BACKGROUND There is a lack of literature discussing the utilization of the stacking ensemble algorithm for predicting depression in patients with heart failure(HF).AIM To create a stacking model for predicting depress...BACKGROUND There is a lack of literature discussing the utilization of the stacking ensemble algorithm for predicting depression in patients with heart failure(HF).AIM To create a stacking model for predicting depression in patients with HF.METHODS This study analyzed data on 1084 HF patients from the National Health and Nutrition Examination Survey database spanning from 2005 to 2018.Through univariate analysis and the use of an artificial neural network algorithm,predictors significantly linked to depression were identified.These predictors were utilized to create a stacking model employing tree-based learners.The performances of both the individual models and the stacking model were assessed by using the test dataset.Furthermore,the SHapley additive exPlanations(SHAP)model was applied to interpret the stacking model.RESULTS The models included five predictors.Among these models,the stacking model demonstrated the highest performance,achieving an area under the curve of 0.77(95%CI:0.71-0.84),a sensitivity of 0.71,and a specificity of 0.68.The calibration curve supported the reliability of the models,and decision curve analysis confirmed their clinical value.The SHAP plot demonstrated that age had the most significant impact on the stacking model's output.CONCLUSION The stacking model demonstrated strong predictive performance.Clinicians can utilize this model to identify highrisk depression patients with HF,thus enabling early provision of psychological interventions.展开更多
This study employs a stacking ensemble learning framework to establish a regression model for predicting the tribological properties of amide-based lubricating grease and determining the optimal additive ratios.Melami...This study employs a stacking ensemble learning framework to establish a regression model for predicting the tribological properties of amide-based lubricating grease and determining the optimal additive ratios.Melamine cyanuric acid(MCA)was selected as the thickener,and three extreme-pressure anti-wear additives were used to prepare the lubricating grease.The tribological performance was tested using an MFT-R4000 reciprocating friction and wear machine.Based on the tribological experimental data,the synthetic minority oversampling technique(SMOTE)was utilized for data augmentation,and a stacking ensemble algorithm with Bayesian optimization of hyperparameters was used to construct a predictive model for tribological performance.Subsequently,within this model framework,single and multi-objective optimization models were developed,and the fruit fly algorithm was employed to find the optimal additive combination ratios,which were experimentally validated.The results demonstrated that the learning framework based on the stacking ensemble model could effectively predict the tribological properties of amide-based lubricating grease in small sample datasets,with the R2 for the average friction coefficient prediction reaching 0.9939 and for the wear scar width prediction reaching 0.9535.In the experimental validation of the optimal additive ratios,the relative error of the friction coefficient ratio scheme was 0.51%,and the relative error of the wear scar width was 1.10%.This finding suggests that the learning framework provides a novel approach for predicting the performance of amide-based lubricating grease and studying additive combinations.展开更多
Many plant species have a startling degree of morphological similarity,making it difficult to split and categorize them reliably.Unknown plant species can be challenging to classify and segment using deep learning.Whi...Many plant species have a startling degree of morphological similarity,making it difficult to split and categorize them reliably.Unknown plant species can be challenging to classify and segment using deep learning.While using deep learning architectures has helped improve classification accuracy,the resulting models often need to be more flexible and require a large dataset to train.For the sake of taxonomy,this research proposes a hybrid method for categorizing guava,potato,and java plumleaves.Two new approaches are used to formthe hybridmodel suggested here.The guava,potato,and java plum plant species have been successfully segmented using the first model built on the MobileNetV2-UNET architecture.As a second model,we use a Plant Species Detection Stacking Ensemble Deep Learning Model(PSD-SE-DLM)to identify potatoes,java plums,and guava.The proposed models were trained using data collected in Punjab,Pakistan,consisting of images of healthy and sick leaves from guava,java plum,and potatoes.These datasets are known as PLSD and PLSSD.Accuracy levels of 99.84%and 96.38%were achieved for the suggested PSD-SE-DLM and MobileNetV2-UNET models,respectively.展开更多
Soil extracellular electron transfer(EET)is a pivotal biological process within the realm of soil.Unfortunately,EET suffers from a lack of predictive models.Herein,an intricately crafted machine learning model has bee...Soil extracellular electron transfer(EET)is a pivotal biological process within the realm of soil.Unfortunately,EET suffers from a lack of predictive models.Herein,an intricately crafted machine learning model has been developed for the purpose of predicting soil EET by using the physicochemical properties of soil as independent input variables and the EET capabilities in terms of current density(j_(max))and Coulombic charge(C_(out))as dependent output variables.An autoencoder ensemble stacking(AES)model was developed to address the aforementioned issue by integrating support vector machine,multilayer perceptron,extreme gradient boosting,and light gradient boosting machine algorithms as the stacking algorithms.With 10-fold crossvalidation,the AES model exhibited notable improvements in predicting j_(max)and C_(out),with average test R^(2)values of 0.83 and 0.84,respectively,surpassing those of single machine learning(ML)models and the basic ensemble model.By utilizing partial correlation plots(PDPs),Shapley Additive explanations(SHAP)values,and SHAP decision plots,we quantitatively explained the impact and contribution of the input molecules on the AES model’s predictions of j_(max)and C_(out).In the context of the SHAP method for the AES model,total carbon(TC)was identified as the most correlated descriptor for j_(max),while total organic carbon(TOC)stood out as the most relevant descriptor for C_(out).In the prediction tasks of j_(max)and C_(out)within the AES model,employing a multitask ML approach allowed the model to benefit from the shared information of input variables,thereby enhancing its overall generalizability.This study provides a feasible tool for the prediction of soil EET from soil physiochemical properties and an advanced understanding of the relationship between soil physiochemical properties and EET capability.展开更多
文摘BACKGROUND There is a lack of literature discussing the utilization of the stacking ensemble algorithm for predicting depression in patients with heart failure(HF).AIM To create a stacking model for predicting depression in patients with HF.METHODS This study analyzed data on 1084 HF patients from the National Health and Nutrition Examination Survey database spanning from 2005 to 2018.Through univariate analysis and the use of an artificial neural network algorithm,predictors significantly linked to depression were identified.These predictors were utilized to create a stacking model employing tree-based learners.The performances of both the individual models and the stacking model were assessed by using the test dataset.Furthermore,the SHapley additive exPlanations(SHAP)model was applied to interpret the stacking model.RESULTS The models included five predictors.Among these models,the stacking model demonstrated the highest performance,achieving an area under the curve of 0.77(95%CI:0.71-0.84),a sensitivity of 0.71,and a specificity of 0.68.The calibration curve supported the reliability of the models,and decision curve analysis confirmed their clinical value.The SHAP plot demonstrated that age had the most significant impact on the stacking model's output.CONCLUSION The stacking model demonstrated strong predictive performance.Clinicians can utilize this model to identify highrisk depression patients with HF,thus enabling early provision of psychological interventions.
基金support extended for this academic work by the Beijing Natural Science Foundation(No.2232066)the Open Project Foundation of State Key Laboratory of Solid Lubrication(No.LSL-2212).
文摘This study employs a stacking ensemble learning framework to establish a regression model for predicting the tribological properties of amide-based lubricating grease and determining the optimal additive ratios.Melamine cyanuric acid(MCA)was selected as the thickener,and three extreme-pressure anti-wear additives were used to prepare the lubricating grease.The tribological performance was tested using an MFT-R4000 reciprocating friction and wear machine.Based on the tribological experimental data,the synthetic minority oversampling technique(SMOTE)was utilized for data augmentation,and a stacking ensemble algorithm with Bayesian optimization of hyperparameters was used to construct a predictive model for tribological performance.Subsequently,within this model framework,single and multi-objective optimization models were developed,and the fruit fly algorithm was employed to find the optimal additive combination ratios,which were experimentally validated.The results demonstrated that the learning framework based on the stacking ensemble model could effectively predict the tribological properties of amide-based lubricating grease in small sample datasets,with the R2 for the average friction coefficient prediction reaching 0.9939 and for the wear scar width prediction reaching 0.9535.In the experimental validation of the optimal additive ratios,the relative error of the friction coefficient ratio scheme was 0.51%,and the relative error of the wear scar width was 1.10%.This finding suggests that the learning framework provides a novel approach for predicting the performance of amide-based lubricating grease and studying additive combinations.
基金funding this work through the Research Group Program under the Grant Number:(R.G.P.2/382/44).
文摘Many plant species have a startling degree of morphological similarity,making it difficult to split and categorize them reliably.Unknown plant species can be challenging to classify and segment using deep learning.While using deep learning architectures has helped improve classification accuracy,the resulting models often need to be more flexible and require a large dataset to train.For the sake of taxonomy,this research proposes a hybrid method for categorizing guava,potato,and java plumleaves.Two new approaches are used to formthe hybridmodel suggested here.The guava,potato,and java plum plant species have been successfully segmented using the first model built on the MobileNetV2-UNET architecture.As a second model,we use a Plant Species Detection Stacking Ensemble Deep Learning Model(PSD-SE-DLM)to identify potatoes,java plums,and guava.The proposed models were trained using data collected in Punjab,Pakistan,consisting of images of healthy and sick leaves from guava,java plum,and potatoes.These datasets are known as PLSD and PLSSD.Accuracy levels of 99.84%and 96.38%were achieved for the suggested PSD-SE-DLM and MobileNetV2-UNET models,respectively.
基金supported by Guangdong Basic and Applied Basic Research Foundation(Grant No.2023B1515040022)the National Natural Science Foundation of China(Grant Nos.42177270 and 42207340).
文摘Soil extracellular electron transfer(EET)is a pivotal biological process within the realm of soil.Unfortunately,EET suffers from a lack of predictive models.Herein,an intricately crafted machine learning model has been developed for the purpose of predicting soil EET by using the physicochemical properties of soil as independent input variables and the EET capabilities in terms of current density(j_(max))and Coulombic charge(C_(out))as dependent output variables.An autoencoder ensemble stacking(AES)model was developed to address the aforementioned issue by integrating support vector machine,multilayer perceptron,extreme gradient boosting,and light gradient boosting machine algorithms as the stacking algorithms.With 10-fold crossvalidation,the AES model exhibited notable improvements in predicting j_(max)and C_(out),with average test R^(2)values of 0.83 and 0.84,respectively,surpassing those of single machine learning(ML)models and the basic ensemble model.By utilizing partial correlation plots(PDPs),Shapley Additive explanations(SHAP)values,and SHAP decision plots,we quantitatively explained the impact and contribution of the input molecules on the AES model’s predictions of j_(max)and C_(out).In the context of the SHAP method for the AES model,total carbon(TC)was identified as the most correlated descriptor for j_(max),while total organic carbon(TOC)stood out as the most relevant descriptor for C_(out).In the prediction tasks of j_(max)and C_(out)within the AES model,employing a multitask ML approach allowed the model to benefit from the shared information of input variables,thereby enhancing its overall generalizability.This study provides a feasible tool for the prediction of soil EET from soil physiochemical properties and an advanced understanding of the relationship between soil physiochemical properties and EET capability.