In the traditional flow-resistance-differential (FRD) type valve-less piezoelectric pump, the generated outflow and pressure are discontinuous because of the inherent periodicity and fluctuation of the pump. To overco...In the traditional flow-resistance-differential (FRD) type valve-less piezoelectric pump, the generated outflow and pressure are discontinuous because of the inherent periodicity and fluctuation of the pump. To overcome these drawbacks, utilizing the bending vibration of piezoelectric bimorph to drive fluid was conducted. However, our investigation on the current status of this piezoelectric bimorph pump shows that larger driving force and vibration amplitude are required for fluid pumping; the pumping can be realized through the centrifugal force; and the mechanism of fluid pumping is no longer further studied. Based on these cases, the paper designed a piezoelectric-stack pump with variable-cross-section oscillating (VCSO) vibrator by imitating the swing of the caudal-fin of tuna, and the pump is neither the rotating type nor the volumetric type according to the taxonomy. The interaction between the oscillating vibrator and the fluid parcel is firstly analyzed from the viewpoint of momentum conservation, and the analytical expression of pump flow rate is obtained. Then the modal and harmonic response analyses on the vibrator immerged in water are carried out. From the analyses the first two orders resonance frequencies are 832 Hz and 1 939 Hz, respectively, and the peak value of the tip amplitude is 0.6 mm. Laser Doppler vibrometer is used to measure both the frequency and vibration amplitude, and the determined first two orders resonance frequencies are 617 Hz and 1 356 Hz, respectively. The measured tip amplitude reaches to the peak value of 0.3 mm. At last, experimental measurement for the flow rates with different driving frequencies is conducted. The results show that the flow rate can reach 560 mL/min at 1 370 Hz when the pump runs under the backpressure of 30 mm water column. And the flow rate is as much as 560% of that of experiment results carried out by researchers from Brazil. The proposed pump innovates in both theory and taxonomy; in addition, the pump overcomes the drawbacks such as large flow fluctuation and low flow rate in the traditional FRD type pumps, which will help to broaden the application of the valve-less piezoelectric pump.展开更多
This research is focused on the study of the samples, approximatively 15 × 30 mm^2 sized, that were mechanically cut from two sheets (0.4 and 0.2 mm thick, respectively) of AIS1444 Type ferritic stainless steel...This research is focused on the study of the samples, approximatively 15 × 30 mm^2 sized, that were mechanically cut from two sheets (0.4 and 0.2 mm thick, respectively) of AIS1444 Type ferritic stainless steel (FSS) (DIN 1.4521, Eu designation X2CrMoTil8-2); this material was in the 'as-rolled' state. Part of these specimens were treated superficially on one side using abrasive SiC papers with different average grit sizes (i.e., 46.2, 30.2, 18.3 gm) and diamond suspension (up to 1 tim) in order to obtain various surface roughness. Both the 'as-rolled' and superficially treated samples were then aged in a muffle fumace in static air according to a thermal cycle corresponding to the curing phase of an experimental glass used as sealing in the solid oxide fuel cell stacks. After aging, the chemical compositions and mor- phological peculiarities of the scale formed depending on the thickness of the samples and their surface state were studied by scanning electron microscopy, energy-dispersive spectroscopy, micro-Raman spectroscopy, bright field light optical microscopy. The obtained results show that all scales formed consist of an inner Cr2O3 subscale and an outer (Mn,Cr)3O4 spinel layer; the relationship between FSS grain size and scale microstructural features is consistent on the samples with mirror-like surface only; the scale thicknesses on SiC grinded samples are comparable; the scales covering the 'as-rolled' surfaces are morphologically similar to those grown on the surfaces finished with the 30.2 and 18.3 μm SiC papers, and their thicknesses show an intermediate situation between the abraded and the mirror-like specimens. The last described characteristics depend mainly on the surface and microstructural peculiarities resulting from the rolling process.展开更多
In order to realize further stability of a stack-type thermoelectric power generating module (i.e. no electrical connections inside), flexible materials of metal springs and/or rods having restoring forces were instal...In order to realize further stability of a stack-type thermoelectric power generating module (i.e. no electrical connections inside), flexible materials of metal springs and/or rods having restoring forces were installed between lower-temperature-sides of thermoelectric elements. These flexible materials were expected to play three important roles of interpolating different thermal expansions of the module components, enlarging heat removal area and penetration of any media through themselves. Then, a low-boiling-point medium (i.e. NOVEC manufactured by 3M Japan Ltd.) was also applied for a high-speed direct heat removal via its phase change from the lower-temperature-sides of the thermoelectric elements in the proposing stack-type thermoelectric power generating module. No electrical disconnections inside the module were confirmed for more than 9 years of use, indicating further module stability. The power generating density was improved to about 120 mW·m-2 with SUS304 springs having 0.7 mm diameter. Increasing power generating density can be expected in terms of suitable selection of flexible metal with high Vickers hardness, cavities control on the spring surface, more vigorous multiphase flow with adding powders to the medium and optimization of the module configurations according to numerical simulations.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 50775109, Grant No. 51075201)Important Project of National Natural Science Foundation of China (Grant No. 50735002)Open Foundation for National Key laboratory of the Numerical Manufacturing Equipment and Technology of China (Grant No. DMETKF2009002)
文摘In the traditional flow-resistance-differential (FRD) type valve-less piezoelectric pump, the generated outflow and pressure are discontinuous because of the inherent periodicity and fluctuation of the pump. To overcome these drawbacks, utilizing the bending vibration of piezoelectric bimorph to drive fluid was conducted. However, our investigation on the current status of this piezoelectric bimorph pump shows that larger driving force and vibration amplitude are required for fluid pumping; the pumping can be realized through the centrifugal force; and the mechanism of fluid pumping is no longer further studied. Based on these cases, the paper designed a piezoelectric-stack pump with variable-cross-section oscillating (VCSO) vibrator by imitating the swing of the caudal-fin of tuna, and the pump is neither the rotating type nor the volumetric type according to the taxonomy. The interaction between the oscillating vibrator and the fluid parcel is firstly analyzed from the viewpoint of momentum conservation, and the analytical expression of pump flow rate is obtained. Then the modal and harmonic response analyses on the vibrator immerged in water are carried out. From the analyses the first two orders resonance frequencies are 832 Hz and 1 939 Hz, respectively, and the peak value of the tip amplitude is 0.6 mm. Laser Doppler vibrometer is used to measure both the frequency and vibration amplitude, and the determined first two orders resonance frequencies are 617 Hz and 1 356 Hz, respectively. The measured tip amplitude reaches to the peak value of 0.3 mm. At last, experimental measurement for the flow rates with different driving frequencies is conducted. The results show that the flow rate can reach 560 mL/min at 1 370 Hz when the pump runs under the backpressure of 30 mm water column. And the flow rate is as much as 560% of that of experiment results carried out by researchers from Brazil. The proposed pump innovates in both theory and taxonomy; in addition, the pump overcomes the drawbacks such as large flow fluctuation and low flow rate in the traditional FRD type pumps, which will help to broaden the application of the valve-less piezoelectric pump.
基金funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) Fuel Cells and Hydrogen Joint Undertaking (FCH-JU-2013-1) under Grant Agreement No. 621207
文摘This research is focused on the study of the samples, approximatively 15 × 30 mm^2 sized, that were mechanically cut from two sheets (0.4 and 0.2 mm thick, respectively) of AIS1444 Type ferritic stainless steel (FSS) (DIN 1.4521, Eu designation X2CrMoTil8-2); this material was in the 'as-rolled' state. Part of these specimens were treated superficially on one side using abrasive SiC papers with different average grit sizes (i.e., 46.2, 30.2, 18.3 gm) and diamond suspension (up to 1 tim) in order to obtain various surface roughness. Both the 'as-rolled' and superficially treated samples were then aged in a muffle fumace in static air according to a thermal cycle corresponding to the curing phase of an experimental glass used as sealing in the solid oxide fuel cell stacks. After aging, the chemical compositions and mor- phological peculiarities of the scale formed depending on the thickness of the samples and their surface state were studied by scanning electron microscopy, energy-dispersive spectroscopy, micro-Raman spectroscopy, bright field light optical microscopy. The obtained results show that all scales formed consist of an inner Cr2O3 subscale and an outer (Mn,Cr)3O4 spinel layer; the relationship between FSS grain size and scale microstructural features is consistent on the samples with mirror-like surface only; the scale thicknesses on SiC grinded samples are comparable; the scales covering the 'as-rolled' surfaces are morphologically similar to those grown on the surfaces finished with the 30.2 and 18.3 μm SiC papers, and their thicknesses show an intermediate situation between the abraded and the mirror-like specimens. The last described characteristics depend mainly on the surface and microstructural peculiarities resulting from the rolling process.
文摘In order to realize further stability of a stack-type thermoelectric power generating module (i.e. no electrical connections inside), flexible materials of metal springs and/or rods having restoring forces were installed between lower-temperature-sides of thermoelectric elements. These flexible materials were expected to play three important roles of interpolating different thermal expansions of the module components, enlarging heat removal area and penetration of any media through themselves. Then, a low-boiling-point medium (i.e. NOVEC manufactured by 3M Japan Ltd.) was also applied for a high-speed direct heat removal via its phase change from the lower-temperature-sides of the thermoelectric elements in the proposing stack-type thermoelectric power generating module. No electrical disconnections inside the module were confirmed for more than 9 years of use, indicating further module stability. The power generating density was improved to about 120 mW·m-2 with SUS304 springs having 0.7 mm diameter. Increasing power generating density can be expected in terms of suitable selection of flexible metal with high Vickers hardness, cavities control on the spring surface, more vigorous multiphase flow with adding powders to the medium and optimization of the module configurations according to numerical simulations.