Rolling bearings are important central components in rotating machines, whose fault diagnosis is crucial in condition-based maintenance to reduce the complexity of different kinds of faults. To classify various rollin...Rolling bearings are important central components in rotating machines, whose fault diagnosis is crucial in condition-based maintenance to reduce the complexity of different kinds of faults. To classify various rolling bearing faults, a prognostic algorithm consisting of four phases was proposed. Since stacked denoising auto-encoder can be filtered, noise of large numbers of mechanical vibration signals was used for deep learning structure to extract the characteristics of the noise. Unsupervised pre-training method, which can greatly simplify the traditional manual extraction approach, was utilized to process the depth of the data automatically. Furthermore, the aggregation layer of stacked denoising auto-encoder(SDA) was proposed to get rid of gradient disappearance in deeper layers of network, mix superficial nodes’ expression with deeper layers, and avoid the insufficient express ability in deeper layers. Principal component analysis(PCA) was adopted to extract different features for classification. According to the experimental data of this method and from the comparison results, the proposed method of rolling bearing fault classification reached 97.02% of correct rate, suggesting a better performance than other algorithms.展开更多
为了解决联合收割机作业故障的非线性特征信号难以提取的问题,该研究提出了一种基于堆叠去噪自动编码器(Stack Denoising Auto Encoder,SDAE)和BP神经网络(Back Propagation,BP)融合的联合收割机作业故障监测及诊断的方法(SDAE-BP)。以...为了解决联合收割机作业故障的非线性特征信号难以提取的问题,该研究提出了一种基于堆叠去噪自动编码器(Stack Denoising Auto Encoder,SDAE)和BP神经网络(Back Propagation,BP)融合的联合收割机作业故障监测及诊断的方法(SDAE-BP)。以转速传感器采集联合收割机脱粒滚筒转速、籽粒搅龙转速、喂入搅龙转速、杂余搅龙转速、风机转速、输送链耙转速、割刀频率以及逐稿器振动频率,并将采集的数据集作为系统的输入。利用SDAE提取输入信号的深层次特征,并由BP神经网络辨识收割机作业状态,实现联合收割机故障监测。在SDAE-BP模型训练过程中,去噪自动编码器(Denoising Auto Encode,DAE)依次经带有不同分布中心噪声的原始数据进行训练,然后将其堆叠,并通过误差反向传播算法对模型参数进行优化,以提升模型识别故障性能和泛化能力。试验结果表明,对于2018年联合收割机田间试验数据,模型的故障诊断准确率达到99.00%,与SDAE和BP神经网络相比,分别提高了1.5和4.5个百分点。将SDAE-BP故障诊断模型用2019年的试验数据进行更新,并用2018年和2019年试验数据进行测试,结果表明,更新后的模型对2018年试验数据的故障识别准确率为99.25%,对2019年试验数据的故障识别准确率为98.74%,更新后模型在2019试验数据集上的故障识别准确率较未更新模型提高了6.52个百分点。该文所建模型能够准确识别联合收割机的故障类型,且具有较好的鲁棒性,对旋转型机械故障监测及预警具有参考价值。展开更多
风速预测是风力预报中的核心与基础,采用天气研究和预报(Weather Research and Forecasting,WRF)模式进行风力预报往往存在风速预测误差较大的问题.为了提高风速预测精度,提出了一种基于深度学习和支持向量回归(Support Vector Regressi...风速预测是风力预报中的核心与基础,采用天气研究和预报(Weather Research and Forecasting,WRF)模式进行风力预报往往存在风速预测误差较大的问题.为了提高风速预测精度,提出了一种基于深度学习和支持向量回归(Support Vector Regression,SVR)相结合的风速预测模型.该模型以WRF模式预报输出的多种气象变量为基础,结合气象自动观测站传感器的实测风速,引入堆栈降噪自动编码(Stacked De-noising Auto-Encoder,SDAE)深度网络来学习样本数据中隐含的深度特征,然后将该深度网络最后一层输出的深度特征置入回归器SVR中,利用SVR良好的回归预测性能对WRF模式预报的未来1 h风速进行预测订正.结果表明:所建立的SDAE-SVR风速预测模型具有较高的风速预测精度,在对典型日的WRF模式预报未来1 h风速的预测订正中,其平均百分比误差与均方根误差仅为8.28%与0.8066m·s^-1.展开更多
针对不同故障模式下航空变压整流器二极管故障特征相似程度高导致不易区分的问题,提出一种基于堆叠降噪自动编码器(stacked denoising auto encoder,SDAE)与粒子群优化支持向量机(partical swarm optimization support vector machine,P...针对不同故障模式下航空变压整流器二极管故障特征相似程度高导致不易区分的问题,提出一种基于堆叠降噪自动编码器(stacked denoising auto encoder,SDAE)与粒子群优化支持向量机(partical swarm optimization support vector machine,PSOSVM)相结合的故障诊断方法.首先搭建航空变压整流器仿真模型,通过对不同故障模式进行仿真,获取故障数据;然后运用SDAE方法对高维故障信号进行故障特征提取,建立故障特征集;最后采用PSOSVM方法进行故障诊断,并且与常用的故障诊断方法进行对比分析.诊断结果表明SDAE-PSOSVM故障诊断方法准确性达到96%,可以对高维故障数据信号进行特征提取,提高不同故障模式之间的区分度.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.51704138)
文摘Rolling bearings are important central components in rotating machines, whose fault diagnosis is crucial in condition-based maintenance to reduce the complexity of different kinds of faults. To classify various rolling bearing faults, a prognostic algorithm consisting of four phases was proposed. Since stacked denoising auto-encoder can be filtered, noise of large numbers of mechanical vibration signals was used for deep learning structure to extract the characteristics of the noise. Unsupervised pre-training method, which can greatly simplify the traditional manual extraction approach, was utilized to process the depth of the data automatically. Furthermore, the aggregation layer of stacked denoising auto-encoder(SDA) was proposed to get rid of gradient disappearance in deeper layers of network, mix superficial nodes’ expression with deeper layers, and avoid the insufficient express ability in deeper layers. Principal component analysis(PCA) was adopted to extract different features for classification. According to the experimental data of this method and from the comparison results, the proposed method of rolling bearing fault classification reached 97.02% of correct rate, suggesting a better performance than other algorithms.
文摘为了解决联合收割机作业故障的非线性特征信号难以提取的问题,该研究提出了一种基于堆叠去噪自动编码器(Stack Denoising Auto Encoder,SDAE)和BP神经网络(Back Propagation,BP)融合的联合收割机作业故障监测及诊断的方法(SDAE-BP)。以转速传感器采集联合收割机脱粒滚筒转速、籽粒搅龙转速、喂入搅龙转速、杂余搅龙转速、风机转速、输送链耙转速、割刀频率以及逐稿器振动频率,并将采集的数据集作为系统的输入。利用SDAE提取输入信号的深层次特征,并由BP神经网络辨识收割机作业状态,实现联合收割机故障监测。在SDAE-BP模型训练过程中,去噪自动编码器(Denoising Auto Encode,DAE)依次经带有不同分布中心噪声的原始数据进行训练,然后将其堆叠,并通过误差反向传播算法对模型参数进行优化,以提升模型识别故障性能和泛化能力。试验结果表明,对于2018年联合收割机田间试验数据,模型的故障诊断准确率达到99.00%,与SDAE和BP神经网络相比,分别提高了1.5和4.5个百分点。将SDAE-BP故障诊断模型用2019年的试验数据进行更新,并用2018年和2019年试验数据进行测试,结果表明,更新后的模型对2018年试验数据的故障识别准确率为99.25%,对2019年试验数据的故障识别准确率为98.74%,更新后模型在2019试验数据集上的故障识别准确率较未更新模型提高了6.52个百分点。该文所建模型能够准确识别联合收割机的故障类型,且具有较好的鲁棒性,对旋转型机械故障监测及预警具有参考价值。
文摘风速预测是风力预报中的核心与基础,采用天气研究和预报(Weather Research and Forecasting,WRF)模式进行风力预报往往存在风速预测误差较大的问题.为了提高风速预测精度,提出了一种基于深度学习和支持向量回归(Support Vector Regression,SVR)相结合的风速预测模型.该模型以WRF模式预报输出的多种气象变量为基础,结合气象自动观测站传感器的实测风速,引入堆栈降噪自动编码(Stacked De-noising Auto-Encoder,SDAE)深度网络来学习样本数据中隐含的深度特征,然后将该深度网络最后一层输出的深度特征置入回归器SVR中,利用SVR良好的回归预测性能对WRF模式预报的未来1 h风速进行预测订正.结果表明:所建立的SDAE-SVR风速预测模型具有较高的风速预测精度,在对典型日的WRF模式预报未来1 h风速的预测订正中,其平均百分比误差与均方根误差仅为8.28%与0.8066m·s^-1.
文摘针对不同故障模式下航空变压整流器二极管故障特征相似程度高导致不易区分的问题,提出一种基于堆叠降噪自动编码器(stacked denoising auto encoder,SDAE)与粒子群优化支持向量机(partical swarm optimization support vector machine,PSOSVM)相结合的故障诊断方法.首先搭建航空变压整流器仿真模型,通过对不同故障模式进行仿真,获取故障数据;然后运用SDAE方法对高维故障信号进行故障特征提取,建立故障特征集;最后采用PSOSVM方法进行故障诊断,并且与常用的故障诊断方法进行对比分析.诊断结果表明SDAE-PSOSVM故障诊断方法准确性达到96%,可以对高维故障数据信号进行特征提取,提高不同故障模式之间的区分度.