期刊文献+
共找到251篇文章
< 1 2 13 >
每页显示 20 50 100
Fault Diagnosis for Rolling Bearings with Stacked Denoising Auto-encoder of Information Aggregation
1
作者 Li Zhang Xin Gao Xiao Xu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2019年第4期69-77,共9页
Rolling bearings are important central components in rotating machines, whose fault diagnosis is crucial in condition-based maintenance to reduce the complexity of different kinds of faults. To classify various rollin... Rolling bearings are important central components in rotating machines, whose fault diagnosis is crucial in condition-based maintenance to reduce the complexity of different kinds of faults. To classify various rolling bearing faults, a prognostic algorithm consisting of four phases was proposed. Since stacked denoising auto-encoder can be filtered, noise of large numbers of mechanical vibration signals was used for deep learning structure to extract the characteristics of the noise. Unsupervised pre-training method, which can greatly simplify the traditional manual extraction approach, was utilized to process the depth of the data automatically. Furthermore, the aggregation layer of stacked denoising auto-encoder(SDA) was proposed to get rid of gradient disappearance in deeper layers of network, mix superficial nodes’ expression with deeper layers, and avoid the insufficient express ability in deeper layers. Principal component analysis(PCA) was adopted to extract different features for classification. According to the experimental data of this method and from the comparison results, the proposed method of rolling bearing fault classification reached 97.02% of correct rate, suggesting a better performance than other algorithms. 展开更多
关键词 DEEP learning stacked denoising auto-encoder FAULT diagnosis PCA classification
在线阅读 下载PDF
Fault Diagnosis of Motor in Frequency Domain Signal by Stacked De-noising Auto-encoder 被引量:5
2
作者 Xiaoping Zhao Jiaxin Wu +2 位作者 Yonghong Zhang Yunqing Shi Lihua Wang 《Computers, Materials & Continua》 SCIE EI 2018年第11期223-242,共20页
With the rapid development of mechanical equipment,mechanical health monitoring field has entered the era of big data.Deep learning has made a great achievement in the processing of large data of image and speech due ... With the rapid development of mechanical equipment,mechanical health monitoring field has entered the era of big data.Deep learning has made a great achievement in the processing of large data of image and speech due to the powerful modeling capabilities,this also brings influence to the mechanical fault diagnosis field.Therefore,according to the characteristics of motor vibration signals(nonstationary and difficult to deal with)and mechanical‘big data’,combined with deep learning,a motor fault diagnosis method based on stacked de-noising auto-encoder is proposed.The frequency domain signals obtained by the Fourier transform are used as input to the network.This method can extract features adaptively and unsupervised,and get rid of the dependence of traditional machine learning methods on human extraction features.A supervised fine tuning of the model is then carried out by backpropagation.The Asynchronous motor in Drivetrain Dynamics Simulator system was taken as the research object,the effectiveness of the proposed method was verified by a large number of data,and research on visualization of network output,the results shown that the SDAE method is more efficient and more intelligent. 展开更多
关键词 Big data deep learning stacked de-noising auto-encoder fourier transform
在线阅读 下载PDF
Data Cleaning Based on Stacked Denoising Autoencoders and Multi-Sensor Collaborations 被引量:1
3
作者 Xiangmao Chang Yuan Qiu +1 位作者 Shangting Su Deliang Yang 《Computers, Materials & Continua》 SCIE EI 2020年第5期691-703,共13页
Wireless sensor networks are increasingly used in sensitive event monitoring.However,various abnormal data generated by sensors greatly decrease the accuracy of the event detection.Although many methods have been prop... Wireless sensor networks are increasingly used in sensitive event monitoring.However,various abnormal data generated by sensors greatly decrease the accuracy of the event detection.Although many methods have been proposed to deal with the abnormal data,they generally detect and/or repair all abnormal data without further differentiate.Actually,besides the abnormal data caused by events,it is well known that sensor nodes prone to generate abnormal data due to factors such as sensor hardware drawbacks and random effects of external sources.Dealing with all abnormal data without differentiate will result in false detection or missed detection of the events.In this paper,we propose a data cleaning approach based on Stacked Denoising Autoencoders(SDAE)and multi-sensor collaborations.We detect all abnormal data by SDAE,then differentiate the abnormal data by multi-sensor collaborations.The abnormal data caused by events are unchanged,while the abnormal data caused by other factors are repaired.Real data based simulations show the efficiency of the proposed approach. 展开更多
关键词 Data cleaning wireless sensor networks stacked denoising autoencoders multi-sensor collaborations
在线阅读 下载PDF
SNP site-drug association prediction algorithm based on denoising variational auto-encoder 被引量:1
4
作者 SONG Xiaoyu FENG Xiaobei +3 位作者 ZHU Lin LIU Tong WU Hongyang LI Yifan 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第3期300-308,共9页
Single nucletide polymorphism(SNP)is an important factor for the study of genetic variation in human families and animal and plant strains.Therefore,it is widely used in the study of population genetics and disease re... Single nucletide polymorphism(SNP)is an important factor for the study of genetic variation in human families and animal and plant strains.Therefore,it is widely used in the study of population genetics and disease related gene.In pharmacogenomics research,identifying the association between SNP site and drug is the key to clinical precision medication,therefore,a predictive model of SNP site and drug association based on denoising variational auto-encoder(DVAE-SVM)is proposed.Firstly,k-mer algorithm is used to construct the initial SNP site feature vector,meanwhile,MACCS molecular fingerprint is introduced to generate the feature vector of the drug module.Then,we use the DVAE to extract the effective features of the initial feature vector of the SNP site.Finally,the effective feature vector of the SNP site and the feature vector of the drug module are fused input to the support vector machines(SVM)to predict the relationship of SNP site and drug module.The results of five-fold cross-validation experiments indicate that the proposed algorithm performs better than random forest(RF)and logistic regression(LR)classification.Further experiments show that compared with the feature extraction algorithms of principal component analysis(PCA),denoising auto-encoder(DAE)and variational auto-encode(VAE),the proposed algorithm has better prediction results. 展开更多
关键词 association prediction k-mer molecular fingerprinting support vector machine(SVM) denoising variational auto-encoder(DVAE)
在线阅读 下载PDF
Denoising Letter Images from Scanned Invoices Using Stacked Autoencoders 被引量:2
5
作者 Samah Ibrahim Alshathri Desiree Juby Vincent V.S.Hari 《Computers, Materials & Continua》 SCIE EI 2022年第4期1371-1386,共16页
Invoice document digitization is crucial for efficient management in industries.The scanned invoice image is often noisy due to various reasons.This affects the OCR(optical character recognition)detection accuracy.In ... Invoice document digitization is crucial for efficient management in industries.The scanned invoice image is often noisy due to various reasons.This affects the OCR(optical character recognition)detection accuracy.In this paper,letter data obtained from images of invoices are denoised using a modified autoencoder based deep learning method.A stacked denoising autoencoder(SDAE)is implemented with two hidden layers each in encoder network and decoder network.In order to capture the most salient features of training samples,a undercomplete autoencoder is designed with non-linear encoder and decoder function.This autoencoder is regularized for denoising application using a combined loss function which considers both mean square error and binary cross entropy.A dataset consisting of 59,119 letter images,which contains both English alphabets(upper and lower case)and numbers(0 to 9)is prepared from many scanned invoices images and windows true type(.ttf)files,are used for training the neural network.Performance is analyzed in terms of Signal to Noise Ratio(SNR),Peak Signal to Noise Ratio(PSNR),Structural Similarity Index(SSIM)and Universal Image Quality Index(UQI)and compared with other filtering techniques like Nonlocal Means filter,Anisotropic diffusion filter,Gaussian filters and Mean filters.Denoising performance of proposed SDAE is compared with existing SDAE with single loss function in terms of SNR and PSNR values.Results show the superior performance of proposed SDAE method. 展开更多
关键词 stacked denoising autoencoder(SDAE) optical character recognition(OCR) signal to noise ratio(SNR) universal image quality index(UQ1)and structural similarity index(SSIM)
在线阅读 下载PDF
Deep Learning-Based Stacked Auto-Encoder with Dynamic Differential Annealed Optimization for Skin Lesion Diagnosis
6
作者 Ahmad Alassaf 《Computer Systems Science & Engineering》 SCIE EI 2023年第12期2773-2789,共17页
Intelligent diagnosis approaches with shallow architectural models play an essential role in healthcare.Deep Learning(DL)models with unsupervised learning concepts have been proposed because high-quality feature extra... Intelligent diagnosis approaches with shallow architectural models play an essential role in healthcare.Deep Learning(DL)models with unsupervised learning concepts have been proposed because high-quality feature extraction and adequate labelled details significantly influence shallow models.On the other hand,skin lesionbased segregation and disintegration procedures play an essential role in earlier skin cancer detection.However,artefacts,an unclear boundary,poor contrast,and different lesion sizes make detection difficult.To address the issues in skin lesion diagnosis,this study creates the UDLS-DDOA model,an intelligent Unsupervised Deep Learning-based Stacked Auto-encoder(UDLS)optimized by Dynamic Differential Annealed Optimization(DDOA).Pre-processing,segregation,feature removal or separation,and disintegration are part of the proposed skin lesion diagnosis model.Pre-processing of skin lesion images occurs at the initial level for noise removal in the image using the Top hat filter and painting methodology.Following that,a Fuzzy C-Means(FCM)segregation procedure is performed using a Quasi-Oppositional Elephant Herd Optimization(QOEHO)algorithm.Besides,a novel feature extraction technique using the UDLS technique is applied where the parameter tuning takes place using DDOA.In the end,the disintegration procedure would be accomplished using a SoftMax(SM)classifier.The UDLS-DDOA model is tested against the International Skin Imaging Collaboration(ISIC)dataset,and the experimental results are examined using various computational attributes.The simulation results demonstrated that the UDLS-DDOA model outperformed the compared methods significantly. 展开更多
关键词 Intelligent diagnosis stacked auto-encoder skin lesion unsupervised learning parameter selection
暂未订购
Predicting the Antigenic Variant of Human Influenza A(H3N2) Virus with a Stacked Auto-Encoder Model
7
作者 Zhiying Tan Kenli Li +1 位作者 Taijiao Jiang Yousong Peng 《国际计算机前沿大会会议论文集》 2017年第2期71-73,共3页
The influenza virus changes its antigenicity frequently due to rapid mutations, leading to immune escape and failure of vaccination. Rapid determination of the influenza antigenicity could help identify the antigenic ... The influenza virus changes its antigenicity frequently due to rapid mutations, leading to immune escape and failure of vaccination. Rapid determination of the influenza antigenicity could help identify the antigenic variants in time. Here, we built a stacked auto-encoder (SAE) model for predicting the antigenic variant of human influenza A(H3N2) viruses based on the hemagglutinin (HA) protein sequences. The model achieved an accuracy of 0.95 in five-fold cross-validations, better than the logistic regression model did. Further analysis of the model shows that most of the active nodes in the hidden layer reflected the combined contribution of multiple residues to antigenic variation. Besides, some features (residues on HA protein) in the input layer were observed to take part in multiple active nodes, such as residue 189, 145 and 156, which were also reported to mostly determine the antigenic variation of influenza A(H3N2) viruses. Overall,this work is not only useful for rapidly identifying antigenic variants in influenza prevention, but also an interesting attempt in inferring the mechanisms of biological process through analysis of SAE model, which may give some insights into interpretation of the deep learning 展开更多
关键词 stacked auto-encoder Antigenic VARIATION nfluenza Machine learning
在线阅读 下载PDF
Hformer:highly efficient vision transformer for low-dose CT denoising 被引量:2
8
作者 Shi-Yu Zhang Zhao-Xuan Wang +5 位作者 Hai-Bo Yang Yi-Lun Chen Yang Li Quan Pan Hong-Kai Wang Cheng-Xin Zhao 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第4期161-174,共14页
In this paper,we propose Hformer,a novel supervised learning model for low-dose computer tomography(LDCT)denoising.Hformer combines the strengths of convolutional neural networks for local feature extraction and trans... In this paper,we propose Hformer,a novel supervised learning model for low-dose computer tomography(LDCT)denoising.Hformer combines the strengths of convolutional neural networks for local feature extraction and transformer models for global feature capture.The performance of Hformer was verified and evaluated based on the AAPM-Mayo Clinic LDCT Grand Challenge Dataset.Compared with the former representative state-of-the-art(SOTA)model designs under different architectures,Hformer achieved optimal metrics without requiring a large number of learning parameters,with metrics of33.4405 PSNR,8.6956 RMSE,and 0.9163 SSIM.The experiments demonstrated designed Hformer is a SOTA model for noise suppression,structure preservation,and lesion detection. 展开更多
关键词 Low-dose CT Deep learning Medical image Image denoising Convolutional neural networks Selfattention Residual network auto-encoder
在线阅读 下载PDF
Fault prediction of combine harvesters based on stacked denoising autoencoders 被引量:1
9
作者 Zhaomei Qiu Gaoxiang Shi +3 位作者 Bo Zhao Xin Jin Liming Zhou Tengfei Ma 《International Journal of Agricultural and Biological Engineering》 SCIE CAS 2022年第2期189-196,共8页
Accurate fault prediction is essential to ensure the safety and reliability of combine harvester operation.In this study,a combine harvester fault prediction method based on a combination of stacked denoising autoenco... Accurate fault prediction is essential to ensure the safety and reliability of combine harvester operation.In this study,a combine harvester fault prediction method based on a combination of stacked denoising autoencoders(SDAE)and multi-classification support vector machines(SVM)is proposed to predict combine harvester faults by extracting operational features of key combine components.In general,SDAE contains autoencoders and uses a deep network architecture to learn complex non-linear input-output relationships in a hierarchical manner.Selected features are fed into the SDAE network,deep-level features of the input parameters are extracted by SDAE,and an SVM classifier is then added to its top layer to achieve combine harvester fault prediction.The experimental results show that the method can achieve accurate and efficient combine harvester fault prediction.In particular,the experiments used Gaussian noise with a distribution center of 0.05 to corrupt the test data samples obtained by random sampling of the whole population,and the results showed that the prediction accuracy of the method was 95.31%,which has better robustness and generalization ability compared to SVM(77.03%),BP(74.61%),and SAE(90.86%). 展开更多
关键词 fault prediction combine harvester stacked denoising autoencoders support vector machines
原文传递
A new method for high resolution well-control processing of post-stack seismic data
10
作者 Wu Dakui Wu Zongwei Wu Yijia 《Natural Gas Industry B》 2020年第3期215-223,共9页
Increasing the resolution of seismic data has long been a major topic in seismic exploration.Due to the effect of high-frequency noises,traditional methods could only improve the resolution limitedly.To end this,this ... Increasing the resolution of seismic data has long been a major topic in seismic exploration.Due to the effect of high-frequency noises,traditional methods could only improve the resolution limitedly.To end this,this paper newly proposed a high-resolution seismic data processing method based on welleseismic combination after summarizing the research status on high resolution.Synthetic record and seismogram are similar in effective signals but dissimilar in noises.Their effective signals are regular and noises are irregular.And they are similar in adjacent frequency.Based on these“three-regularity”characteristics,the relationship between synthetic record and seismogram was established using the neural network algorithm.Then,the corresponding extrapolation algorithm was proposed based on the self-adaptive geological and geophysical variation of multi-layer network structure.And a model was established by virtue of this method and the theoretical simulation was carried out.In addition,it was tested from the aspects of frequency component and amplitude energy recovery,phase correction,regularity elimination and stochastic noise.And the following research results were obtained.First,this new method can extract high-frequency information as much as possible and remain middle and low-frequency effective information while eliminating the noises.Second,in this method,the idea of traditional methods to denoisefirst and then expand frequency is changed completely and the limitation of traditional methods is broken.It establishes the idea of expanding frequency and denoising simultaneously and increases the resolution to the uttermost.Third,this new method has been applied to a variety of reservoir descriptions and the high-resolution processing results have been improved significantly in precision and accuracy. 展开更多
关键词 Synthetic record Seismogram stack High resolution Neural network denoising Frequency expanding Data processing
在线阅读 下载PDF
融合改进采样技术和SRFCNN-BiLSTM的入侵检测方法 被引量:3
11
作者 陈虹 由雨竹 +2 位作者 金海波 武聪 邹佳澎 《计算机工程与应用》 北大核心 2025年第9期315-324,共10页
针对目前很多入侵检测方法中因数据不平衡和特征冗余导致检测率低等问题,提出融合改进采样技术和SRFCNN-BiLSTM的入侵检测方法。设计一种FBS-RE混合采样算法,即Borderline-SMOTE过采样和RENN欠采样同时对多数类和少数类样本进行处理,解... 针对目前很多入侵检测方法中因数据不平衡和特征冗余导致检测率低等问题,提出融合改进采样技术和SRFCNN-BiLSTM的入侵检测方法。设计一种FBS-RE混合采样算法,即Borderline-SMOTE过采样和RENN欠采样同时对多数类和少数类样本进行处理,解决数据不平衡问题。利用堆叠降噪自动编码器(stacked denoising auto encoder,SDAE)进行数据降维,减少噪声对数据的影响,去除冗余特征。采用改进的卷积神经网络(split residual fuse convolutional neural network,SRFCNN)和双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)更好地提取数据中的空间和时间特征,结合注意力机制对特征分配不同的权重,获得更好的分类能力,提高对少数攻击流量的检测率。最后,在UNSW-NB15数据集上对模型进行验证,准确率和F1分数为89.24%和90.36%,优于传统机器学习和深度学习模型。 展开更多
关键词 入侵检测 不平衡处理 堆叠降噪自动编码器 卷积神经网络 注意力机制
在线阅读 下载PDF
随机任务驱动下机床间歇状态的动态节能控制方法
12
作者 江志刚 祝青森 +2 位作者 朱硕 鄢威 张华 《机械工程学报》 北大核心 2025年第11期348-360,共13页
机床加工间歇期间的状态控制是提升机床节能效果的重要途径之一。针对当前未充分考虑随机任务情况对机床间歇状态控制的影响,导致机床在固定的节能控制策略下节能效果差的问题,提出一种随机任务驱动下机床间歇状态的动态节能控制方法。... 机床加工间歇期间的状态控制是提升机床节能效果的重要途径之一。针对当前未充分考虑随机任务情况对机床间歇状态控制的影响,导致机床在固定的节能控制策略下节能效果差的问题,提出一种随机任务驱动下机床间歇状态的动态节能控制方法。首先,分析随机任务下机床加工间歇的能耗模式,设计多种随机任务驱动下的机床间歇状态动态节能控制策略与切换机制;在此基础上,根据分析影响状态控制的关键因素建立随机任务加工环境信息样本集,构建堆栈去噪自编码节能控制模型,提取随机任务加工环境信息与机床节能控制策略紧密相关的深层特征,并作为Soft Max分类器的输入进行节能控制策略选择,以建立随机任务与机床节能控制策略的复杂映射关系,实现机床间歇状态的动态控制。最后以工件随机到达、新订单插入等随机任务为例进行验证。结果表明,所提方法能够实现机床间歇状态在随机任务引起的加工间歇长短改变情况下,节能、高效、准确地调整控制策略。 展开更多
关键词 随机任务 动态控制 加工间歇 节能控制策略 堆栈去噪自编码
原文传递
基于改进Transformer的持续血糖浓度预测模型
13
作者 徐鹤 杨丹丹 +1 位作者 刘思行 季一木 《数据采集与处理》 北大核心 2025年第4期1065-1081,共17页
糖尿病是一种普遍存在的慢性疾病,做好血糖控制对糖尿病的预防具有重要作用。然而,持续血糖监测(Continuous glucose monitoring,CGM)过程中数据的不确定性显著增加了血糖预测的难度。因此,提出一种新的基于深度学习的血糖浓度预测模型... 糖尿病是一种普遍存在的慢性疾病,做好血糖控制对糖尿病的预防具有重要作用。然而,持续血糖监测(Continuous glucose monitoring,CGM)过程中数据的不确定性显著增加了血糖预测的难度。因此,提出一种新的基于深度学习的血糖浓度预测模型,旨在提高模型对传感器提取数据的适应性。在该模型中,堆叠式降噪自编码器(Stacked denoising auto encoder,SDAE)被嵌入Transformer编码器的结构中,实现对输入数据的重构去噪和特征提取;然后,采用混合位置编码策略替代原来的单一绝对位置编码嵌入,同时将轻量级解码器引入Transformer模型中,替代原始结构复杂的解码器,聚合来自不同层次的特征信息,同时获取局部和全局特征;最后,通过搭建的SDAE-改进Transformer网络对CGM数据序列并行化训练,更全面地捕捉数据中的时序模式和复杂关联,提高预测性能。实验结果表明,该模型相较于传统方法在血糖预测任务中取得了显著的性能提升,证实了其在处理CGM数据时的有效性和鲁棒性。 展开更多
关键词 持续血糖监测 神经网络 堆叠降噪自编码器 TRANSFORMER 注意力机制
在线阅读 下载PDF
基于SDAE-EEMD降噪分解与改进Informer-BiLSTM模型的电力短期负荷预测方法
14
作者 蔡子龙 李嘉棋 +3 位作者 沈赋 王健 徐潇源 杨宇林 《电网技术》 北大核心 2025年第12期5009-5018,I0010-I0015,共16页
当前短期负荷预测模型在电价与负荷动态融合机制、负荷数据降噪与时序特征提取环节仍存在不足,制约了预测精度的提升。该文提出了一种集成电价及气象多维特征的短期电力负荷预测框架。首先,结合堆叠降噪自编码器(stacked denoising auto... 当前短期负荷预测模型在电价与负荷动态融合机制、负荷数据降噪与时序特征提取环节仍存在不足,制约了预测精度的提升。该文提出了一种集成电价及气象多维特征的短期电力负荷预测框架。首先,结合堆叠降噪自编码器(stacked denoising autoencoders,SDAE)和集合经验模态分解(ensemble empirical mode decomposition,EEMD)构建混合降噪分解模块,有效抑制负荷序列中的噪声干扰和模态混叠问题。EEMD将去噪后负荷序列分解为固有模态函数(intrinsic mode functions,IMFs)分量。其次,基于最大信息系数(maximum information coefficient,MIC)分析,将电价和气象特征分别融入高、低频IMFs分量中,实现差异化的特征动态融合。在此基础上,提出分频预测策略。针对高频分量,引入全局时间戳编码与稀疏注意力机制的改进Informer模型,以捕捉短时剧烈波动特征;对低频分量,采用Bi LSTM网络捕捉长期趋势与周期性。最后,基于澳大利亚国家电力市场公开数据集的实证结果表明,在平均绝对百分比误差和均方误差两个指标上均显著优于未引入电价特征或未采用分频策略的对比模型。通过高质量数据预处理、关键特征动态融合与针对性分频结构建模的协同优化,有效提升了短期负荷预测的精度与稳定性,可为电力市场动态定价机制下的负荷预测提供高效可靠的技术支撑。 展开更多
关键词 短期负荷预测 电价 SDAE EEMD 改进Informer BiLSTM 分频预测
原文传递
基于EEMD包络谱和JS-SDAE的轴承故障诊断
15
作者 苑宇 郭琦 《大连交通大学学报》 2025年第4期49-56,82,共9页
针对滚动轴承不同损伤位置与程度的多状态识别困难问题,提出了一种基于EEMD包络谱和JS—SDAE的轴承故障诊断方法。首先,利用EEMD将轴承信号分解,保留与原信号高相关的本征模态函数;其次,用所选分量的包络谱构建高维特征作为网络的输入;... 针对滚动轴承不同损伤位置与程度的多状态识别困难问题,提出了一种基于EEMD包络谱和JS—SDAE的轴承故障诊断方法。首先,利用EEMD将轴承信号分解,保留与原信号高相关的本征模态函数;其次,用所选分量的包络谱构建高维特征作为网络的输入;最后,降维后输入经人工水母优化算法结构优化后的SDAE,完成轴承多类别故障识别。试验表明,将10类特征数据输入SDAE进行学习后,EEMD包络谱相比时域信号更能体现出故障特征,且JS-SDAE网络相比决策树、贝叶斯、网格搜索优化贝叶斯、SVM、贝叶斯优化SVM、KNN、贝叶斯优化KNN等算法具有更高的准确性。采用QPZZ-Ⅱ系统采集实验平台所采集的数据进行验证,结果表明模型测试集的准确率达到了96.7%。 展开更多
关键词 故障诊断 集成经验模态分解 特征提取 堆叠降噪自编码器 超参优化
在线阅读 下载PDF
基于粒子群优化堆叠降噪自编码器的电力设备状态数据质量提升 被引量:1
16
作者 计蓉 侯慧娟 +3 位作者 盛戈皞 张立静 舒博 江秀臣 《上海交通大学学报》 北大核心 2025年第6期780-788,I0007,共10页
当下电力设备状态大数据呈现爆炸式增长,设备故障、数据传输以及人为操作失误等原因都会导致问题数据的出现,影响数据质量以及后续分析结果,因此数据清洗具有重要意义.目前大多数研究着力于识别异常数据并直接剔除,破坏了数据的完整性.... 当下电力设备状态大数据呈现爆炸式增长,设备故障、数据传输以及人为操作失误等原因都会导致问题数据的出现,影响数据质量以及后续分析结果,因此数据清洗具有重要意义.目前大多数研究着力于识别异常数据并直接剔除,破坏了数据的完整性.针对此问题,提出一种基于改进堆叠降噪自编码器的数据清洗方法.首先,采用粒子群算法优化堆叠降噪自编码器中的超参数;然后,利用堆叠降噪自编码器提取、还原数据特征的特点来进行数据清洗,实现对孤立点的修复和对空缺数据的填补,以有效提升电力设备状态数据的质量.所提方法简单高效,可以同时提高数据集的准确性和完整性.以电力设备的历史运行数据为例进行测试,算例结果表明所提方法相比于其他经典方法,数据清洗效果更好,且针对不同异常程度和运行状态的数据集都有良好的清洗效果,能够提高电力设备状态数据的质量. 展开更多
关键词 电力设备 状态数据 堆叠降噪自编码器 数据清洗
在线阅读 下载PDF
松辽盆地西南部低信噪比地震资料精细处理技术研究及应用 被引量:1
17
作者 王若雯 宁媛丽 +3 位作者 赵威 杨晓柳 朱圣伟 李金鑫 《中国矿业》 北大核心 2025年第S1期613-619,共7页
松辽盆地西南部砂岩型铀矿老地震资料受采集技术限制和复杂表层结构的影响,原始资料干扰波发育,高频吸收严重,有效波信号弱,加之当时数据处理方法技术有限,导致最终成果剖面已无法满足现今连片解释的需求。通过分析砂岩型铀矿老地震资... 松辽盆地西南部砂岩型铀矿老地震资料受采集技术限制和复杂表层结构的影响,原始资料干扰波发育,高频吸收严重,有效波信号弱,加之当时数据处理方法技术有限,导致最终成果剖面已无法满足现今连片解释的需求。通过分析砂岩型铀矿老地震资料的特点,并有针对性的采用叠前综合去噪、振幅补偿、串联反褶积和叠后拓频等关键技术进行处理,建立了一套低信噪比、低覆盖次数地震资料处理流程。结果表明再处理后的地震数据分辨率和信噪比均有了明显的提升,资料的可解释性增强,为连片解释工作奠定了良好的数据基础。 展开更多
关键词 低信噪比 叠前去噪 振幅补偿 精细处理 松辽盆地西南部
在线阅读 下载PDF
一种基于自编码器降维的神经卷积网络入侵检测模型 被引量:3
18
作者 孙敬 丁嘉伟 冯光辉 《电信科学》 北大核心 2025年第2期129-138,共10页
为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dim... 为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dimensionality reduction,IRFD),进而缓解传统机器学习入侵检测模型的低准确率问题。IRFD采用堆叠降噪稀疏自编码器策略对数据进行降维,从而提取有效特征。利用卷积注意力机制对残差网络进行改进,构建能提取关键特征的分类网络,并利用两个典型的入侵检测数据集验证IRFD的检测性能。实验结果表明,IRFD在数据集UNSW-NB15和CICIDS 2017上的准确率均达到99%以上,且F1-score分别为99.5%和99.7%。与基线模型相比,提出的IRFD在准确率、精确率和F1-score性能上均有较大提升。 展开更多
关键词 网络攻击 入侵检测模型 堆叠降噪稀疏自编码器 卷积注意力机制 残差网络
在线阅读 下载PDF
基于优化堆叠降噪自编码器的水轮发电机组故障诊断
19
作者 肖发厚 钟波 +1 位作者 张彬桥 邹霖 《中国农村水利水电》 北大核心 2025年第8期119-125,共7页
针对堆叠降噪自编码器(Stacked Denoising Auto-Encoders, SDAE)在故障诊断中受网络参数影响较大的问题,提出一种新的混合智能算法,旨在自适应提取SDAE网络参数以提高故障诊断准确率。首先,提出改进的哈里斯鹰算法(Harris Hawks Optimiz... 针对堆叠降噪自编码器(Stacked Denoising Auto-Encoders, SDAE)在故障诊断中受网络参数影响较大的问题,提出一种新的混合智能算法,旨在自适应提取SDAE网络参数以提高故障诊断准确率。首先,提出改进的哈里斯鹰算法(Harris Hawks Optimization, HHO),即引入Sin混沌映射和莱维飞行策略以加速HHO算法的收敛速度和提高全局搜索效果;然后,提出改进的沙猫群算法(Sand Cat Swarm Optimization, SCSO),即融合反向学习和柯西变异策略弥补SCSO算法易陷入局部最优解的不足;最后,提出一种切换准测,将改进的HHO算法和改进的SCSO算法融合为HHO-SCSO混合智能算法,以实现两种算法的优势互补,从而弥补各自的不足之处。以水轮发电机组轴承故障诊断为例,采用西安交通大学提供的轴承摩擦实验数据集进行算法验证。实验结果表明,所提方法平均故障诊断准确率达到98.21%,相较于未优化SDAE网络,平均诊断准确率提高了8.19%。与现有水轮发电机组故障诊断方法相比,所提方法具有更好的诊断效率和更高的故障诊断准确率。 展开更多
关键词 堆叠降噪自编码器 混合智能算法 水轮发电机组 故障诊断
在线阅读 下载PDF
基于KA Informer的电动汽车动力电池荷电状态和健康状态估算
20
作者 彭自然 王顺豪 +1 位作者 肖伸平 肖利君 《电工技术学报》 北大核心 2025年第19期6378-6394,共17页
针对现有电动汽车动力电池估计荷电状态(SOC)和健康状态(SOH)估计方法存在运算效率低、实时性差以及估算准确率低的问题,该文提出一种基于网络模型KA Informer精确估计电动汽车动力电池SOC&SOH的方法。首先,依据Kolmogorov-Arnold... 针对现有电动汽车动力电池估计荷电状态(SOC)和健康状态(SOH)估计方法存在运算效率低、实时性差以及估算准确率低的问题,该文提出一种基于网络模型KA Informer精确估计电动汽车动力电池SOC&SOH的方法。首先,依据Kolmogorov-Arnold理论将原始堆叠降噪自编码器(SDAE)内部权重W优化为可自主学习的激活函数B-spline,并采用网格扩展技术细粒化B-spline,组成KASDAE新模型,使得堆叠降噪自编码器能够对传感器采集到的电压、电流、温度数据进行清洗。其次,提出傅里叶混合窗口注意力机制(FMWA)替换稀疏多头注意力机制(MPPSA),优化Informer模型结构,增强Informer模型捕获电池长序列数据局部信息和全局信息的能力。最后,将清洗后的数据输入FMWA Informer网络模型实现荷电状态和健康状态的精确估计。实验结果表明,所提模型估计SOC的平均绝对误差和方均根误差分别达到0.24%和0.37%,估计SOH的平均绝对误差和方均根误差分别达到了0.5%和0.62%。与传统Informer、Transformer、长短时记忆(LSTM)、门控循环单元(GRU)、极限学习机(ELM)模型相比,该模型预测SOC和SOH的速度更快,估算准确度得到有效提升。 展开更多
关键词 电动汽车 动力电池 Kolmogorov-Arnold理论 堆叠降噪自编码器 改进Informer
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部