期刊文献+
共找到138篇文章
< 1 2 7 >
每页显示 20 50 100
Denoising Letter Images from Scanned Invoices Using Stacked Autoencoders 被引量:2
1
作者 Samah Ibrahim Alshathri Desiree Juby Vincent V.S.Hari 《Computers, Materials & Continua》 SCIE EI 2022年第4期1371-1386,共16页
Invoice document digitization is crucial for efficient management in industries.The scanned invoice image is often noisy due to various reasons.This affects the OCR(optical character recognition)detection accuracy.In ... Invoice document digitization is crucial for efficient management in industries.The scanned invoice image is often noisy due to various reasons.This affects the OCR(optical character recognition)detection accuracy.In this paper,letter data obtained from images of invoices are denoised using a modified autoencoder based deep learning method.A stacked denoising autoencoder(SDAE)is implemented with two hidden layers each in encoder network and decoder network.In order to capture the most salient features of training samples,a undercomplete autoencoder is designed with non-linear encoder and decoder function.This autoencoder is regularized for denoising application using a combined loss function which considers both mean square error and binary cross entropy.A dataset consisting of 59,119 letter images,which contains both English alphabets(upper and lower case)and numbers(0 to 9)is prepared from many scanned invoices images and windows true type(.ttf)files,are used for training the neural network.Performance is analyzed in terms of Signal to Noise Ratio(SNR),Peak Signal to Noise Ratio(PSNR),Structural Similarity Index(SSIM)and Universal Image Quality Index(UQI)and compared with other filtering techniques like Nonlocal Means filter,Anisotropic diffusion filter,Gaussian filters and Mean filters.Denoising performance of proposed SDAE is compared with existing SDAE with single loss function in terms of SNR and PSNR values.Results show the superior performance of proposed SDAE method. 展开更多
关键词 stacked denoising autoencoder(sdae) optical character recognition(OCR) signal to noise ratio(SNR) universal image quality index(UQ1)and structural similarity index(SSIM)
在线阅读 下载PDF
Data Cleaning Based on Stacked Denoising Autoencoders and Multi-Sensor Collaborations 被引量:1
2
作者 Xiangmao Chang Yuan Qiu +1 位作者 Shangting Su Deliang Yang 《Computers, Materials & Continua》 SCIE EI 2020年第5期691-703,共13页
Wireless sensor networks are increasingly used in sensitive event monitoring.However,various abnormal data generated by sensors greatly decrease the accuracy of the event detection.Although many methods have been prop... Wireless sensor networks are increasingly used in sensitive event monitoring.However,various abnormal data generated by sensors greatly decrease the accuracy of the event detection.Although many methods have been proposed to deal with the abnormal data,they generally detect and/or repair all abnormal data without further differentiate.Actually,besides the abnormal data caused by events,it is well known that sensor nodes prone to generate abnormal data due to factors such as sensor hardware drawbacks and random effects of external sources.Dealing with all abnormal data without differentiate will result in false detection or missed detection of the events.In this paper,we propose a data cleaning approach based on Stacked Denoising Autoencoders(SDAE)and multi-sensor collaborations.We detect all abnormal data by SDAE,then differentiate the abnormal data by multi-sensor collaborations.The abnormal data caused by events are unchanged,while the abnormal data caused by other factors are repaired.Real data based simulations show the efficiency of the proposed approach. 展开更多
关键词 Data cleaning wireless sensor networks stacked denoising autoencoders multi-sensor collaborations
在线阅读 下载PDF
基于SDAE-DCPInformer的电动汽车电池SOC和SOH估算方法
3
作者 彭自然 王顺豪 肖伸平 《智能系统学报》 北大核心 2025年第4期969-983,共15页
针对现有电动汽车电池状态估计方法存在运算效率低和估算准确率低的问题,提出一种模型以估算电动汽车电池荷电状态(state of charge,SOC)和健康状态(state of health,SOH)。采用堆叠降噪自编码器(stacked denosing auto encoder,SDAE)... 针对现有电动汽车电池状态估计方法存在运算效率低和估算准确率低的问题,提出一种模型以估算电动汽车电池荷电状态(state of charge,SOC)和健康状态(state of health,SOH)。采用堆叠降噪自编码器(stacked denosing auto encoder,SDAE)清洗电压、电流和温度数据中的异常数据和空缺数据,减小对估算精度的影响。引入动态通道剪枝(dynamical channel pruning,DCP)技术对Informer模型进行稀疏化处理,提高剪枝后模型的性能和稳定性。将清洗过的数据输入DCPInformer模型实现SOC和SOH的精确估计。实验结果表明,所提出的SDAE-DCPInformer模型估计SOC的平均绝对误差和均方根误差分别达到0.25%和0.38%,估计SOH的平均绝对误差和均方根误差分别达到了0.51%和0.64%。与传统Transformer等模型相比,所提模型预测SOC和SOH的速度更快,估算准确度有效提升,拥有的更好稳定性和泛化性。 展开更多
关键词 电动汽车 动力电池 荷电状态 健康状态 堆叠降噪自编码器 数据清洗 动态通道剪枝 改进Informer
在线阅读 下载PDF
基于PO-SSDAE算法的XLPE电缆局部放电模式识别
4
作者 卢姝婷 方程 程江洲 《自动化与仪表》 2025年第7期80-86,共7页
随着电力系统发展,电缆的绝缘老化问题日益突出,局部放电的检测与模式识别成为保障电力设备稳定运行的关键技术。传统方法在复杂噪声和多样化放电模式下精度较低。为此,研究提出了一种基于美洲狮优化算法的堆叠稀疏降噪自编码网络(puma ... 随着电力系统发展,电缆的绝缘老化问题日益突出,局部放电的检测与模式识别成为保障电力设备稳定运行的关键技术。传统方法在复杂噪声和多样化放电模式下精度较低。为此,研究提出了一种基于美洲狮优化算法的堆叠稀疏降噪自编码网络(puma optimizar algorithm-stack sparse denoising auto-encoder,PO-SSDAE)放电识别方法,通过优化SSDAE的超参数,提高了复杂信号噪声条件下的识别精度。实验采集XLPE电缆放电信号,提取时域与频域特征,并使用PO-SSDAE进行训练与优化。与其他6种方法对比,PO-SSDAE在准确率和鲁棒性方面具有显著优势,分类精度提高了15%以上,验证了其在局部放电模式识别中的应用潜力。 展开更多
关键词 XLPE电缆 局部放电 美洲狮优化算法 堆叠稀疏降噪自编码网络
在线阅读 下载PDF
基于MRSDAE-KPCA结合Bi-LST的滚动轴承剩余使用寿命预测 被引量:1
5
作者 古莹奎 陈家芳 石昌武 《噪声与振动控制》 CSCD 北大核心 2024年第3期95-100,145,共7页
针对现有滚动轴承剩余使用寿命预测方法在提取数据特征时没有充分考虑数据的内部分布,且在构建健康因子时还需要专家经验进行人工提取等问题,提出一种基于流形正则化堆栈去噪自编码器、核主成分分析并结合双向长短时记忆网络的滚动轴承... 针对现有滚动轴承剩余使用寿命预测方法在提取数据特征时没有充分考虑数据的内部分布,且在构建健康因子时还需要专家经验进行人工提取等问题,提出一种基于流形正则化堆栈去噪自编码器、核主成分分析并结合双向长短时记忆网络的滚动轴承剩余使用寿命预测方法。首先采用无监督的堆栈去噪自编码器网络对原始振动数据进行深层特征提取,并使用核主成分分析法进一步降维,以提高健康因子的指标稳定性;然后在堆栈去噪自编码器中加入流形正则化,最大程度保留编码器隐藏层内部的数据分布结构,提高模型提取数据特征的有效性。最后使用双向长短时记忆网络预测轴承的剩余使用寿命,并采用AdaMax优化算法对网络模型的超参数进行自适应寻优。分析结果表明,提出的滚动轴承剩余使用寿命预测方法具有更高的精度。 展开更多
关键词 故障诊断 滚动轴承 剩余使用寿命预测 健康因子 流形正则化堆栈去噪自编码器 双向长短时记忆网络
在线阅读 下载PDF
基于SDAE的终端区气象场景模式识别方法
6
作者 杨新湦 罗秋晴 张召悦 《河南科技大学学报(自然科学版)》 北大核心 2024年第2期96-104,M0008,共10页
气象条件是影响终端区航空器运行安全及效率的主要因素之一。为提高终端区气象场景模式识别精度,采用基于堆叠降噪自编码(SDAE)的聚类模型,在输入层添加随机噪声、构建3层自编码、逐层贪婪训练,降维后的特征作为聚类的输入,实现气象场... 气象条件是影响终端区航空器运行安全及效率的主要因素之一。为提高终端区气象场景模式识别精度,采用基于堆叠降噪自编码(SDAE)的聚类模型,在输入层添加随机噪声、构建3层自编码、逐层贪婪训练,降维后的特征作为聚类的输入,实现气象场景的模式识别。以天津滨海国际机场2022年气象观测数据为例,基于SDAE与欧氏距离、汉明距离、曼哈顿距离等传统相似性距离度量方法,分别使用K-medoids与FCM两种聚类方法进行验证。结果表明:基于SDAE的相似性度量在K-medoids与FCM聚类中均表现最优,与其他相似性度量相比差异率分别达到22.4%,12%,17.7%与24.8%,10.7%,11.8%,且运算时间最短,证明了基于SDAE的度量、聚类效果最优,最终识别出8个气象场景,各场景分类清晰明确。 展开更多
关键词 气象特征 堆叠降噪自编码 K-medoids FCM
在线阅读 下载PDF
融合改进采样技术和SRFCNN-BiLSTM的入侵检测方法 被引量:2
7
作者 陈虹 由雨竹 +2 位作者 金海波 武聪 邹佳澎 《计算机工程与应用》 北大核心 2025年第9期315-324,共10页
针对目前很多入侵检测方法中因数据不平衡和特征冗余导致检测率低等问题,提出融合改进采样技术和SRFCNN-BiLSTM的入侵检测方法。设计一种FBS-RE混合采样算法,即Borderline-SMOTE过采样和RENN欠采样同时对多数类和少数类样本进行处理,解... 针对目前很多入侵检测方法中因数据不平衡和特征冗余导致检测率低等问题,提出融合改进采样技术和SRFCNN-BiLSTM的入侵检测方法。设计一种FBS-RE混合采样算法,即Borderline-SMOTE过采样和RENN欠采样同时对多数类和少数类样本进行处理,解决数据不平衡问题。利用堆叠降噪自动编码器(stacked denoising auto encoder,SDAE)进行数据降维,减少噪声对数据的影响,去除冗余特征。采用改进的卷积神经网络(split residual fuse convolutional neural network,SRFCNN)和双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)更好地提取数据中的空间和时间特征,结合注意力机制对特征分配不同的权重,获得更好的分类能力,提高对少数攻击流量的检测率。最后,在UNSW-NB15数据集上对模型进行验证,准确率和F1分数为89.24%和90.36%,优于传统机器学习和深度学习模型。 展开更多
关键词 入侵检测 不平衡处理 堆叠降噪自动编码器 卷积神经网络 注意力机制
在线阅读 下载PDF
基于改进Transformer的持续血糖浓度预测模型
8
作者 徐鹤 杨丹丹 +1 位作者 刘思行 季一木 《数据采集与处理》 北大核心 2025年第4期1065-1081,共17页
糖尿病是一种普遍存在的慢性疾病,做好血糖控制对糖尿病的预防具有重要作用。然而,持续血糖监测(Continuous glucose monitoring,CGM)过程中数据的不确定性显著增加了血糖预测的难度。因此,提出一种新的基于深度学习的血糖浓度预测模型... 糖尿病是一种普遍存在的慢性疾病,做好血糖控制对糖尿病的预防具有重要作用。然而,持续血糖监测(Continuous glucose monitoring,CGM)过程中数据的不确定性显著增加了血糖预测的难度。因此,提出一种新的基于深度学习的血糖浓度预测模型,旨在提高模型对传感器提取数据的适应性。在该模型中,堆叠式降噪自编码器(Stacked denoising auto encoder,SDAE)被嵌入Transformer编码器的结构中,实现对输入数据的重构去噪和特征提取;然后,采用混合位置编码策略替代原来的单一绝对位置编码嵌入,同时将轻量级解码器引入Transformer模型中,替代原始结构复杂的解码器,聚合来自不同层次的特征信息,同时获取局部和全局特征;最后,通过搭建的SDAE-改进Transformer网络对CGM数据序列并行化训练,更全面地捕捉数据中的时序模式和复杂关联,提高预测性能。实验结果表明,该模型相较于传统方法在血糖预测任务中取得了显著的性能提升,证实了其在处理CGM数据时的有效性和鲁棒性。 展开更多
关键词 持续血糖监测 神经网络 堆叠降噪自编码器 TRANSFORMER 注意力机制
在线阅读 下载PDF
基于粒子群优化堆叠降噪自编码器的电力设备状态数据质量提升 被引量:1
9
作者 计蓉 侯慧娟 +3 位作者 盛戈皞 张立静 舒博 江秀臣 《上海交通大学学报》 北大核心 2025年第6期780-788,I0007,共10页
当下电力设备状态大数据呈现爆炸式增长,设备故障、数据传输以及人为操作失误等原因都会导致问题数据的出现,影响数据质量以及后续分析结果,因此数据清洗具有重要意义.目前大多数研究着力于识别异常数据并直接剔除,破坏了数据的完整性.... 当下电力设备状态大数据呈现爆炸式增长,设备故障、数据传输以及人为操作失误等原因都会导致问题数据的出现,影响数据质量以及后续分析结果,因此数据清洗具有重要意义.目前大多数研究着力于识别异常数据并直接剔除,破坏了数据的完整性.针对此问题,提出一种基于改进堆叠降噪自编码器的数据清洗方法.首先,采用粒子群算法优化堆叠降噪自编码器中的超参数;然后,利用堆叠降噪自编码器提取、还原数据特征的特点来进行数据清洗,实现对孤立点的修复和对空缺数据的填补,以有效提升电力设备状态数据的质量.所提方法简单高效,可以同时提高数据集的准确性和完整性.以电力设备的历史运行数据为例进行测试,算例结果表明所提方法相比于其他经典方法,数据清洗效果更好,且针对不同异常程度和运行状态的数据集都有良好的清洗效果,能够提高电力设备状态数据的质量. 展开更多
关键词 电力设备 状态数据 堆叠降噪自编码器 数据清洗
在线阅读 下载PDF
基于SDAE特征表示的协同主题回归推荐模型 被引量:3
10
作者 谢国民 张婷婷 +2 位作者 刘明 屠乃威 刘志邦 《计算机工程与科学》 CSCD 北大核心 2019年第5期924-932,共9页
为解决推荐系统中的冷启动问题,在协同主题回归CTR模型的基础上引入堆叠去噪自编码器SDAE深度学习网络,用于学习用户辅助信息的隐表示,建立SDAE-CTR模型。模型应用2层SDAE网络,以用户信息为网络输入量,将编码过程获得的用户辅助信息的... 为解决推荐系统中的冷启动问题,在协同主题回归CTR模型的基础上引入堆叠去噪自编码器SDAE深度学习网络,用于学习用户辅助信息的隐表示,建立SDAE-CTR模型。模型应用2层SDAE网络,以用户信息为网络输入量,将编码过程获得的用户辅助信息的隐表示和解码过程获得的输入近似表示为网络的双输出量,最小化用户辅助信息和近似表示的差值来确定最优隐表示。模型融合用户-项目评分矩阵(冷启动条件无评分)、项目内容信息和用户辅助信息实现用户对未评分项目的评分预测,并在LastFM、Book Crossing和MovieLens数据集上从推荐准确度、新颖性和用户冷启动条件下的推荐效果等3方面对SDAE-CTR模型和CTR模型进行比较。结果表明,SDAE-CTR模型在冷启动或非冷启动的条件下,推荐效果都要优于CTR模型的,虽然新颖性较CTR模型稍微逊色一些,但理论上在合理的范围内,总体上SDAE-CTR模型表现较优。 展开更多
关键词 推荐系统 协同主题回归模型 堆叠去噪自编码器 混合推荐
在线阅读 下载PDF
一种基于自编码器降维的神经卷积网络入侵检测模型 被引量:3
11
作者 孙敬 丁嘉伟 冯光辉 《电信科学》 北大核心 2025年第2期129-138,共10页
为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dim... 为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dimensionality reduction,IRFD),进而缓解传统机器学习入侵检测模型的低准确率问题。IRFD采用堆叠降噪稀疏自编码器策略对数据进行降维,从而提取有效特征。利用卷积注意力机制对残差网络进行改进,构建能提取关键特征的分类网络,并利用两个典型的入侵检测数据集验证IRFD的检测性能。实验结果表明,IRFD在数据集UNSW-NB15和CICIDS 2017上的准确率均达到99%以上,且F1-score分别为99.5%和99.7%。与基线模型相比,提出的IRFD在准确率、精确率和F1-score性能上均有较大提升。 展开更多
关键词 网络攻击 入侵检测模型 堆叠降噪稀疏自编码器 卷积注意力机制 残差网络
在线阅读 下载PDF
基于KA Informer的电动汽车动力电池荷电状态和健康状态估算
12
作者 彭自然 王顺豪 +1 位作者 肖伸平 肖利君 《电工技术学报》 北大核心 2025年第19期6378-6394,共17页
针对现有电动汽车动力电池估计荷电状态(SOC)和健康状态(SOH)估计方法存在运算效率低、实时性差以及估算准确率低的问题,该文提出一种基于网络模型KA Informer精确估计电动汽车动力电池SOC&SOH的方法。首先,依据Kolmogorov-Arnold... 针对现有电动汽车动力电池估计荷电状态(SOC)和健康状态(SOH)估计方法存在运算效率低、实时性差以及估算准确率低的问题,该文提出一种基于网络模型KA Informer精确估计电动汽车动力电池SOC&SOH的方法。首先,依据Kolmogorov-Arnold理论将原始堆叠降噪自编码器(SDAE)内部权重W优化为可自主学习的激活函数B-spline,并采用网格扩展技术细粒化B-spline,组成KASDAE新模型,使得堆叠降噪自编码器能够对传感器采集到的电压、电流、温度数据进行清洗。其次,提出傅里叶混合窗口注意力机制(FMWA)替换稀疏多头注意力机制(MPPSA),优化Informer模型结构,增强Informer模型捕获电池长序列数据局部信息和全局信息的能力。最后,将清洗后的数据输入FMWA Informer网络模型实现荷电状态和健康状态的精确估计。实验结果表明,所提模型估计SOC的平均绝对误差和方均根误差分别达到0.24%和0.37%,估计SOH的平均绝对误差和方均根误差分别达到了0.5%和0.62%。与传统Informer、Transformer、长短时记忆(LSTM)、门控循环单元(GRU)、极限学习机(ELM)模型相比,该模型预测SOC和SOH的速度更快,估算准确度得到有效提升。 展开更多
关键词 电动汽车 动力电池 Kolmogorov-Arnold理论 堆叠降噪自编码器 改进Informer
在线阅读 下载PDF
基于优化堆叠降噪自编码器的水轮发电机组故障诊断
13
作者 肖发厚 钟波 +1 位作者 张彬桥 邹霖 《中国农村水利水电》 北大核心 2025年第8期119-125,共7页
针对堆叠降噪自编码器(Stacked Denoising Auto-Encoders, SDAE)在故障诊断中受网络参数影响较大的问题,提出一种新的混合智能算法,旨在自适应提取SDAE网络参数以提高故障诊断准确率。首先,提出改进的哈里斯鹰算法(Harris Hawks Optimiz... 针对堆叠降噪自编码器(Stacked Denoising Auto-Encoders, SDAE)在故障诊断中受网络参数影响较大的问题,提出一种新的混合智能算法,旨在自适应提取SDAE网络参数以提高故障诊断准确率。首先,提出改进的哈里斯鹰算法(Harris Hawks Optimization, HHO),即引入Sin混沌映射和莱维飞行策略以加速HHO算法的收敛速度和提高全局搜索效果;然后,提出改进的沙猫群算法(Sand Cat Swarm Optimization, SCSO),即融合反向学习和柯西变异策略弥补SCSO算法易陷入局部最优解的不足;最后,提出一种切换准测,将改进的HHO算法和改进的SCSO算法融合为HHO-SCSO混合智能算法,以实现两种算法的优势互补,从而弥补各自的不足之处。以水轮发电机组轴承故障诊断为例,采用西安交通大学提供的轴承摩擦实验数据集进行算法验证。实验结果表明,所提方法平均故障诊断准确率达到98.21%,相较于未优化SDAE网络,平均诊断准确率提高了8.19%。与现有水轮发电机组故障诊断方法相比,所提方法具有更好的诊断效率和更高的故障诊断准确率。 展开更多
关键词 堆叠降噪自编码器 混合智能算法 水轮发电机组 故障诊断
在线阅读 下载PDF
基于投资者情绪和栈式自编码器的股价预测模型
14
作者 蔡俊杰 王爱银 《哈尔滨商业大学学报(自然科学版)》 2025年第1期120-128,共9页
为提高股价预测的准确性,通过非线性组合的方法,构造了一种融合投资者情绪和栈式去噪自编码器(SDAE)和LSTM组合模型.通过情感分析(SA)提取的情感指数和SDAE提取的股票高质量特征被用作LSTM模型的输入.基于Python开发环境对恒生指数(HSI... 为提高股价预测的准确性,通过非线性组合的方法,构造了一种融合投资者情绪和栈式去噪自编码器(SDAE)和LSTM组合模型.通过情感分析(SA)提取的情感指数和SDAE提取的股票高质量特征被用作LSTM模型的输入.基于Python开发环境对恒生指数(HSI)进行了研究,实验结果表明,所提方法的预测性能优于其他对比方法,其平均绝对误差(MAPE)、R^(2)和方向准确度(DA)值分别达到1.12%、0.92和84.93%,具有准确度较高的预测能力. 展开更多
关键词 股价预测 投资者情绪 栈式去噪自编码器 长短期记忆网络 非线性组合
在线阅读 下载PDF
基于堆叠降噪自编码网络和多源数据加权融合的发电机故障诊断方法
15
作者 邢超 马红升 +3 位作者 覃日升 张明强 鄢晶 刘焱 《高压电器》 北大核心 2025年第5期170-178,共9页
随着电力系统中参与调节的机组日益增多,工业负荷比重逐步上涨,单一数据源已无法满足新型电力系统中机组状态在线监测的精度需求。为此文中结合堆叠降噪自编码(stacked denoisingautoencoder,SDAE)网络和多源数据融合技术提出了一种发... 随着电力系统中参与调节的机组日益增多,工业负荷比重逐步上涨,单一数据源已无法满足新型电力系统中机组状态在线监测的精度需求。为此文中结合堆叠降噪自编码(stacked denoisingautoencoder,SDAE)网络和多源数据融合技术提出了一种发电机状态监测方法。首先,提出了一种基于加权D⁃S证据理论的SCADA⁃PMU数据融合方法;然后引入自动编码技术构建堆叠降噪自编码深度学习网络模型,提取训练数据集的深度特征,构建发电机故障检测模型;最后通过对重构误差进行平滑处理,结合自适应阈值检测状态监测量的趋势变化,实现故障判定。算例仿真结果表明,相比于基于单一数据源的传统方法,文中提出的方法具有更高的鲁棒性和精确性,从而有效提升了发电机故障诊断和状态监测的精细化水平。 展开更多
关键词 D⁃S证据理论 堆叠降噪自编码网络 故障诊断 状态检测
在线阅读 下载PDF
基于堆叠集成学习的非侵入式负荷高精度辨识方法
16
作者 黄宇 何耿生 +4 位作者 刘西卓 刘玺 牟景艳 陈学艳 曾金灿 《计算机应用》 北大核心 2025年第S1期323-328,共6页
非侵入式负荷监测(NILM)通过分析电力总线数据估计单个负荷的功率波形,是电力系统能耗管理的关键技术之一。随着用户对设备能耗管理需求的增加,NILM的准确性成为研究的重点之一,但它容易受到功率类型、功率水平和负荷变化的影响。单一N... 非侵入式负荷监测(NILM)通过分析电力总线数据估计单个负荷的功率波形,是电力系统能耗管理的关键技术之一。随着用户对设备能耗管理需求的增加,NILM的准确性成为研究的重点之一,但它容易受到功率类型、功率水平和负荷变化的影响。单一NILM模型面对不同类型的负荷时准确性差异较大,使用单一方法难以在各类负荷上均取得理想效果。因此,提出一种基于堆叠集成学习的非侵入式负荷高精度辨识方法 AMEL(Aggregation Method based on Ensemble Learning)。首先,选择在各种类型的负荷中表现最优的几种方法构建NILM模型库;其次,建立一个基于多层感知机(MLP)的NILM模型偏好框架,以实现对不同负荷的高精度监测。在UK-DALE数据集上的实验结果表明,与典型的NILM方法相比,所提方法的平均绝对误差(MAE)平均降低了35.6%,F1、召回率和马修斯相关系数(MCC)分别平均提升了33.5%、30.6%和32.1%。此外,通过比较现有的堆叠集成方法和各类设备的辨识波形,验证了所提方法的有效性。 展开更多
关键词 非侵入式负荷监测 集成学习 堆叠方法 序列到序列 双向长短期记忆网络 去噪自编码器
在线阅读 下载PDF
SPR:Malicious traffic detection model for CTCS-3 in railways
17
作者 Siyang Zhou Wenjiang Ji +4 位作者 Xinhong Hei Zhongwei Chang Yuan Qiu Lei Zhu Xin Wang 《High-Speed Railway》 2025年第2期105-115,共11页
The increasingly complex and interconnected train control information network is vulnerable to a variety of malicious traffic attacks,and the existing malicious traffic detection methods mainly rely on machine learnin... The increasingly complex and interconnected train control information network is vulnerable to a variety of malicious traffic attacks,and the existing malicious traffic detection methods mainly rely on machine learning,such as poor robustness,weak generalization,and a lack of ability to learn common features.Therefore,this paper proposes a malicious traffic identification method based on stacked sparse denoising autoencoders combined with a regularized extreme learning machine through particle swarm optimization.Firstly,the simulation environment of the Chinese train control system-3,was constructed for data acquisition.Then Pearson coefficient and other methods are used for pre-processing,then a stacked sparse denoising autoencoder is used to achieve nonlinear dimensionality reduction of features,and finally regularization extreme learning machine optimized by particle swarm optimization is used to achieve classification.Experimental data show that the proposed method has good training performance,with an average accuracy of 97.57%and a false negative rate of 2.43%,which is better than other alternative methods.In addition,ablation experiments were performed to evaluate the contribution of each component,and the results showed that the combination of methods was superior to individual methods.To further evaluate the generalization ability of the model in different scenarios,publicly available data sets of industrial control system networks were used.The results show that the model has robust detection capability in various types of network attacks. 展开更多
关键词 CTCS-3 Malicious traffic detection Generalized features stacked sparse denoising autoencoder Regularized extreme learning machine
在线阅读 下载PDF
基于SDAE特征提取的含风电电网可用输电能力计算 被引量:18
18
作者 闫炯程 李常刚 刘玉田 《电力系统自动化》 EI CSCD 北大核心 2019年第1期32-39,共8页
风力发电的不确定性显著增加了电力系统可用输电能力(ATC)计算的难度。基于点估计的Gram-Charlier级数展开理论和深度学习技术,提出了一种计及越限概率要求的ATC快速计算方法,考虑的约束类型包括静态安全、静态电压稳定和暂态稳定约束... 风力发电的不确定性显著增加了电力系统可用输电能力(ATC)计算的难度。基于点估计的Gram-Charlier级数展开理论和深度学习技术,提出了一种计及越限概率要求的ATC快速计算方法,考虑的约束类型包括静态安全、静态电压稳定和暂态稳定约束。假定风电出力概率分布已知,结合两点估计法和Gram-Charlier级数展开,通过两个确定性场景的最大输电能力(TTC)计算结果逼近TTC的累积分布函数。为了快速、准确地获得确定性场景的TTC,利用堆叠降噪自动编码器(SDAE)建立了TTC计算的深度学习模型。获得TTC的累积分布函数后,将断面功率超过TTC的概率定义为越限概率,推导了给定越限概率要求下ATC计算的表达式。实际电网仿真结果表明,所提方法能够有效计及多类安全稳定约束,快速、准确计算不同越限概率要求下的ATC。 展开更多
关键词 可用输电能力 风电功率 深度学习 堆叠降噪自动编码器 Gram-Charlier级数
在线阅读 下载PDF
面向网络入侵检测的GAN-SDAE-RF模型研究 被引量:16
19
作者 安磊 韩忠华 +1 位作者 林硕 尚文利 《计算机工程与应用》 CSCD 北大核心 2021年第21期155-164,共10页
针对传统机器学习方法在处理不平衡的海量高维数据时罕见攻击类检测率低的问题,提出了一种基于深度学习的随机森林算法的入侵检测模型,为了避免传统的随机森林面对高维数据和不平衡数据时分类精度低、稳定性差和对罕见攻击类检测率低的... 针对传统机器学习方法在处理不平衡的海量高维数据时罕见攻击类检测率低的问题,提出了一种基于深度学习的随机森林算法的入侵检测模型,为了避免传统的随机森林面对高维数据和不平衡数据时分类精度低、稳定性差和对罕见攻击类检测率低的问题,引入生成式对抗网络(GAN)和栈式降噪自编码器(SDAE)对随机森林算法(RF)进行改进。将罕见攻击类数据集输入GAN神经网络中,生成新的攻击类样本,改善网络入侵数据在样本集中不均衡分布的情况,通过堆叠深层的SDAE逐层抽取网络数据的分布规则,并结合各个编码层的系数惩罚和重构误差,来确定高维数据中与入侵行为相关的特征,基于降维后的特征数据构建森林决策树。采用UNSW-NB15数据集的实验结果表明,与SVM、KNN、CNN、LSTM、DBN方法相比,GAN-SDAE-RF整体检测准确率平均提高了9.39%、误报率和漏报率平均降低了9%和15.24%以及在少数类Analysis、Shellcode、Backdoor、Worms上检测率分别提高了26.8%、27.98%、27.85%、39.97%。 展开更多
关键词 深度学习 生成式对抗网络 栈式降噪自编码器 随机森林算法
在线阅读 下载PDF
基于SDAE-BP的联合收割机作业故障监测 被引量:17
20
作者 习晨博 杨光友 +3 位作者 刘浪 刘景 陈学海 马志艳 《农业工程学报》 EI CAS CSCD 北大核心 2020年第17期46-53,共8页
为了解决联合收割机作业故障的非线性特征信号难以提取的问题,该研究提出了一种基于堆叠去噪自动编码器(Stack Denoising Auto Encoder,SDAE)和BP神经网络(Back Propagation,BP)融合的联合收割机作业故障监测及诊断的方法(SDAE-BP)。以... 为了解决联合收割机作业故障的非线性特征信号难以提取的问题,该研究提出了一种基于堆叠去噪自动编码器(Stack Denoising Auto Encoder,SDAE)和BP神经网络(Back Propagation,BP)融合的联合收割机作业故障监测及诊断的方法(SDAE-BP)。以转速传感器采集联合收割机脱粒滚筒转速、籽粒搅龙转速、喂入搅龙转速、杂余搅龙转速、风机转速、输送链耙转速、割刀频率以及逐稿器振动频率,并将采集的数据集作为系统的输入。利用SDAE提取输入信号的深层次特征,并由BP神经网络辨识收割机作业状态,实现联合收割机故障监测。在SDAE-BP模型训练过程中,去噪自动编码器(Denoising Auto Encode,DAE)依次经带有不同分布中心噪声的原始数据进行训练,然后将其堆叠,并通过误差反向传播算法对模型参数进行优化,以提升模型识别故障性能和泛化能力。试验结果表明,对于2018年联合收割机田间试验数据,模型的故障诊断准确率达到99.00%,与SDAE和BP神经网络相比,分别提高了1.5和4.5个百分点。将SDAE-BP故障诊断模型用2019年的试验数据进行更新,并用2018年和2019年试验数据进行测试,结果表明,更新后的模型对2018年试验数据的故障识别准确率为99.25%,对2019年试验数据的故障识别准确率为98.74%,更新后模型在2019试验数据集上的故障识别准确率较未更新模型提高了6.52个百分点。该文所建模型能够准确识别联合收割机的故障类型,且具有较好的鲁棒性,对旋转型机械故障监测及预警具有参考价值。 展开更多
关键词 农业机械 故障诊断 试验 联合收割机 sdae-BP模型 深层次特征 BP神经网络
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部