期刊文献+
共找到64篇文章
< 1 2 4 >
每页显示 20 50 100
Data Cleaning Based on Stacked Denoising Autoencoders and Multi-Sensor Collaborations 被引量:1
1
作者 Xiangmao Chang Yuan Qiu +1 位作者 Shangting Su Deliang Yang 《Computers, Materials & Continua》 SCIE EI 2020年第5期691-703,共13页
Wireless sensor networks are increasingly used in sensitive event monitoring.However,various abnormal data generated by sensors greatly decrease the accuracy of the event detection.Although many methods have been prop... Wireless sensor networks are increasingly used in sensitive event monitoring.However,various abnormal data generated by sensors greatly decrease the accuracy of the event detection.Although many methods have been proposed to deal with the abnormal data,they generally detect and/or repair all abnormal data without further differentiate.Actually,besides the abnormal data caused by events,it is well known that sensor nodes prone to generate abnormal data due to factors such as sensor hardware drawbacks and random effects of external sources.Dealing with all abnormal data without differentiate will result in false detection or missed detection of the events.In this paper,we propose a data cleaning approach based on Stacked Denoising Autoencoders(SDAE)and multi-sensor collaborations.We detect all abnormal data by SDAE,then differentiate the abnormal data by multi-sensor collaborations.The abnormal data caused by events are unchanged,while the abnormal data caused by other factors are repaired.Real data based simulations show the efficiency of the proposed approach. 展开更多
关键词 Data cleaning wireless sensor networks stacked denoising autoencoders multi-sensor collaborations
在线阅读 下载PDF
融合改进采样技术和SRFCNN-BiLSTM的入侵检测方法 被引量:3
2
作者 陈虹 由雨竹 +2 位作者 金海波 武聪 邹佳澎 《计算机工程与应用》 北大核心 2025年第9期315-324,共10页
针对目前很多入侵检测方法中因数据不平衡和特征冗余导致检测率低等问题,提出融合改进采样技术和SRFCNN-BiLSTM的入侵检测方法。设计一种FBS-RE混合采样算法,即Borderline-SMOTE过采样和RENN欠采样同时对多数类和少数类样本进行处理,解... 针对目前很多入侵检测方法中因数据不平衡和特征冗余导致检测率低等问题,提出融合改进采样技术和SRFCNN-BiLSTM的入侵检测方法。设计一种FBS-RE混合采样算法,即Borderline-SMOTE过采样和RENN欠采样同时对多数类和少数类样本进行处理,解决数据不平衡问题。利用堆叠降噪自动编码器(stacked denoising auto encoder,SDAE)进行数据降维,减少噪声对数据的影响,去除冗余特征。采用改进的卷积神经网络(split residual fuse convolutional neural network,SRFCNN)和双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)更好地提取数据中的空间和时间特征,结合注意力机制对特征分配不同的权重,获得更好的分类能力,提高对少数攻击流量的检测率。最后,在UNSW-NB15数据集上对模型进行验证,准确率和F1分数为89.24%和90.36%,优于传统机器学习和深度学习模型。 展开更多
关键词 入侵检测 不平衡处理 堆叠降噪自动编码器 卷积神经网络 注意力机制
在线阅读 下载PDF
一种基于自编码器降维的神经卷积网络入侵检测模型 被引量:3
3
作者 孙敬 丁嘉伟 冯光辉 《电信科学》 北大核心 2025年第2期129-138,共10页
为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dim... 为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dimensionality reduction,IRFD),进而缓解传统机器学习入侵检测模型的低准确率问题。IRFD采用堆叠降噪稀疏自编码器策略对数据进行降维,从而提取有效特征。利用卷积注意力机制对残差网络进行改进,构建能提取关键特征的分类网络,并利用两个典型的入侵检测数据集验证IRFD的检测性能。实验结果表明,IRFD在数据集UNSW-NB15和CICIDS 2017上的准确率均达到99%以上,且F1-score分别为99.5%和99.7%。与基线模型相比,提出的IRFD在准确率、精确率和F1-score性能上均有较大提升。 展开更多
关键词 网络攻击 入侵检测模型 堆叠降噪稀疏自编码器 卷积注意力机制 残差网络
在线阅读 下载PDF
基于堆叠降噪自编码网络和多源数据加权融合的发电机故障诊断方法 被引量:1
4
作者 邢超 马红升 +3 位作者 覃日升 张明强 鄢晶 刘焱 《高压电器》 北大核心 2025年第5期170-178,共9页
随着电力系统中参与调节的机组日益增多,工业负荷比重逐步上涨,单一数据源已无法满足新型电力系统中机组状态在线监测的精度需求。为此文中结合堆叠降噪自编码(stacked denoisingautoencoder,SDAE)网络和多源数据融合技术提出了一种发... 随着电力系统中参与调节的机组日益增多,工业负荷比重逐步上涨,单一数据源已无法满足新型电力系统中机组状态在线监测的精度需求。为此文中结合堆叠降噪自编码(stacked denoisingautoencoder,SDAE)网络和多源数据融合技术提出了一种发电机状态监测方法。首先,提出了一种基于加权D⁃S证据理论的SCADA⁃PMU数据融合方法;然后引入自动编码技术构建堆叠降噪自编码深度学习网络模型,提取训练数据集的深度特征,构建发电机故障检测模型;最后通过对重构误差进行平滑处理,结合自适应阈值检测状态监测量的趋势变化,实现故障判定。算例仿真结果表明,相比于基于单一数据源的传统方法,文中提出的方法具有更高的鲁棒性和精确性,从而有效提升了发电机故障诊断和状态监测的精细化水平。 展开更多
关键词 D⁃S证据理论 堆叠降噪自编码网络 故障诊断 状态检测
在线阅读 下载PDF
基于PO-SSDAE算法的XLPE电缆局部放电模式识别
5
作者 卢姝婷 方程 程江洲 《自动化与仪表》 2025年第7期80-86,共7页
随着电力系统发展,电缆的绝缘老化问题日益突出,局部放电的检测与模式识别成为保障电力设备稳定运行的关键技术。传统方法在复杂噪声和多样化放电模式下精度较低。为此,研究提出了一种基于美洲狮优化算法的堆叠稀疏降噪自编码网络(puma ... 随着电力系统发展,电缆的绝缘老化问题日益突出,局部放电的检测与模式识别成为保障电力设备稳定运行的关键技术。传统方法在复杂噪声和多样化放电模式下精度较低。为此,研究提出了一种基于美洲狮优化算法的堆叠稀疏降噪自编码网络(puma optimizar algorithm-stack sparse denoising auto-encoder,PO-SSDAE)放电识别方法,通过优化SSDAE的超参数,提高了复杂信号噪声条件下的识别精度。实验采集XLPE电缆放电信号,提取时域与频域特征,并使用PO-SSDAE进行训练与优化。与其他6种方法对比,PO-SSDAE在准确率和鲁棒性方面具有显著优势,分类精度提高了15%以上,验证了其在局部放电模式识别中的应用潜力。 展开更多
关键词 XLPE电缆 局部放电 美洲狮优化算法 堆叠稀疏降噪自编码网络
在线阅读 下载PDF
基于投资者情绪和栈式自编码器的股价预测模型
6
作者 蔡俊杰 王爱银 《哈尔滨商业大学学报(自然科学版)》 2025年第1期120-128,共9页
为提高股价预测的准确性,通过非线性组合的方法,构造了一种融合投资者情绪和栈式去噪自编码器(SDAE)和LSTM组合模型.通过情感分析(SA)提取的情感指数和SDAE提取的股票高质量特征被用作LSTM模型的输入.基于Python开发环境对恒生指数(HSI... 为提高股价预测的准确性,通过非线性组合的方法,构造了一种融合投资者情绪和栈式去噪自编码器(SDAE)和LSTM组合模型.通过情感分析(SA)提取的情感指数和SDAE提取的股票高质量特征被用作LSTM模型的输入.基于Python开发环境对恒生指数(HSI)进行了研究,实验结果表明,所提方法的预测性能优于其他对比方法,其平均绝对误差(MAPE)、R^(2)和方向准确度(DA)值分别达到1.12%、0.92和84.93%,具有准确度较高的预测能力. 展开更多
关键词 股价预测 投资者情绪 栈式去噪自编码器 长短期记忆网络 非线性组合
在线阅读 下载PDF
基于堆叠集成学习的非侵入式负荷高精度辨识方法
7
作者 黄宇 何耿生 +4 位作者 刘西卓 刘玺 牟景艳 陈学艳 曾金灿 《计算机应用》 北大核心 2025年第S1期323-328,共6页
非侵入式负荷监测(NILM)通过分析电力总线数据估计单个负荷的功率波形,是电力系统能耗管理的关键技术之一。随着用户对设备能耗管理需求的增加,NILM的准确性成为研究的重点之一,但它容易受到功率类型、功率水平和负荷变化的影响。单一N... 非侵入式负荷监测(NILM)通过分析电力总线数据估计单个负荷的功率波形,是电力系统能耗管理的关键技术之一。随着用户对设备能耗管理需求的增加,NILM的准确性成为研究的重点之一,但它容易受到功率类型、功率水平和负荷变化的影响。单一NILM模型面对不同类型的负荷时准确性差异较大,使用单一方法难以在各类负荷上均取得理想效果。因此,提出一种基于堆叠集成学习的非侵入式负荷高精度辨识方法 AMEL(Aggregation Method based on Ensemble Learning)。首先,选择在各种类型的负荷中表现最优的几种方法构建NILM模型库;其次,建立一个基于多层感知机(MLP)的NILM模型偏好框架,以实现对不同负荷的高精度监测。在UK-DALE数据集上的实验结果表明,与典型的NILM方法相比,所提方法的平均绝对误差(MAE)平均降低了35.6%,F1、召回率和马修斯相关系数(MCC)分别平均提升了33.5%、30.6%和32.1%。此外,通过比较现有的堆叠集成方法和各类设备的辨识波形,验证了所提方法的有效性。 展开更多
关键词 非侵入式负荷监测 集成学习 堆叠方法 序列到序列 双向长短期记忆网络 去噪自编码器
在线阅读 下载PDF
SPR:Malicious traffic detection model for CTCS-3 in railways
8
作者 Siyang Zhou Wenjiang Ji +4 位作者 Xinhong Hei Zhongwei Chang Yuan Qiu Lei Zhu Xin Wang 《High-Speed Railway》 2025年第2期105-115,共11页
The increasingly complex and interconnected train control information network is vulnerable to a variety of malicious traffic attacks,and the existing malicious traffic detection methods mainly rely on machine learnin... The increasingly complex and interconnected train control information network is vulnerable to a variety of malicious traffic attacks,and the existing malicious traffic detection methods mainly rely on machine learning,such as poor robustness,weak generalization,and a lack of ability to learn common features.Therefore,this paper proposes a malicious traffic identification method based on stacked sparse denoising autoencoders combined with a regularized extreme learning machine through particle swarm optimization.Firstly,the simulation environment of the Chinese train control system-3,was constructed for data acquisition.Then Pearson coefficient and other methods are used for pre-processing,then a stacked sparse denoising autoencoder is used to achieve nonlinear dimensionality reduction of features,and finally regularization extreme learning machine optimized by particle swarm optimization is used to achieve classification.Experimental data show that the proposed method has good training performance,with an average accuracy of 97.57%and a false negative rate of 2.43%,which is better than other alternative methods.In addition,ablation experiments were performed to evaluate the contribution of each component,and the results showed that the combination of methods was superior to individual methods.To further evaluate the generalization ability of the model in different scenarios,publicly available data sets of industrial control system networks were used.The results show that the model has robust detection capability in various types of network attacks. 展开更多
关键词 CTCS-3 Malicious traffic detection Generalized features stacked sparse denoising autoencoder Regularized extreme learning machine
在线阅读 下载PDF
基于堆叠稀疏自编码器与GAN的线损分层定位
9
作者 杜月 王慧琴 +2 位作者 余兆媛 钱亚林 魏敏俊 《电子设计工程》 2025年第5期115-119,共5页
线损数据中存在噪声数据,维度与线损数据一致,导致线损定位结果不精准。为此,提出基于堆叠稀疏自编码器与GAN的线损分层定位方法。构建线损分层定位GAN结构,判别假数据和真数据,获取线损分层数据。依据分层采集结果,计算分层供入、供出... 线损数据中存在噪声数据,维度与线损数据一致,导致线损定位结果不精准。为此,提出基于堆叠稀疏自编码器与GAN的线损分层定位方法。构建线损分层定位GAN结构,判别假数据和真数据,获取线损分层数据。依据分层采集结果,计算分层供入、供出电量和统计线损,以此作为分层存在异常线损的依据。基于堆叠稀疏自编码器的定位原理,通过在代价函数中增加散度,引导输出结果稀疏。根据确定的稀疏编码所在空间,借助SVM分类核函数,定位线损所在层次。由实验结果可知,所研究方法统计的四种线损变化范围分别是3.0~4.0 kW·h、1.0~3.0 kW·h、0.4~0.7 kW·h、4.2~4.8 kW·h,对应的窃电位置分别为表箱1层、表箱2层、表箱3层、表箱4层,具有精准的定位效果。 展开更多
关键词 堆叠稀疏自编码器 生成对抗网络 线损分层定位 SVM分类 稀疏编码
在线阅读 下载PDF
矿井供电系统故障识别模型的构建与应用
10
作者 王光明 《微型电脑应用》 2025年第3期243-246,共4页
为保障矿井供电系统的安全稳定运行,针对矿井供电系统故障类型众多、噪声量大、数据样本数量少的特点,提出利用马氏距离限制损失函数对栈式降噪稀疏自编码器进行改进,并建构对应的故障识别模型,可实现故障类型和故障选线的精准识别和判... 为保障矿井供电系统的安全稳定运行,针对矿井供电系统故障类型众多、噪声量大、数据样本数量少的特点,提出利用马氏距离限制损失函数对栈式降噪稀疏自编码器进行改进,并建构对应的故障识别模型,可实现故障类型和故障选线的精准识别和判断。将模型应用到矿井供电系统故障数据的识别中,结果表明模型仅需要迭代50次,分类识别准确率就可以达到90%以上,当迭代次数达到90次,模型分类准确率可以达到100%,大大降低了计算复杂度,避免出现过度拟合现象。模型对于故障类型和故障选线的平均分类识别准确率分别达到99.46%和99.32%,分类识别准确率高,可在矿井供电系统故障分类识别中合理应用。 展开更多
关键词 矿井供电系统 马氏距离限制损失函数 栈式降噪稀疏自编码器 故障识别模型
在线阅读 下载PDF
基于改进深层网络的人脸识别算法 被引量:48
11
作者 李倩玉 蒋建国 齐美彬 《电子学报》 EI CAS CSCD 北大核心 2017年第3期619-625,共7页
目前的人脸识别算法在其特征提取过程中采用手工设计(hand-crafted)特征或利用深度学习自动提取特征.本文提出一种基于改进深层网络自动提取特征的人脸识别算法,可以更准确地提取出目标的鉴别性特征.算法首先对图像进行ZCA(Zero-mean Co... 目前的人脸识别算法在其特征提取过程中采用手工设计(hand-crafted)特征或利用深度学习自动提取特征.本文提出一种基于改进深层网络自动提取特征的人脸识别算法,可以更准确地提取出目标的鉴别性特征.算法首先对图像进行ZCA(Zero-mean Component Analysis)白化等预处理,减小特征相关性,降低网络训练复杂度.然后,基于卷积、池化、多层稀疏自动编码器构建深层网络特征提取器.所使用的卷积核是通过单独的无监督学习获得的.此改进的深层网络通过预训练和微调,得到一个自动的深层特征提取器.最后,利用Softmax回归模型对提取的特征进行分类.本文算法在多个常用人脸库上进行了实验,表明了其在性能上比传统方法和普通深度学习方法都有所提高. 展开更多
关键词 人脸识别 改进的深层网络 卷积 池化 多层稀疏自动编码器
在线阅读 下载PDF
一种基于深度神经网络的无线定位方法 被引量:17
12
作者 刘侃 张伟 +2 位作者 张伟东 张友梅 顾建军 《计算机工程》 CAS CSCD 北大核心 2016年第7期82-85,共4页
考虑到信号波动会对无线定位产生影响,基于深度神经网络提出一种回归的无线定位方法。采用四层深度神经网络结构进行定位,通过堆叠去噪自编码器对网络结构进行预训练,避免采用人工设计的方式,从大量有噪的样本中,自动学习有效特征。分... 考虑到信号波动会对无线定位产生影响,基于深度神经网络提出一种回归的无线定位方法。采用四层深度神经网络结构进行定位,通过堆叠去噪自编码器对网络结构进行预训练,避免采用人工设计的方式,从大量有噪的样本中,自动学习有效特征。分不同时段从现实场景中采集数据进行实验,结果表明,针对波动的无线信号,该方法能有效提高定位准确率。 展开更多
关键词 无线定位 深度神经网络 回归 深度学习 堆叠去噪自编码器
在线阅读 下载PDF
基于栈式降噪稀疏自动编码器的雷达目标识别方法 被引量:13
13
作者 赵飞翔 刘永祥 霍凯 《雷达学报(中英文)》 CSCD 2017年第2期149-156,共8页
雷达目标识别中特征提取是关键步骤,所提取特征的好坏决定着识别效果的优劣,但传统特征提取方法很难发掘目标数据深层次本质特征。深度学习理论中的自动编码器模型能够用数据去学习特征,获得数据不同层次的特征表达。同时为消除噪声影响... 雷达目标识别中特征提取是关键步骤,所提取特征的好坏决定着识别效果的优劣,但传统特征提取方法很难发掘目标数据深层次本质特征。深度学习理论中的自动编码器模型能够用数据去学习特征,获得数据不同层次的特征表达。同时为消除噪声影响,该文提出一种基于栈式降噪稀疏自动编码器的雷达目标识别方法,通过设置不同隐藏层数和迭代次数,从雷达数据中直接高效地提取识别所需的各层次特征。暗室仿真数据实验结果验证了该方法较K近邻分类方法及传统栈式自编码器有更好的识别效果。 展开更多
关键词 目标识别 深度学习 栈式降噪稀疏自动编码器
在线阅读 下载PDF
基于深度学习的兵棋演习数据特征提取方法研究 被引量:21
14
作者 郑书奎 吴琳 贺筱媛 《指挥与控制学报》 2016年第3期194-201,共8页
为使基于机器学习的兵棋演习战场态势分析理解取得更好结果,围绕兵棋演习数据特征提取问题,以深度学习方法为手段,提出了一种栈式稀疏降噪自编码网络模型,输入真实的兵棋演习数据进行了特征提取实验,通过分类精度表征了方法的效果,并进... 为使基于机器学习的兵棋演习战场态势分析理解取得更好结果,围绕兵棋演习数据特征提取问题,以深度学习方法为手段,提出了一种栈式稀疏降噪自编码网络模型,输入真实的兵棋演习数据进行了特征提取实验,通过分类精度表征了方法的效果,并进行了多种不同方法的对比实验,证明了深度学习方法的优势. 展开更多
关键词 深度学习 兵棋演习数据 特征提取 栈式稀疏降噪自编码网络
在线阅读 下载PDF
基于深度神经网络的液压泵泄漏状态识别 被引量:22
15
作者 陈里里 何颖 董绍江 《仪器仪表学报》 EI CAS CSCD 北大核心 2020年第4期86-94,共9页
针对液压信号的高度复杂性以及难以识别的特点,构建了一种基于堆栈稀疏自编码器和Softmax的深度神经网络来对液压泵泄漏状态进行识别。利用小波变换和希尔伯特-黄变换提取液压信号的低维特征,并输入深度神经网络。通过堆栈稀疏自编码器... 针对液压信号的高度复杂性以及难以识别的特点,构建了一种基于堆栈稀疏自编码器和Softmax的深度神经网络来对液压泵泄漏状态进行识别。利用小波变换和希尔伯特-黄变换提取液压信号的低维特征,并输入深度神经网络。通过堆栈稀疏自编码器的逐层学习对特征进行优化并提取出高维特征,然后使用Softmax进行识别。实验结果表明,堆栈稀疏自编码器能够有效地提取液压泵泄漏状态的高维特征,构建的深度神经网络可有效地识别液压泵泄漏状态,识别精度达到了97.6%。此外与支持向量机、极限学习机、卷积神经网络以及长短期记忆网络相比,深度神经网络具有更好的识别效果。 展开更多
关键词 液压泵 泄漏 堆栈稀疏自编码器 深度神经网络
原文传递
基于栈式去噪自编码器的遥感图像分类 被引量:12
16
作者 张一飞 陈忠 +1 位作者 张峰 欧阳超 《计算机应用》 CSCD 北大核心 2016年第A02期171-174,188,共5页
针对传统遥感图像分类方法难以取得更高精度的问题,提出一种根据深度学习思想的基于栈式去噪自编码器的遥感图象分类方法。首先,将多个去噪自编码器栈式叠加构成深度网络模型,用无监督的layer-wise方法由下至上训练每一层网络并在训练... 针对传统遥感图像分类方法难以取得更高精度的问题,提出一种根据深度学习思想的基于栈式去噪自编码器的遥感图象分类方法。首先,将多个去噪自编码器栈式叠加构成深度网络模型,用无监督的layer-wise方法由下至上训练每一层网络并在训练数据中加入噪声以得到更为稳健的特征表达;然后,通过反向传播(BP)神经网络对特征进行有监督学习并利用误差反向传播对整个网络参数进行进一步优化得到最终的模型;最后,利用国产高分一号遥感数据进行实验验证。基于栈式去噪自编码器的遥感图像分类方法的总体分类精度和kappa精度分别达到95.7%和95.5%,均高于传统的支持向量机(SVM)和BP神经网络的分类精度。实验结果表明,所提出的方法能有效提高遥感图像的分类精度。 展开更多
关键词 深度学习 栈式去噪自编码器 反向传播神经网络 遥感图像 地物分类
在线阅读 下载PDF
基于半监督深度网络的冷连轧轧制力预报 被引量:13
17
作者 魏立新 翟博豪 +2 位作者 赵志伟 刘建朋 孙浩 《塑性工程学报》 CAS CSCD 北大核心 2020年第11期70-76,共7页
针对冷连轧生产中难以建立准确的轧制力数学模型的问题,提出了基于半监督深度网络的轧制力预报模型。首先,使用堆叠去噪自编码器逐层提取输入数据的高阶特征表示。为提高特征提取的有效性,根据输入值与目标值的相关性程度,对其各维度特... 针对冷连轧生产中难以建立准确的轧制力数学模型的问题,提出了基于半监督深度网络的轧制力预报模型。首先,使用堆叠去噪自编码器逐层提取输入数据的高阶特征表示。为提高特征提取的有效性,根据输入值与目标值的相关性程度,对其各维度特征损失函数施加不同比例,构成比例损失堆叠去噪自编码器。然后,使用比例损失堆叠去噪自编码器提取的高阶特征初始化深度网络,对目标值进行预测。仿真结果表明,该模型预测精度可控制在3%以内,实现了轧制力的高精度预测。 展开更多
关键词 冷连轧 轧制力预测 半监督学习 深度网络 比例损失堆叠去噪自编码器
原文传递
基于稀疏降噪自编码器的深度置信网络 被引量:12
18
作者 曾安 张艺楠 +1 位作者 潘丹 Xiao-Wei Song 《计算机应用》 CSCD 北大核心 2017年第9期2585-2589,共5页
传统的深度置信网络(DBN)采用随机初始化受限玻尔兹曼机(RBM)的权值和偏置的方法初始化网络。虽然这在一定程度上克服了由BP算法带来的易陷入局部最优和训练时间长的问题,但随机初始化仍然会导致网络重构和原始输入的较大差别,这使得网... 传统的深度置信网络(DBN)采用随机初始化受限玻尔兹曼机(RBM)的权值和偏置的方法初始化网络。虽然这在一定程度上克服了由BP算法带来的易陷入局部最优和训练时间长的问题,但随机初始化仍然会导致网络重构和原始输入的较大差别,这使得网络无论在准确率还是学习效率上都无法得到进一步提升。针对以上问题,提出一种基于稀疏降噪自编码器(SDAE)的深度网络模型,其核心是稀疏降噪自编码器对数据的特征提取。首先,训练稀疏降噪自编码;然后,用训练后得到的权值和偏置来初始化深度置信网络;最后,训练深度置信网络。在Poker Hand纸牌游戏数据集和MNIST、USPS手写数据集上测试模型性能,在Poker Hand数据集下,方法的误差率比传统的深度置信网络降低46.4%,准确率和召回率依次提升15.56%和14.12%。实验结果表明,所提方法能有效地改善模型性能。 展开更多
关键词 深度置信网络 受限玻尔兹曼机 稀疏降噪自编码器 深度学习
在线阅读 下载PDF
基于堆稀疏自编码的二叉树集成入侵检测方法 被引量:8
19
作者 柳毅 阴梓然 洪洲 《计算机应用研究》 CSCD 北大核心 2020年第5期1474-1477,1487,共5页
为了解决大规模入侵数据的分类问题,提出了堆稀疏自编码的lightGBM(light gridient boosting model)二叉树算法。首先将类别标签分为五类,构造成二叉树结构;然后通过上采样方法解决数据分布的不平衡问题,以上处理可以将大规模的数据分... 为了解决大规模入侵数据的分类问题,提出了堆稀疏自编码的lightGBM(light gridient boosting model)二叉树算法。首先将类别标签分为五类,构造成二叉树结构;然后通过上采样方法解决数据分布的不平衡问题,以上处理可以将大规模的数据分解开来以便之后分开训练;再采用稀疏自编码器网络进行特征降维,采用该种降维方法可以保证在原始数据中抽取出更深层特征的基础上节省降维时间;最后通过lightGBM集成算法进行分类,而采用lightGBM模型相比其他模型可以在保证分类性能的情况下节省训练时间。实验利用NSL-KDD数据集测量了所提方法的准确率、精确率、召回率,并且综合评价指标F1在五类分类上平均分别达到了87.42%、98.20%、91.31%,优于对比算法,且明显节省了运算时间。 展开更多
关键词 入侵检测 堆稀疏自编码网络 lightGBM算法 不平衡数据 NSL-KDD数据集
在线阅读 下载PDF
基于堆叠稀疏去噪自动编码网络与多隐层反向传播神经网络的铣刀磨损预测模型 被引量:10
20
作者 刘辉 张超勇 戴稳 《计算机集成制造系统》 EI CSCD 北大核心 2021年第10期2801-2812,共12页
刀具磨损状态是机械加工过程中需考虑的重要因素之一。针对铣刀磨损的在线预测问题,建立了一种基于深度学习的铣刀磨损预测模型。首先,将采集到的铣刀切削时的振动信号进行小波去噪后,利用快速傅里叶变换和小波包分解等技术提取时域、... 刀具磨损状态是机械加工过程中需考虑的重要因素之一。针对铣刀磨损的在线预测问题,建立了一种基于深度学习的铣刀磨损预测模型。首先,将采集到的铣刀切削时的振动信号进行小波去噪后,利用快速傅里叶变换和小波包分解等技术提取时域、频域及时频域上的特征参数,并根据相关性分析从中筛选出合格的特征参数合并为特征向量,以此作为堆叠稀疏去噪自动编码网络(SSDAE)的含噪样本。其次,利用特征后处理的方式对已经筛选出的特征参数进行单调不递减及平滑处理,并将其作为SSDAE的无噪样本来训练该网络。然后,将经过SSDAE降维后的特征向量作为多隐层反向传播神经网络(BPNN)的输入,以这些特征对应的实际铣刀的磨损量作为标签对该网络进行拟合训练。最后,对训练好的模型进行实验验证,通过测试数据集和人为加入噪声的测试数据集的对比,结果显示所提模型不仅具有较高的预测精度,还具有较高的鲁棒性。 展开更多
关键词 铣刀磨损 堆叠稀疏去噪自动编码网络 特征后处理 鲁棒性 反向传播神经网络
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部