo-capacitance,but also reinforce the electrode/current collector interface and decrease the interfacial transfer resistance for rapid Na+kinetics.The synergistic effect of structure design and interface engineering optimizes the sodium storage system.Thus,the M-SC-S electrode delivers an excellent cyclic performance(321.6 mAh g^(−1)after 1000 cycles at 2 A g^(−1)with a capacity retention rate of 97.4%)and good rate capability(282.8 mAh g^(−1)after 4000 cycles even at a high current density of 10 A g^(−1)).The full cell also has an impressive cyclic performance(151.4 mAh g^(−1)after 500 cycles at 0.5 A g^(−1)). 展开更多
关键词 Heteroatom-doping stacked layered structure Cu current collector Electrochemical activation Sodium-ion batteries
在线阅读 下载PDF
Multi-Channel Multi-Step Spectrum Prediction Using Transformer and Stacked Bi-LSTM
4
作者 Pan Guangliang Li Jie Li Minglei 《China Communications》 2025年第5期1-13,共13页
Spectrum prediction is considered as a key technology to assist spectrum decision.Despite the great efforts that have been put on the construction of spectrum prediction,achieving accurate spectrum prediction emphasiz... Spectrum prediction is considered as a key technology to assist spectrum decision.Despite the great efforts that have been put on the construction of spectrum prediction,achieving accurate spectrum prediction emphasizes the need for more advanced solutions.In this paper,we propose a new multichannel multi-step spectrum prediction method using Transformer and stacked bidirectional LSTM(Bi-LSTM),named TSB.Specifically,we use multi-head attention and stacked Bi-LSTM to build a new Transformer based on encoder-decoder architecture.The self-attention mechanism composed of multiple layers of multi-head attention can continuously attend to all positions of the multichannel spectrum sequences.The stacked Bi-LSTM can learn these focused coding features by multi-head attention layer by layer.The advantage of this fusion mode is that it can deeply capture the long-term dependence of multichannel spectrum data.We have conducted extensive experiments on a dataset generated by a real simulation platform.The results show that the proposed algorithm performs better than the baselines. 展开更多
关键词 multi-head attention spectrum prediction stacked Bi-LSTM TRANSFORMER
在线阅读 下载PDF
A comprehensive performance evaluation method based on muti-task learning-assisted stacked performance-related autoencoder for hot strip mill process
5
作者 Jian-hong Ma Xin Qin +2 位作者 Kai-xiang Peng Jie Dong Liang Ma 《Journal of Iron and Steel Research International》 2025年第12期4264-4280,共17页
In the context of intelligent manufacturing,the modern hot strip mill process(HSMP)shows characteristics such as diversification of products,multi-specification batch production,and demand-oriented customization.These... In the context of intelligent manufacturing,the modern hot strip mill process(HSMP)shows characteristics such as diversification of products,multi-specification batch production,and demand-oriented customization.These characteristics pose significant challenges to ensuring process stability and consistency of product performance.Therefore,exploring the potential relationship between product performance and the production process,and developing a comprehensive performance evaluation method adapted to modern HSMP have become an urgent issue.A comprehensive performance evaluation method for HSMP by integrating multi-task learning and stacked performance-related autoencoder is proposed to solve the problems such as incomplete performance indicators(PIs)data,insufficient real-time acquisition requirements,and coupling of multiple PIs.First,according to the existing Chinese standards,a comprehensive performance evaluation grade strategy for strip steel is designed.The random forest model is established to predict and complete the parts of PIs data that could not be obtained in real-time.Second,a stacked performance-related autoencoder(SPAE)model is proposed to extract the deep features closely related to the product performance.Then,considering the correlation between PIs,the multi-task learning framework is introduced to output the subitem ratings and comprehensive product performance rating results of the strip steel online in real-time,where each task represents a subitem of comprehensive performance.Finally,the effectiveness of the method is verified on a real HSMP dataset,and the results show that the accuracy of the proposed method is as high as 94.8%,which is superior to the other comparative methods. 展开更多
关键词 Hot strip mill process Multi-task learning stacked performance-related autoencoder Incomplete data Performance evaluation
原文传递
Tailoring the number of lines for IGO-channel 2T0C DRAM comparable to conventional 2-line operation 1T1C structure for highly scaled cell volume
6
作者 Jae-Hyeok Kwag Su-Hwan Choi +5 位作者 Daejung Kim Jun-Yeoub Lee Taewon Hwang Hye-Jin Oh Chang-Kyun Park Jin-Seong Park 《International Journal of Extreme Manufacturing》 2025年第5期404-414,共11页
Capacitor-less 2T0C dynamic random-access memory(DRAM)employing oxide semiconductors(OSs)as a channel has great potential in the development of highly scaled three dimensional(3D)-structured devices.However,the use of... Capacitor-less 2T0C dynamic random-access memory(DRAM)employing oxide semiconductors(OSs)as a channel has great potential in the development of highly scaled three dimensional(3D)-structured devices.However,the use of OS and such device structures presents certain challenges,including the trade-off relationship between the field-effect mobility and stability of OSs.Conventional 4-line-based operation of the 2T0C enlarges the entire cell volume and complicates the peripheral circuit.Herein,we proposed an IGO(In-Ga-O)channel 2-line-based 2T0C cell design and operating sequences comparable to those of the conventional Si-channel 1 T1C DRAM.IGO was adopted to achieve high thermal stability above 800℃,and the process conditions were optimized to simultaneously obtain a high μFE of 90.7 cm^(2)·V^(-)1·s^(-1),positive Vth of 0.34 V,superior reliability,and uniformity.The proposed 2-line-based 2T0C DRAM cell successfully exhibited multi-bit operation,with the stored voltage varying from 0 V to 1 V at 0.1 V intervals.Furthermore,for stored voltage intervals of 0.1 V and 0.5 V,the refresh time was 10 s and 1000 s in multi-bit operation;these values were more than 150 and 15000 times longer than those of the conventional Si channel 1T1C DRAM,respectively.A monolithic stacked 2-line-based 2T0C DRAM was fabricated,and a multi-bit operation was confirmed. 展开更多
关键词 capacitor-less 2T0C DRAM cell design and operation atomic layer deposition oxide semiconductor monolithic stacked
在线阅读 下载PDF
A Novel Stacked Network Method for Enhancing the Performance of Side-Channel Attacks
7
作者 Zhicheng Yin Lang Li Yu Ou 《Computers, Materials & Continua》 2025年第4期1001-1022,共22页
The adoption of deep learning-based side-channel analysis(DL-SCA)is crucial for leak detection in secure products.Many previous studies have applied this method to break targets protected with countermeasures.Despite ... The adoption of deep learning-based side-channel analysis(DL-SCA)is crucial for leak detection in secure products.Many previous studies have applied this method to break targets protected with countermeasures.Despite the increasing number of studies,the problem of model overfitting.Recent research mainly focuses on exploring hyperparameters and network architectures,while offering limited insights into the effects of external factors on side-channel attacks,such as the number and type of models.This paper proposes a Side-channel Analysis method based on a Stacking ensemble,called Stacking-SCA.In our method,multiple models are deeply integrated.Through the extended application of base models and the meta-model,Stacking-SCA effectively improves the output class probabilities of the model,leading to better generalization.Furthermore,this method shows that the attack performance is sensitive to changes in the number of models.Next,five independent subsets are extracted from the original ASCAD database as multi-segment datasets,which are mutually independent.This method shows how these subsets are used as inputs for Stacking-SCA to enhance its attack convergence.The experimental results show that Stacking-SCA outperforms the current state-of-the-art results on several considered datasets,significantly reducing the number of attack traces required to achieve a guessing entropy of 1.Additionally,different hyperparameter sizes are adjusted to further validate the robustness of the method. 展开更多
关键词 Side-channel analysis deep learning STACKING ensemble learning model generalization
在线阅读 下载PDF
基于集成学习Stacking算法的南极热流预测模型
8
作者 蔡轶珩 张晓晴 +3 位作者 稂时楠 崔祥斌 何彦良 张恒 《大地测量与地球动力学》 北大核心 2026年第1期55-62,85,共9页
大地热流(heat flow,HF)是指地球内部传递至地表的热能,它能够揭示地球深部的各种作用过程及能量平衡信息。在南极洲地区,掌握热流情况对于模拟冰盖动态变化具有极其重要的意义。本研究运用机器学习中的Stacking堆叠算法,构建一个南极... 大地热流(heat flow,HF)是指地球内部传递至地表的热能,它能够揭示地球深部的各种作用过程及能量平衡信息。在南极洲地区,掌握热流情况对于模拟冰盖动态变化具有极其重要的意义。本研究运用机器学习中的Stacking堆叠算法,构建一个南极洲热流预测模型。该模型整合13种与热流相关的地质及地球物理特征的观测输入数据,并集成GBDT、XGBoost、RF、LightGBM、ET和MLP等6种常用于解决回归预测问题的机器学习算法,对热流的分布特征进行预测。实验结果表明,采用Stacking模型的预测精度优于多种基准模型。通过该模型得到的新的南极热流分布预测图,与其他传统方法所绘制的大规模估计热流分布图相比,更加契合南极洲热流的实际分布情况,展现出更为卓越的性能。 展开更多
关键词 集成学习 Stacking算法 大地热流 南极洲
在线阅读 下载PDF
基于BERT_Stacked LSTM的农业病虫害问句分类方法 被引量:7
9
作者 李林 刁磊 +3 位作者 唐詹 柏召 周晗 郭旭超 《农业机械学报》 EI CAS CSCD 北大核心 2021年第S01期172-177,共6页
为解决农业病虫害问句分类过程中存在公开数据集较少、文本较短、特征稀疏、隐含语义信息较难学习等问题,以火爆农资招商网为数据源,构建了用于农业病虫害问句分类的数据集,提出了一种用于农业病虫害问句分类的深度学习模型BERT;tacked ... 为解决农业病虫害问句分类过程中存在公开数据集较少、文本较短、特征稀疏、隐含语义信息较难学习等问题,以火爆农资招商网为数据源,构建了用于农业病虫害问句分类的数据集,提出了一种用于农业病虫害问句分类的深度学习模型BERT;tacked LSTM。首先,BERT部分获取各个问句的字符级语义信息,生成了包含句子级特征信息的隐藏向量。然后,使用堆叠长短期记忆网络(Stacked LSTM)学习到隐藏的复杂语义信息。实验结果表明,与其他对比模型相比,本文模型对农业病虫害问句分类更具优势,F1值达到了95.76%,并在公开通用领域数据集上进行了测试,F1值达到了98.44%,表明了模型具有较好的的泛化性。 展开更多
关键词 农业病虫害 问句分类 BERT stacked LSTM
在线阅读 下载PDF
基于动态Stacked-GBDT算法的数据资源价值评估方法研究 被引量:14
10
作者 沈俊鑫 赵雪杉 《科技管理研究》 CSSCI 北大核心 2023年第1期53-61,共9页
针对现有的数据资源价值评估与定价方法主观性强、定量标准缺乏的问题,提出基于模型堆叠集成GBDT(Stacked-GBDT)算法的数据资源价值评估方法。首先,基于敏感性分析,从数据自身和市场两个维度归纳并建立了数据资源价值评估指标体系;然后... 针对现有的数据资源价值评估与定价方法主观性强、定量标准缺乏的问题,提出基于模型堆叠集成GBDT(Stacked-GBDT)算法的数据资源价值评估方法。首先,基于敏感性分析,从数据自身和市场两个维度归纳并建立了数据资源价值评估指标体系;然后,基于GBDT机器学习算法与Stacking集成学习算法,提出了基于StackedGBDT的数据资源价值评估算法,并与Random Forest和XGBoost算法进行对比以验证所提方法的正确性及有效性;最后,应用Stacked-GBDT模型对数据集进行动态定价。结果表明,Stacked-GBDT算法构建的数据资源价值评估模型可为数据价值测算及动态定价提供精确可靠的依据与支撑。 展开更多
关键词 数据资源 动态Stacking 数据价值评估 机器学习 集成学习
在线阅读 下载PDF
基于AGSCOA-Stacking特征加权的船用钢板焊接余量预测
11
作者 谢久超 苌道方 《计算机工程》 北大核心 2026年第1期414-426,共13页
为了提升钢板焊接的精度,提高船体质量和建造效率,提出一种自适应黄金正弦螯虾优化算法(AGSCOA)-Stacking特征加权代理模型的方法,用于解决船用钢板焊接余量预测问题。首先,基于Stacking集成学习策略,根据所提出的PC指标,从多种机器学... 为了提升钢板焊接的精度,提高船体质量和建造效率,提出一种自适应黄金正弦螯虾优化算法(AGSCOA)-Stacking特征加权代理模型的方法,用于解决船用钢板焊接余量预测问题。首先,基于Stacking集成学习策略,根据所提出的PC指标,从多种机器学习模型中筛选出兼具高预测精度和差异性的基学习器。其次,提出一种特征加权方法,针对所筛选基学习器的预测性能进行自适应特征加权,从而提高模型的泛化能力。最后,对传统螯虾优化算法进行多方面改进,引入正交折射反向学习机制来改进种群初始化,确保初始种群质量;提出自适应Lévy飞行策略来优化探索阶段,避免陷入局部最优;引入黄金正弦算法改进开发阶段,平衡全局搜索与局部开发能力。利用改进后的AGSCOA对代理模型进行多参数优化,从而提升模型预测精度。实验结果表明,AGSCOA在优化性能和收敛速度上表现出色,所提出的代理模型相比线性加权集成学习代理模型、AGSCOA-SVR、AGSCOA-ET和AGSCOA-RF具有更高的预测精度,均方根误差(RMSE)分别降低了14.29%、35.78%、17.48%和22.31%。 展开更多
关键词 焊接余量预测 Stacking集成学习 代理模型 螯虾优化算法 折射反向学习机制 黄金正弦算法
在线阅读 下载PDF
A Frequency-Independent Equivalent Circuit for High-k Stacked Monolithic Transformers
12
作者 夏峻 王志功 李伟 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2008年第8期1461-1464,共4页
A new 2-Π lumped element equivalent circuit model for high-k stacked on-chip transformers is proposed. The model parameters are extracted with high precision, mainly based on analytical methods. The developed model e... A new 2-Π lumped element equivalent circuit model for high-k stacked on-chip transformers is proposed. The model parameters are extracted with high precision, mainly based on analytical methods. The developed model enables fast and accurate time domain transient analysis and noise analysis in RFIC simulation since all elements in the model are fre- quency independent. The validity of the proposed model has been demonstrated by a fabricated monolithic stacked trans- former in TSMC's 0.13μm mixed-signal (MS)/RF CMOS' process. 展开更多
关键词 HIGH-K stacked on-chip transformer frequency-independent equivalent circuit
在线阅读 下载PDF
X-Type Antiferromagnetic Stacking:Defying Magnonic Arithmetic
13
作者 Tao Yu 《Chinese Physics Letters》 2026年第1期211-212,共2页
In physics,our expectations for system behavior are often guided by intuitive arithmetic.For systems composed of identical units,we anticipate synergy of the contributions from these units,where 1+1=2.Conversely,for s... In physics,our expectations for system behavior are often guided by intuitive arithmetic.For systems composed of identical units,we anticipate synergy of the contributions from these units,where 1+1=2.Conversely,for systems built from opposing units,we expect cancellation of their contributions,where 1-1=0.This intuitive arithmetic has long underpinned our understanding of physical properties of materials,from electronic transport to optical responses.However,scientific breakthroughs often occur when nature reveals ways to circumvent these seemingly fundamental rules,opening new possibilities that challenge our deepest assumptions about material behavior. 展开更多
关键词 intuitive arithmetic cancellation their contributionswhere understanding physical properties materialsfrom antiferromagnetic stacking synergy contributions unitswhere electronic transport MAGNONS material behavior
原文传递
The intelligent leap of wireless short-range connection
14
作者 Wan Lei 《China Standardization》 2026年第1期47-47,共1页
Founded in September 2020,the International SparkLink Alliance(iSLA)now has approximately 1,200 members in diverse sectors including terminals,homes,vehicles,manufacturing,transportation,finance and healthcare.The iSL... Founded in September 2020,the International SparkLink Alliance(iSLA)now has approximately 1,200 members in diverse sectors including terminals,homes,vehicles,manufacturing,transportation,finance and healthcare.The iSLA has established a technical standards system for wireless short-range communication covering full-stack standards such as the end-to-end protocol system. 展开更多
关键词 wireless short range communication end end protocol system technical standards system full stack standards international sparklink alliance isla now wireless short range connection standards system ISLA
原文传递
Transgenic restorer rice line T1c-19 with stacked cry1C*/bar genes has low weediness potential without selection pressure 被引量:8
15
作者 HUANG Yao LI Ji-kun +2 位作者 QIANG Sheng DAI Wei-min SONG Xiao-ling 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第5期1046-1058,共13页
Stacked(insect and herbicide resistant) transgenic rice T1c-19 with cry1C*/bar genes, its receptor rice Minghui 63(herein MH63) and a local two-line hybrid indica rice Fengliangyou Xiang 1(used as a control) we... Stacked(insect and herbicide resistant) transgenic rice T1c-19 with cry1C*/bar genes, its receptor rice Minghui 63(herein MH63) and a local two-line hybrid indica rice Fengliangyou Xiang 1(used as a control) were compared for agronomic performance under field conditions without the relevant selection pressures. Agronomic traits(plant height, tiller number, and aboveground dry biomass), reproductive ability(pollen viability, panicle length, and filled grain number of main panicles, seed set, and grain yield), and weediness characteristics(seed shattering, seed overwintering ability, and volunteer seedling recruitment) were used to assess the potential weediness without selection pressure of stacked transgene rice T1c-19. In wet direct-seeded and transplanted rice fields, T1c-19 and its receptor MH63 performed similarly regarding vegetative growth and reproductive ability, but both of them were significantly inferior to the control. T1c-19 did not display weed characteristics; it had weak overwintering ability, low seed shattering and failed to establish volunteers. Exogenous insect and herbicide resistance genes did not confer competitive advantage to transgenic rice T1c-19 grown in the field without the relevant selection pressures. 展开更多
关键词 stacked transgenic rice T1c-19 agronomic traits reproductive ability WEEDINESS
在线阅读 下载PDF
Formation of interlayer gap and control of interlayer burr in dry drilling of stacked aluminum alloy plates 被引量:6
16
作者 Tian Wei Hu Jian +2 位作者 Liao Wenhe Bu Yin Zhang Lin 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第1期283-291,共9页
In aircraft assembly, interlayer burr formation in dry drilling of stacked metal materials is a common problem. Traditional manual deburring operation seriously affects the assembly qual- ity and assembly efficiency, ... In aircraft assembly, interlayer burr formation in dry drilling of stacked metal materials is a common problem. Traditional manual deburring operation seriously affects the assembly qual- ity and assembly efficiency, is time-consuming and costly, and is not conducive to aircraft automatic assembly based on industrial robot. In this paper, the formation of drilling exit burr and the influ- ence of interlayer gap on interlayer burr formation were studied, and the mechanism of interlayer gap formation in drilling stacked aluminum alloy plates was investigated, a simplified mathematical model of interlayer gap based on the theory of plates and shells and finite element method was established. The relationship between interlayer gap and interlayer burr, as well as the effect of feed rate and pressing force on interlayer burr height and interlayer gap was discussed. The result shows that theoretical interlayer gap has a positive correlation with interlayer burr height and preloading nressing force is an effective method to control interlaver burr formation. 展开更多
关键词 Aircraft assembly DRILLING Gap formation Interlayer burr Pressing force stacked metal materials Thrust force
原文传递
Neutronics analysis of a stacked structure for a subcritical system with LEU solution driven by a D-T neutron source for~(99)Mo production 被引量:5
17
作者 Lei Ren Yun-Cheng Han +3 位作者 Jia-Chen Zhang Xiao-Yu Wang Tao-Sheng Li Jie Yu 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第11期52-62,共11页
The utilization of neutrons markedly affects the medical isotope yield of a subcritical system driven by an external D-T neutron source.The general methods to improve the utilization of neutrons include moderating mul... The utilization of neutrons markedly affects the medical isotope yield of a subcritical system driven by an external D-T neutron source.The general methods to improve the utilization of neutrons include moderating multiplying,and reflecting neutrons,which ignores the use of neutrons that backscatter to the source direction.In this study,a stacked structure was formed by assembling the multiplier and the low-enriched uranium solution to enable the full use of neutrons that backscatter to the source direction and further improve the utilization of neutrons.A model based on SuperMC was used to evaluate the neutronics and safety behavior of the subcritical system,such as the neutron effective multiplication factor,neutron energy spectrum,medical isotope yield,and heat deposition.Based on the calculation results,when the intensity of the neutron source was 59×10^(13)n/s,the optimized design with a stacked structure could increase the yield of ^(99)Mo to182 Ci/day,which is approximately 16% higher than that obtained with a single-layer structure.The inlet H_(2)O coolant velocity of 1.0 m/s and initial temperature of 20℃ were also found to be sufficient to prevent boiling of the fuel solution. 展开更多
关键词 Neutronics analysis stacked structure ~(99)Mo yield Subcritical system D-T neutron source
在线阅读 下载PDF
Fitness of F1 hybrids between stacked transgenic rice T1c-19 with cry1C*/bar genes and weedy rice 被引量:3
18
作者 HUANG Yao WANG Yuan-yuan +2 位作者 QIANG Sheng SONG Xiao-ling DAI Wei-min 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第12期2793-2805,共13页
Compared to single-trait transgenic crops, stacked transgenic plants may be more prone to become weedy, and transgene flow from stacked transgenic plants to weedy relatives may pose a potential environmental risk beca... Compared to single-trait transgenic crops, stacked transgenic plants may be more prone to become weedy, and transgene flow from stacked transgenic plants to weedy relatives may pose a potential environmental risk because these hybrids could be more advantageous under specific environmental conditions. Evaluation of the potential environmental risk caused by stacked transgenes is essential for assessing the environmental consequences caused by crop-weed transgene flow. The agronomic performance of fitness-related traits was assessed in F1+(transgene positive) hybrids(using the transgenic line T1 c-19 as the paternal parent) in monoculture and mixed planting under presence or absence glufosinate pressure in the presence or absence of natural insect pressure and then compared with the performance of F1–(transgene negative) hybrids(using the non-transgenic line Minghui 63(MH63) as the paternal parent) and their weedy rice counterparts. The results demonstrated that compared with the F1– hybrids and weedy rice counterparts, the F1+ hybrid presented higher performance(P<0.05) or non-significant changes(P>0.05) under natural insect pressure, respectively, lower performance(P<0.05) or non-significant changes(P>0.05) in the absence of insect pressure in monoculture planting, respectively. And compared to weedy rice counterparts, the F1+ hybrid presented higher performance(P<0.05) or non-significant changes(P>0.05) in the presence or absence of insect pressure in mixed planting, respectively. The F1+ hybrids presented nonsignificant changes(P>0.05) under the presence or absence glufosinate pressure under insect or non-insect pressure in monoculture planting. The all F1+ hybrids and two of three F1– hybrids had significantly lower(P<0.05) seed shattering than the weedy rice counterparts. The potential risk of gene flow from T1 c-19 to weedy rice should be prevented due to the greater fitness advantage of F1 hybrids in the majority of cases. 展开更多
关键词 weedy RICE HYBRIDS stacked TRANSGENES safety assessment FITNESS
在线阅读 下载PDF
基于Stacked ConvLSTM的时间序列森林火烧迹地检测 被引量:4
19
作者 李淑君 郑柯 +2 位作者 唐娉 霍连志 袁媛 《遥感学报》 EI CSCD 北大核心 2022年第10期1976-1987,共12页
确定森林火烧迹地的准确时间点以及空间范围对于森林的受损评价、管理、碳核算以及森林恢复的管理有重要意义。由于森林火烧迹地在空间分布上具有一定的连续性,现有的森林火烧迹地提取方法大都采用先分类再后处理的两步处理策略来抑制... 确定森林火烧迹地的准确时间点以及空间范围对于森林的受损评价、管理、碳核算以及森林恢复的管理有重要意义。由于森林火烧迹地在空间分布上具有一定的连续性,现有的森林火烧迹地提取方法大都采用先分类再后处理的两步处理策略来抑制虚警像素的影响。本文提出将时空检测方法Stacked ConvLSTM用于时间序列森林火烧迹地的检测,在保持结果具有较好空间连续性的基础上避免了具有主观性的后处理操作,实现端到端提取森林火烧迹地信息,提升了森林火烧迹地的提取精度。采用MODIS时间序列数据,基于2001年—2008年以及2001年—2016年的黑龙江沾河林业局伊南河林场和内蒙古自治区毕拉河林业局北大河林场两个区域的历史时间序列,分别对这两个区域2009年以及2017年发生的特大火灾区域进行火烧迹地检测,利用Stacked ConvLSTM、Stacked LSTM以及bfast算法在两个区域的MODIS时间序列中提取森林火烧迹地,并将火烧迹地检测结果与ESA发布的Fire_CCI 5.1火烧迹地产品进行对比分析。结果表明:首先,从目视效果来看,在研究区域Ⅰ,Stacked ConvLSTM检测的结果比Stacked LSTM和bfast算法错误检测点少,并且在空间分布也保持较高连续性;在研究区域Ⅱ,Stacked ConvLSTM检测到了较完整的火烧迹地区域。其次,在定量的精度评价指标上,在研究区域Ⅰ,Stacked ConvLSTM的精确度比Stacked LSTM和bfast算法分别高出0.120和0.405,并且召回率、准确度和F1-score也更高,Fire_CCI 5.1召回率虽更高,由于错检区域较大,其他精度指标远低于Stacked ConvLSTM;在研究区域Ⅱ,Stacked ConvLSTM精确度达0.924,召回率、准确度和F1-score相比Stacked LSTM和bfast算法以及Fire_CCI 5.1更高。 展开更多
关键词 stacked ConvLSTM 时间序列 时空预测 火烧迹地
原文传递
Fault Diagnosis of Motor in Frequency Domain Signal by Stacked De-noising Auto-encoder 被引量:5
20
作者 Xiaoping Zhao Jiaxin Wu +2 位作者 Yonghong Zhang Yunqing Shi Lihua Wang 《Computers, Materials & Continua》 SCIE EI 2018年第11期223-242,共20页
With the rapid development of mechanical equipment,mechanical health monitoring field has entered the era of big data.Deep learning has made a great achievement in the processing of large data of image and speech due ... With the rapid development of mechanical equipment,mechanical health monitoring field has entered the era of big data.Deep learning has made a great achievement in the processing of large data of image and speech due to the powerful modeling capabilities,this also brings influence to the mechanical fault diagnosis field.Therefore,according to the characteristics of motor vibration signals(nonstationary and difficult to deal with)and mechanical‘big data’,combined with deep learning,a motor fault diagnosis method based on stacked de-noising auto-encoder is proposed.The frequency domain signals obtained by the Fourier transform are used as input to the network.This method can extract features adaptively and unsupervised,and get rid of the dependence of traditional machine learning methods on human extraction features.A supervised fine tuning of the model is then carried out by backpropagation.The Asynchronous motor in Drivetrain Dynamics Simulator system was taken as the research object,the effectiveness of the proposed method was verified by a large number of data,and research on visualization of network output,the results shown that the SDAE method is more efficient and more intelligent. 展开更多
关键词 Big data deep learning stacked de-noising auto-encoder fourier transform
在线阅读 下载PDF
上一页 1 2 90 下一页 到第
使用帮助 返回顶部