A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a force...A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a forced aligned Hidden Markov Model(HMM) state sequence obtained from the GMM-based acoustic model. Therefore, it requires a long computation time for training both the GMM-based acoustic model and a deep learning-based acoustic model. In order to solve this problem, an acoustic model using CTC algorithm is proposed. CTC algorithm does not require the GMM-based acoustic model because it does not use the forced aligned HMM state sequence. However, previous works on a LSTM RNN-based acoustic model using CTC used a small-scale training corpus. In this paper, the LSTM RNN-based acoustic model using CTC is trained on a large-scale training corpus and its performance is evaluated. The implemented acoustic model has a performance of 6.18% and 15.01% in terms of Word Error Rate(WER) for clean speech and noisy speech, respectively. This is similar to a performance of the acoustic model based on the hybrid method.展开更多
Traffic flow prediction in urban areas is essential in the IntelligentTransportation System (ITS). Short Term Traffic Flow (STTF) predictionimpacts traffic flow series, where an estimation of the number of vehicleswil...Traffic flow prediction in urban areas is essential in the IntelligentTransportation System (ITS). Short Term Traffic Flow (STTF) predictionimpacts traffic flow series, where an estimation of the number of vehicleswill appear during the next instance of time per hour. Precise STTF iscritical in Intelligent Transportation System. Various extinct systems aim forshort-term traffic forecasts, ensuring a good precision outcome which was asignificant task over the past few years. The main objective of this paper is topropose a new model to predict STTF for every hour of a day. In this paper,we have proposed a novel hybrid algorithm utilizing Principal ComponentAnalysis (PCA), Stacked Auto-Encoder (SAE), Long Short Term Memory(LSTM), and K-Nearest Neighbors (KNN) named PALKNN. Firstly, PCAremoves unwanted information from the dataset and selects essential features.Secondly, SAE is used to reduce the dimension of input data using onehotencoding so the model can be trained with better speed. Thirdly, LSTMtakes the input from SAE, where the data is sorted in ascending orderbased on the important features and generates the derived value. Finally,KNN Regressor takes information from LSTM to predict traffic flow. Theforecasting performance of the PALKNN model is investigated with OpenRoad Traffic Statistics dataset, Great Britain, UK. This paper enhanced thetraffic flow prediction for every hour of a day with a minimal error value.An extensive experimental analysis was performed on the benchmark dataset.The evaluated results indicate the significant improvement of the proposedPALKNN model over the recent approaches such as KNN, SARIMA, LogisticRegression, RNN, and LSTM in terms of root mean square error (RMSE)of 2.07%, mean square error (MSE) of 4.1%, and mean absolute error (MAE)of 2.04%.展开更多
Properties that are similar to the memory and learning functions in biological systems have been observed and reported in the experimental studies of memristors fabricated by different materials. These properties incl...Properties that are similar to the memory and learning functions in biological systems have been observed and reported in the experimental studies of memristors fabricated by different materials. These properties include the forgetting effect, the transition from short-term memory(STM) to long-term memory(LTM), learning-experience behavior, etc. The mathematical model of this kind of memristor would be very important for its theoretical analysis and application design.In our analysis of the existing memristor model with these properties, we find that some behaviors of the model are inconsistent with the reported experimental observations. A phenomenological memristor model is proposed for this kind of memristor. The model design is based on the forgetting effect and STM-to-LTM transition since these behaviors are two typical properties of these memristors. Further analyses of this model show that this model can also be used directly or modified to describe other experimentally observed behaviors. Simulations show that the proposed model can give a better description of the reported memory and learning behaviors of this kind of memristor than the existing model.展开更多
电池健康状态(State of Health,SOH)和剩余使用寿命(Remaining Useful Life,RUL)是电池健康管理的重要评价指标。针对锂电池在使用过程中受较多复杂因素影响难以准确预测其剩余使用寿命问题,文中提出了一种基于IDBO-CNN-BiLSTM(Improved...电池健康状态(State of Health,SOH)和剩余使用寿命(Remaining Useful Life,RUL)是电池健康管理的重要评价指标。针对锂电池在使用过程中受较多复杂因素影响难以准确预测其剩余使用寿命问题,文中提出了一种基于IDBO-CNN-BiLSTM(Improved Dung Beetle Optimizer-Convolutional Neural Networks-Bi-directional Long Short-Term Memory)的混合预测模型。通过分析锂电池充电过程中的状态来提取9种健康因子(Health Factor,HF),通过皮尔逊相关系数筛选强相关性健康因子,并将其作为模型输入。采用混沌初始化Tent映射生成蜣螂的初始位置,采用正余弦策略优化偷窃蜣螂位置,解决了DBO(Dung Beetle Optimizer)算法初始化导致的局部收敛问题以及优化了DBO算法的平衡性,提高了预测的稳定性。基于NASA(National Aeronautics and Space Administration)提供的公开锂电池老化数据集进行实验,并使用不同模型预测NASA锂电池SOH,结果表明所提方法误差更小,具有一定应用价值。展开更多
城市轨道交通短时客流预测可为相关运营部门实时调整行车调度、提高运营效率提供重要的决策依据,为乘客提供合理出行建议。因此,针对具有非线性和随机性等特性的地铁进出站短时客流预测问题,文章在堆叠式长短时记忆(SLSTM,Stacked Long ...城市轨道交通短时客流预测可为相关运营部门实时调整行车调度、提高运营效率提供重要的决策依据,为乘客提供合理出行建议。因此,针对具有非线性和随机性等特性的地铁进出站短时客流预测问题,文章在堆叠式长短时记忆(SLSTM,Stacked Long Short Term Memory)模型的基础上,引入遗传算法(GA,Genetic Algorithm),构建了GA-SLSTM预测模型。以10 min为预测粒度对地铁历史运营数据进行整理,分析了客流变化特征,并将其与GA-循环神经网络(RNN,Recurrent Neural Network)模型和LSTM模型的预测效果进行对比。GA-SLSTM预测模型对普通站点和换乘站点预测值的决定系数R2的平均值分别达到0.95和0.90,预测值对真实值的拟合效果较好,预测误差低于其他2种模型,证明该方法可提高地铁短时客流预测的准确性。展开更多
基金supported by the Ministry of Trade,Industry & Energy(MOTIE,Korea) under Industrial Technology Innovation Program (No.10063424,'development of distant speech recognition and multi-task dialog processing technologies for in-door conversational robots')
文摘A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a forced aligned Hidden Markov Model(HMM) state sequence obtained from the GMM-based acoustic model. Therefore, it requires a long computation time for training both the GMM-based acoustic model and a deep learning-based acoustic model. In order to solve this problem, an acoustic model using CTC algorithm is proposed. CTC algorithm does not require the GMM-based acoustic model because it does not use the forced aligned HMM state sequence. However, previous works on a LSTM RNN-based acoustic model using CTC used a small-scale training corpus. In this paper, the LSTM RNN-based acoustic model using CTC is trained on a large-scale training corpus and its performance is evaluated. The implemented acoustic model has a performance of 6.18% and 15.01% in terms of Word Error Rate(WER) for clean speech and noisy speech, respectively. This is similar to a performance of the acoustic model based on the hybrid method.
文摘Traffic flow prediction in urban areas is essential in the IntelligentTransportation System (ITS). Short Term Traffic Flow (STTF) predictionimpacts traffic flow series, where an estimation of the number of vehicleswill appear during the next instance of time per hour. Precise STTF iscritical in Intelligent Transportation System. Various extinct systems aim forshort-term traffic forecasts, ensuring a good precision outcome which was asignificant task over the past few years. The main objective of this paper is topropose a new model to predict STTF for every hour of a day. In this paper,we have proposed a novel hybrid algorithm utilizing Principal ComponentAnalysis (PCA), Stacked Auto-Encoder (SAE), Long Short Term Memory(LSTM), and K-Nearest Neighbors (KNN) named PALKNN. Firstly, PCAremoves unwanted information from the dataset and selects essential features.Secondly, SAE is used to reduce the dimension of input data using onehotencoding so the model can be trained with better speed. Thirdly, LSTMtakes the input from SAE, where the data is sorted in ascending orderbased on the important features and generates the derived value. Finally,KNN Regressor takes information from LSTM to predict traffic flow. Theforecasting performance of the PALKNN model is investigated with OpenRoad Traffic Statistics dataset, Great Britain, UK. This paper enhanced thetraffic flow prediction for every hour of a day with a minimal error value.An extensive experimental analysis was performed on the benchmark dataset.The evaluated results indicate the significant improvement of the proposedPALKNN model over the recent approaches such as KNN, SARIMA, LogisticRegression, RNN, and LSTM in terms of root mean square error (RMSE)of 2.07%, mean square error (MSE) of 4.1%, and mean absolute error (MAE)of 2.04%.
文摘Properties that are similar to the memory and learning functions in biological systems have been observed and reported in the experimental studies of memristors fabricated by different materials. These properties include the forgetting effect, the transition from short-term memory(STM) to long-term memory(LTM), learning-experience behavior, etc. The mathematical model of this kind of memristor would be very important for its theoretical analysis and application design.In our analysis of the existing memristor model with these properties, we find that some behaviors of the model are inconsistent with the reported experimental observations. A phenomenological memristor model is proposed for this kind of memristor. The model design is based on the forgetting effect and STM-to-LTM transition since these behaviors are two typical properties of these memristors. Further analyses of this model show that this model can also be used directly or modified to describe other experimentally observed behaviors. Simulations show that the proposed model can give a better description of the reported memory and learning behaviors of this kind of memristor than the existing model.
文摘电池健康状态(State of Health,SOH)和剩余使用寿命(Remaining Useful Life,RUL)是电池健康管理的重要评价指标。针对锂电池在使用过程中受较多复杂因素影响难以准确预测其剩余使用寿命问题,文中提出了一种基于IDBO-CNN-BiLSTM(Improved Dung Beetle Optimizer-Convolutional Neural Networks-Bi-directional Long Short-Term Memory)的混合预测模型。通过分析锂电池充电过程中的状态来提取9种健康因子(Health Factor,HF),通过皮尔逊相关系数筛选强相关性健康因子,并将其作为模型输入。采用混沌初始化Tent映射生成蜣螂的初始位置,采用正余弦策略优化偷窃蜣螂位置,解决了DBO(Dung Beetle Optimizer)算法初始化导致的局部收敛问题以及优化了DBO算法的平衡性,提高了预测的稳定性。基于NASA(National Aeronautics and Space Administration)提供的公开锂电池老化数据集进行实验,并使用不同模型预测NASA锂电池SOH,结果表明所提方法误差更小,具有一定应用价值。
文摘城市轨道交通短时客流预测可为相关运营部门实时调整行车调度、提高运营效率提供重要的决策依据,为乘客提供合理出行建议。因此,针对具有非线性和随机性等特性的地铁进出站短时客流预测问题,文章在堆叠式长短时记忆(SLSTM,Stacked Long Short Term Memory)模型的基础上,引入遗传算法(GA,Genetic Algorithm),构建了GA-SLSTM预测模型。以10 min为预测粒度对地铁历史运营数据进行整理,分析了客流变化特征,并将其与GA-循环神经网络(RNN,Recurrent Neural Network)模型和LSTM模型的预测效果进行对比。GA-SLSTM预测模型对普通站点和换乘站点预测值的决定系数R2的平均值分别达到0.95和0.90,预测值对真实值的拟合效果较好,预测误差低于其他2种模型,证明该方法可提高地铁短时客流预测的准确性。