Rolling bearings are important central components in rotating machines, whose fault diagnosis is crucial in condition-based maintenance to reduce the complexity of different kinds of faults. To classify various rollin...Rolling bearings are important central components in rotating machines, whose fault diagnosis is crucial in condition-based maintenance to reduce the complexity of different kinds of faults. To classify various rolling bearing faults, a prognostic algorithm consisting of four phases was proposed. Since stacked denoising auto-encoder can be filtered, noise of large numbers of mechanical vibration signals was used for deep learning structure to extract the characteristics of the noise. Unsupervised pre-training method, which can greatly simplify the traditional manual extraction approach, was utilized to process the depth of the data automatically. Furthermore, the aggregation layer of stacked denoising auto-encoder(SDA) was proposed to get rid of gradient disappearance in deeper layers of network, mix superficial nodes’ expression with deeper layers, and avoid the insufficient express ability in deeper layers. Principal component analysis(PCA) was adopted to extract different features for classification. According to the experimental data of this method and from the comparison results, the proposed method of rolling bearing fault classification reached 97.02% of correct rate, suggesting a better performance than other algorithms.展开更多
为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dim...为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dimensionality reduction,IRFD),进而缓解传统机器学习入侵检测模型的低准确率问题。IRFD采用堆叠降噪稀疏自编码器策略对数据进行降维,从而提取有效特征。利用卷积注意力机制对残差网络进行改进,构建能提取关键特征的分类网络,并利用两个典型的入侵检测数据集验证IRFD的检测性能。实验结果表明,IRFD在数据集UNSW-NB15和CICIDS 2017上的准确率均达到99%以上,且F1-score分别为99.5%和99.7%。与基线模型相比,提出的IRFD在准确率、精确率和F1-score性能上均有较大提升。展开更多
The increasingly complex and interconnected train control information network is vulnerable to a variety of malicious traffic attacks,and the existing malicious traffic detection methods mainly rely on machine learnin...The increasingly complex and interconnected train control information network is vulnerable to a variety of malicious traffic attacks,and the existing malicious traffic detection methods mainly rely on machine learning,such as poor robustness,weak generalization,and a lack of ability to learn common features.Therefore,this paper proposes a malicious traffic identification method based on stacked sparse denoising autoencoders combined with a regularized extreme learning machine through particle swarm optimization.Firstly,the simulation environment of the Chinese train control system-3,was constructed for data acquisition.Then Pearson coefficient and other methods are used for pre-processing,then a stacked sparse denoising autoencoder is used to achieve nonlinear dimensionality reduction of features,and finally regularization extreme learning machine optimized by particle swarm optimization is used to achieve classification.Experimental data show that the proposed method has good training performance,with an average accuracy of 97.57%and a false negative rate of 2.43%,which is better than other alternative methods.In addition,ablation experiments were performed to evaluate the contribution of each component,and the results showed that the combination of methods was superior to individual methods.To further evaluate the generalization ability of the model in different scenarios,publicly available data sets of industrial control system networks were used.The results show that the model has robust detection capability in various types of network attacks.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.51704138)
文摘Rolling bearings are important central components in rotating machines, whose fault diagnosis is crucial in condition-based maintenance to reduce the complexity of different kinds of faults. To classify various rolling bearing faults, a prognostic algorithm consisting of four phases was proposed. Since stacked denoising auto-encoder can be filtered, noise of large numbers of mechanical vibration signals was used for deep learning structure to extract the characteristics of the noise. Unsupervised pre-training method, which can greatly simplify the traditional manual extraction approach, was utilized to process the depth of the data automatically. Furthermore, the aggregation layer of stacked denoising auto-encoder(SDA) was proposed to get rid of gradient disappearance in deeper layers of network, mix superficial nodes’ expression with deeper layers, and avoid the insufficient express ability in deeper layers. Principal component analysis(PCA) was adopted to extract different features for classification. According to the experimental data of this method and from the comparison results, the proposed method of rolling bearing fault classification reached 97.02% of correct rate, suggesting a better performance than other algorithms.
文摘为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dimensionality reduction,IRFD),进而缓解传统机器学习入侵检测模型的低准确率问题。IRFD采用堆叠降噪稀疏自编码器策略对数据进行降维,从而提取有效特征。利用卷积注意力机制对残差网络进行改进,构建能提取关键特征的分类网络,并利用两个典型的入侵检测数据集验证IRFD的检测性能。实验结果表明,IRFD在数据集UNSW-NB15和CICIDS 2017上的准确率均达到99%以上,且F1-score分别为99.5%和99.7%。与基线模型相比,提出的IRFD在准确率、精确率和F1-score性能上均有较大提升。
文摘The increasingly complex and interconnected train control information network is vulnerable to a variety of malicious traffic attacks,and the existing malicious traffic detection methods mainly rely on machine learning,such as poor robustness,weak generalization,and a lack of ability to learn common features.Therefore,this paper proposes a malicious traffic identification method based on stacked sparse denoising autoencoders combined with a regularized extreme learning machine through particle swarm optimization.Firstly,the simulation environment of the Chinese train control system-3,was constructed for data acquisition.Then Pearson coefficient and other methods are used for pre-processing,then a stacked sparse denoising autoencoder is used to achieve nonlinear dimensionality reduction of features,and finally regularization extreme learning machine optimized by particle swarm optimization is used to achieve classification.Experimental data show that the proposed method has good training performance,with an average accuracy of 97.57%and a false negative rate of 2.43%,which is better than other alternative methods.In addition,ablation experiments were performed to evaluate the contribution of each component,and the results showed that the combination of methods was superior to individual methods.To further evaluate the generalization ability of the model in different scenarios,publicly available data sets of industrial control system networks were used.The results show that the model has robust detection capability in various types of network attacks.