期刊文献+
共找到44篇文章
< 1 2 3 >
每页显示 20 50 100
一种基于自编码器降维的神经卷积网络入侵检测模型 被引量:3
1
作者 孙敬 丁嘉伟 冯光辉 《电信科学》 北大核心 2025年第2期129-138,共10页
为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dim... 为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dimensionality reduction,IRFD),进而缓解传统机器学习入侵检测模型的低准确率问题。IRFD采用堆叠降噪稀疏自编码器策略对数据进行降维,从而提取有效特征。利用卷积注意力机制对残差网络进行改进,构建能提取关键特征的分类网络,并利用两个典型的入侵检测数据集验证IRFD的检测性能。实验结果表明,IRFD在数据集UNSW-NB15和CICIDS 2017上的准确率均达到99%以上,且F1-score分别为99.5%和99.7%。与基线模型相比,提出的IRFD在准确率、精确率和F1-score性能上均有较大提升。 展开更多
关键词 网络攻击 入侵检测模型 堆叠降噪稀疏自编码器 卷积注意力机制 残差网络
在线阅读 下载PDF
基于改进稀疏自编码的车载 CAN 总线异常检测 被引量:1
2
作者 申子彬 廖光忠 《计算机与数字工程》 2025年第7期1928-1933,1953,共7页
针对车载控制局域网总线简单的特性带来的安全隐患以及目前针对车载CAN异常检测技术存在的检测准确率低、误报率高、消耗大等问题,提出了一种基于BiGRU-SSAE的CAN异常检测模型,尝试融合自适应过采样算法与改进堆叠稀疏自编码模型。使用A... 针对车载控制局域网总线简单的特性带来的安全隐患以及目前针对车载CAN异常检测技术存在的检测准确率低、误报率高、消耗大等问题,提出了一种基于BiGRU-SSAE的CAN异常检测模型,尝试融合自适应过采样算法与改进堆叠稀疏自编码模型。使用ADASYN算法对数据进行过采样处理来达到数据平衡的效果,结合双向门控制循环单元的学习序列相关性和堆叠稀疏自编码的鲁棒性对数据进行深层特征提取和加权,利用提取到的深层特征进行精准分类,实现车载CAN总线的异常检测。基于真实汽车采集的CAN数据进行实验结果后表明,该方法有效提高了异常检测的可靠性和精确性。 展开更多
关键词 异常检测 控制器局域网络总线 门控制循环单元 堆叠稀疏自动编码器 网络安全
在线阅读 下载PDF
面向电力工程信息处理的多元数据特征提取与融合 被引量:1
3
作者 徐晓军 李奎 +2 位作者 张秋琼 张方银 王曙光 《电子设计工程》 2025年第5期120-124,共5页
针对输变电工程影响因素多、数据样本复杂多变容易导致工程数据处理和预测难度增加的问题,文中提出了一种基于多元数据特征提取与融合技术的电力工程信息处理模型。该模型运用多个堆栈稀疏自编码器(SSAE)从电力工程各类数据中分别提取... 针对输变电工程影响因素多、数据样本复杂多变容易导致工程数据处理和预测难度增加的问题,文中提出了一种基于多元数据特征提取与融合技术的电力工程信息处理模型。该模型运用多个堆栈稀疏自编码器(SSAE)从电力工程各类数据中分别提取特征信息,借助竞争粒子群算法优化的回声状态网络(CSO-ESN)实现信息融合并输出预测结果。以电力工程信息中的静态投资数据为样本进行的多组对比实验结果表明,所提模型的预测误差范围为1.82%~5.95%,可以有效实现电力工程数据信息的处理与合理预测,具有良好的普适性与准确性。 展开更多
关键词 电力工程数据 多元特征融合 堆栈稀疏自编码器 回声状态网络 趋势分析
在线阅读 下载PDF
基于SSAE和改进的IndRNN电力物联网入侵检测方法研究
4
作者 闵永仓 王勇 《计算机应用与软件》 北大核心 2025年第10期358-366,共9页
随着物联网技术和电力系统的不断融合,通过物联网终端设备向电力系统发起的入侵层出不穷,为了提高防护能力,提出一种基于堆栈稀疏自编码器(SSAE)和独立循环神经网络(IndRNN)的混合入侵检测模型。利用SSAE解决电力物联网高维数据充斥大... 随着物联网技术和电力系统的不断融合,通过物联网终端设备向电力系统发起的入侵层出不穷,为了提高防护能力,提出一种基于堆栈稀疏自编码器(SSAE)和独立循环神经网络(IndRNN)的混合入侵检测模型。利用SSAE解决电力物联网高维数据充斥大量冗余特征问题,并通过改进的IndRNN捕获时序信息,引入分层注意力机制,对关键特征进行增强。实验结果表明,该模型在准确率和误报率达到99.36%和0.67%的同时还大大缩短了检测时间,是一种有效电力物联网入侵检测模型。 展开更多
关键词 堆栈稀疏自编码器 独立循环神经网络 入侵检测 电力物联网
在线阅读 下载PDF
基于堆叠稀疏自编码器与GAN的线损分层定位
5
作者 杜月 王慧琴 +2 位作者 余兆媛 钱亚林 魏敏俊 《电子设计工程》 2025年第5期115-119,共5页
线损数据中存在噪声数据,维度与线损数据一致,导致线损定位结果不精准。为此,提出基于堆叠稀疏自编码器与GAN的线损分层定位方法。构建线损分层定位GAN结构,判别假数据和真数据,获取线损分层数据。依据分层采集结果,计算分层供入、供出... 线损数据中存在噪声数据,维度与线损数据一致,导致线损定位结果不精准。为此,提出基于堆叠稀疏自编码器与GAN的线损分层定位方法。构建线损分层定位GAN结构,判别假数据和真数据,获取线损分层数据。依据分层采集结果,计算分层供入、供出电量和统计线损,以此作为分层存在异常线损的依据。基于堆叠稀疏自编码器的定位原理,通过在代价函数中增加散度,引导输出结果稀疏。根据确定的稀疏编码所在空间,借助SVM分类核函数,定位线损所在层次。由实验结果可知,所研究方法统计的四种线损变化范围分别是3.0~4.0 kW·h、1.0~3.0 kW·h、0.4~0.7 kW·h、4.2~4.8 kW·h,对应的窃电位置分别为表箱1层、表箱2层、表箱3层、表箱4层,具有精准的定位效果。 展开更多
关键词 堆叠稀疏自编码器 生成对抗网络 线损分层定位 SVM分类 稀疏编码
在线阅读 下载PDF
基于改进深层网络的人脸识别算法 被引量:48
6
作者 李倩玉 蒋建国 齐美彬 《电子学报》 EI CAS CSCD 北大核心 2017年第3期619-625,共7页
目前的人脸识别算法在其特征提取过程中采用手工设计(hand-crafted)特征或利用深度学习自动提取特征.本文提出一种基于改进深层网络自动提取特征的人脸识别算法,可以更准确地提取出目标的鉴别性特征.算法首先对图像进行ZCA(Zero-mean Co... 目前的人脸识别算法在其特征提取过程中采用手工设计(hand-crafted)特征或利用深度学习自动提取特征.本文提出一种基于改进深层网络自动提取特征的人脸识别算法,可以更准确地提取出目标的鉴别性特征.算法首先对图像进行ZCA(Zero-mean Component Analysis)白化等预处理,减小特征相关性,降低网络训练复杂度.然后,基于卷积、池化、多层稀疏自动编码器构建深层网络特征提取器.所使用的卷积核是通过单独的无监督学习获得的.此改进的深层网络通过预训练和微调,得到一个自动的深层特征提取器.最后,利用Softmax回归模型对提取的特征进行分类.本文算法在多个常用人脸库上进行了实验,表明了其在性能上比传统方法和普通深度学习方法都有所提高. 展开更多
关键词 人脸识别 改进的深层网络 卷积 池化 多层稀疏自动编码器
在线阅读 下载PDF
叠后地震反演方法联合应用研究 被引量:8
7
作者 张宏 杨春峰 +3 位作者 常炳章 张驰 任军战 吴官生 《石油天然气学报》 CAS CSCD 北大核心 2009年第5期246-249,共4页
叠后地震反演方法很多,不同的反演方法具有不同的优缺点和用途。在叠后反演过程中,通常只选用一种方法进行一次反演,反演效果往往难以满足储层预测的精度要求。通过采用递推反演、约束稀疏脉冲反演和神经网络反演3种方法联合反演,不断... 叠后地震反演方法很多,不同的反演方法具有不同的优缺点和用途。在叠后反演过程中,通常只选用一种方法进行一次反演,反演效果往往难以满足储层预测的精度要求。通过采用递推反演、约束稀疏脉冲反演和神经网络反演3种方法联合反演,不断提高反演结果的分辨率,增加信息量。反演获得高精度的波阻抗、储层地球物理特征参数等多种数据体,可为储层预测提供高精度的资料。实际应用表明,该反演技术流程是可行、有效和实用的。 展开更多
关键词 叠后地震反演 递推反演 稀疏脉冲反演 神经网络反演 储层预测
在线阅读 下载PDF
基于深度神经网络的液压泵泄漏状态识别 被引量:22
8
作者 陈里里 何颖 董绍江 《仪器仪表学报》 EI CAS CSCD 北大核心 2020年第4期86-94,共9页
针对液压信号的高度复杂性以及难以识别的特点,构建了一种基于堆栈稀疏自编码器和Softmax的深度神经网络来对液压泵泄漏状态进行识别。利用小波变换和希尔伯特-黄变换提取液压信号的低维特征,并输入深度神经网络。通过堆栈稀疏自编码器... 针对液压信号的高度复杂性以及难以识别的特点,构建了一种基于堆栈稀疏自编码器和Softmax的深度神经网络来对液压泵泄漏状态进行识别。利用小波变换和希尔伯特-黄变换提取液压信号的低维特征,并输入深度神经网络。通过堆栈稀疏自编码器的逐层学习对特征进行优化并提取出高维特征,然后使用Softmax进行识别。实验结果表明,堆栈稀疏自编码器能够有效地提取液压泵泄漏状态的高维特征,构建的深度神经网络可有效地识别液压泵泄漏状态,识别精度达到了97.6%。此外与支持向量机、极限学习机、卷积神经网络以及长短期记忆网络相比,深度神经网络具有更好的识别效果。 展开更多
关键词 液压泵 泄漏 堆栈稀疏自编码器 深度神经网络
原文传递
基于深度学习的地空导弹发射区拟合算法 被引量:8
9
作者 高晓光 李新宇 +4 位作者 岳勐琪 张金辉 赵利强 吴高峰 李飞 《航空学报》 EI CAS CSCD 北大核心 2019年第9期232-245,共14页
目前地空导弹发射区的拟合算法主要是多项式拟合法和BP神经网络拟合法。多项式拟合法存在函数形式难以确定、函数范围不易分段等问题,且拟合精度较低;传统神经网络方法要想达到较高精度,需要大量的隐层节点,且在隐层节点数增加到一定程... 目前地空导弹发射区的拟合算法主要是多项式拟合法和BP神经网络拟合法。多项式拟合法存在函数形式难以确定、函数范围不易分段等问题,且拟合精度较低;传统神经网络方法要想达到较高精度,需要大量的隐层节点,且在隐层节点数增加到一定程度后,训练变得十分困难且精度很难继续提高。同时,传统神经网络需要大量的标签数据,进一步增大了实际应用的难度。为此,基于深度学习理论,设计了一种基于堆栈稀疏自编码器(SSAE)的深度拟合网络(DFN),并给出了相应的训练策略。仿真实验表明其相比传统算法具有更小的拟合误差优势。所设计的深度稀疏自编码器网络可以克服多项式拟合和传统神经网络的不足,不仅可以在大量无标签数据和少量标签数据条件下进行学习训练,而且可以进一步提升地空导弹发射区的拟合精度。 展开更多
关键词 地空导弹发射区 神经网络 深度学习 堆栈稀疏自编码器 深度拟合网络
原文传递
基于深度学习的兵棋演习数据特征提取方法研究 被引量:21
10
作者 郑书奎 吴琳 贺筱媛 《指挥与控制学报》 2016年第3期194-201,共8页
为使基于机器学习的兵棋演习战场态势分析理解取得更好结果,围绕兵棋演习数据特征提取问题,以深度学习方法为手段,提出了一种栈式稀疏降噪自编码网络模型,输入真实的兵棋演习数据进行了特征提取实验,通过分类精度表征了方法的效果,并进... 为使基于机器学习的兵棋演习战场态势分析理解取得更好结果,围绕兵棋演习数据特征提取问题,以深度学习方法为手段,提出了一种栈式稀疏降噪自编码网络模型,输入真实的兵棋演习数据进行了特征提取实验,通过分类精度表征了方法的效果,并进行了多种不同方法的对比实验,证明了深度学习方法的优势. 展开更多
关键词 深度学习 兵棋演习数据 特征提取 栈式稀疏降噪自编码网络
在线阅读 下载PDF
基于堆稀疏自编码的二叉树集成入侵检测方法 被引量:8
11
作者 柳毅 阴梓然 洪洲 《计算机应用研究》 CSCD 北大核心 2020年第5期1474-1477,1487,共5页
为了解决大规模入侵数据的分类问题,提出了堆稀疏自编码的lightGBM(light gridient boosting model)二叉树算法。首先将类别标签分为五类,构造成二叉树结构;然后通过上采样方法解决数据分布的不平衡问题,以上处理可以将大规模的数据分... 为了解决大规模入侵数据的分类问题,提出了堆稀疏自编码的lightGBM(light gridient boosting model)二叉树算法。首先将类别标签分为五类,构造成二叉树结构;然后通过上采样方法解决数据分布的不平衡问题,以上处理可以将大规模的数据分解开来以便之后分开训练;再采用稀疏自编码器网络进行特征降维,采用该种降维方法可以保证在原始数据中抽取出更深层特征的基础上节省降维时间;最后通过lightGBM集成算法进行分类,而采用lightGBM模型相比其他模型可以在保证分类性能的情况下节省训练时间。实验利用NSL-KDD数据集测量了所提方法的准确率、精确率、召回率,并且综合评价指标F1在五类分类上平均分别达到了87.42%、98.20%、91.31%,优于对比算法,且明显节省了运算时间。 展开更多
关键词 入侵检测 堆稀疏自编码网络 lightGBM算法 不平衡数据 NSL-KDD数据集
在线阅读 下载PDF
基于堆叠稀疏去噪自动编码网络与多隐层反向传播神经网络的铣刀磨损预测模型 被引量:10
12
作者 刘辉 张超勇 戴稳 《计算机集成制造系统》 EI CSCD 北大核心 2021年第10期2801-2812,共12页
刀具磨损状态是机械加工过程中需考虑的重要因素之一。针对铣刀磨损的在线预测问题,建立了一种基于深度学习的铣刀磨损预测模型。首先,将采集到的铣刀切削时的振动信号进行小波去噪后,利用快速傅里叶变换和小波包分解等技术提取时域、... 刀具磨损状态是机械加工过程中需考虑的重要因素之一。针对铣刀磨损的在线预测问题,建立了一种基于深度学习的铣刀磨损预测模型。首先,将采集到的铣刀切削时的振动信号进行小波去噪后,利用快速傅里叶变换和小波包分解等技术提取时域、频域及时频域上的特征参数,并根据相关性分析从中筛选出合格的特征参数合并为特征向量,以此作为堆叠稀疏去噪自动编码网络(SSDAE)的含噪样本。其次,利用特征后处理的方式对已经筛选出的特征参数进行单调不递减及平滑处理,并将其作为SSDAE的无噪样本来训练该网络。然后,将经过SSDAE降维后的特征向量作为多隐层反向传播神经网络(BPNN)的输入,以这些特征对应的实际铣刀的磨损量作为标签对该网络进行拟合训练。最后,对训练好的模型进行实验验证,通过测试数据集和人为加入噪声的测试数据集的对比,结果显示所提模型不仅具有较高的预测精度,还具有较高的鲁棒性。 展开更多
关键词 铣刀磨损 堆叠稀疏去噪自动编码网络 特征后处理 鲁棒性 反向传播神经网络
在线阅读 下载PDF
堆叠稀疏自编码深度神经网络算法及其在滚动轴承故障诊断中的应用 被引量:5
13
作者 刘自然 李谦 +1 位作者 颜丙生 尚坤 《机床与液压》 北大核心 2020年第23期208-213,共6页
针对目前机械设备故障数据量大、多样性且主要采用监督式学习提取故障特征的现状,提出一种堆叠稀疏自编码深度神经网络,实现无监督学习提取振动信号内在特征,并用于滚动轴承故障诊断。将频谱包络线作为低层输入逐层训练网络,获取故障特... 针对目前机械设备故障数据量大、多样性且主要采用监督式学习提取故障特征的现状,提出一种堆叠稀疏自编码深度神经网络,实现无监督学习提取振动信号内在特征,并用于滚动轴承故障诊断。将频谱包络线作为低层输入逐层训练网络,获取故障特征表达,输入Softmax分类器实现故障分类;通过优化算法对整个深度神经网络进行微调,提高分类精度。滚动轴承故障诊断实验结果表明:所提出的深度神经网络能更准确地实现故障诊断,且在保证准确率的同时将频谱包络线作为低层输入,能够提高计算效率。 展开更多
关键词 堆叠稀疏自编码 深度神经网络 滚动轴承 故障诊断
在线阅读 下载PDF
基于深度SSDAE网络的刀具磨损状态识别 被引量:5
14
作者 郭润兰 尉卫卫 +1 位作者 王广书 黄华 《振动.测试与诊断》 EI CSCD 北大核心 2024年第2期305-312,410,411,共10页
针对刀具磨损状态识别过程中采集数据量大、干扰信号复杂且需人为选择特征参数的问题,为提高刀具磨损状态识别模型的鲁棒性与泛化性,提出了一种数据驱动下深度堆叠稀疏降噪自编码(stacking sparse denoising auto-encoder,简称SSDAE)网... 针对刀具磨损状态识别过程中采集数据量大、干扰信号复杂且需人为选择特征参数的问题,为提高刀具磨损状态识别模型的鲁棒性与泛化性,提出了一种数据驱动下深度堆叠稀疏降噪自编码(stacking sparse denoising auto-encoder,简称SSDAE)网络的刀具磨损状态识别方法,实现隐藏在数据中深层次的数据特征自动挖掘。首先,将原始振动信号分解为一系列固有模态分量(intrinsic mode function,简称IMF),并采用皮尔逊相关系数法选取了最优固有模态来组合一个新的信号;其次,采用SSDAE网络自适应提取特征后对刀具磨损阶段进行了状态识别,识别精度达到98%;最后,对网络模型进行实验验证,并与最常用的刀具磨损状态识别方法进行了对比。实验结果表明,所提出的方法能够很好地处理非平稳振动信号,对不同刀具磨损阶段状态的识别效果良好,并具有较好的泛化性能和可靠性。 展开更多
关键词 深度堆叠稀疏自编码网络 变分模态分解 K-最近邻分类器 自适应特征提取 状态识别
在线阅读 下载PDF
基于MSSA+IESN+MFFN组合算法的齿轮箱早期故障智能诊断 被引量:2
15
作者 冯贺平 杨敬娜 +2 位作者 吴梅梅 薛林雁 王德永 《中国工程机械学报》 北大核心 2023年第2期172-177,共6页
齿轮箱故障诊断存在变速工况、样本数量偏少以及会形成强噪声情况,提出了一种通过多尺度特征融合网络(MFFN)实现故障诊断技术。对初始时域信号拓展形成多特征域,建立造多维堆栈稀疏自编码器(MSSA)对不同特征域进行故障采集,通过粒子群... 齿轮箱故障诊断存在变速工况、样本数量偏少以及会形成强噪声情况,提出了一种通过多尺度特征融合网络(MFFN)实现故障诊断技术。对初始时域信号拓展形成多特征域,建立造多维堆栈稀疏自编码器(MSSA)对不同特征域进行故障采集,通过粒子群算法优化回声状态网络(IESN)进行信号处理。研究结果表明:样本充足条件下,MFFN模型诊断时,定速工况为99.15%,变速工况为98.46%,达到了更高准确率并降低了标准差。在样本不足条件下,深度特征融合网络(DEFN)和MFFN对于样本数量减少表现出了优异鲁棒性,MFFN达到了更优的性能。在噪声干扰场景下,采用MFFN依然能够达到85%的准确率。该算法具备更优抗干扰性能,采用多维特征提取能够更好地适应处于强噪声干扰环境。该研究为实现传动系统的稳定运行提供了理论参考。 展开更多
关键词 齿轮箱 故障诊断 深度学习 多堆栈稀疏自编码器(MSSA) 多尺度特征融合网络(MFFN)
在线阅读 下载PDF
基于稀疏堆叠降噪自编码器-深层神经网络的语音DOA估计算法 被引量:4
16
作者 郭业才 侯坤 《实验室研究与探索》 CAS 北大核心 2021年第3期1-4,13,共5页
针对传统波达方位(DOA)估计算法在低信噪比下定位误差大的问题,提出基于稀疏堆叠降噪自编码器-深层神经网络的语音DOA估计算法。该算法将阵列协方差矩阵上三角阵作为DOA估计特征输入到稀疏堆叠降噪自编码器进行预训练,采取迁移学习策略... 针对传统波达方位(DOA)估计算法在低信噪比下定位误差大的问题,提出基于稀疏堆叠降噪自编码器-深层神经网络的语音DOA估计算法。该算法将阵列协方差矩阵上三角阵作为DOA估计特征输入到稀疏堆叠降噪自编码器进行预训练,采取迁移学习策略将训练得到的最优权重作为深度神经网络的初始权重,提高网络的抗噪性、泛化性和收敛速度。仿真与实验结果表明,与传统DOA估计算法相比,该算法在低信噪比情况下定位误差小、准确度高。 展开更多
关键词 堆栈稀疏自编码器 深层神经网络 波达方位 迁移学习
在线阅读 下载PDF
长短时记忆网络在电机故障诊断中的应用研究 被引量:15
17
作者 王惠中 贺珂珂 房理想 《自动化仪表》 CAS 2019年第1期6-10,共5页
针对电机故障诊断采用传统神经网络存在的梯度消失等问题,提出了一种长短时记忆(LSTM)神经网络与Softmax多分类器结合的诊断方法。首先,利用LSTM神经网络在提取时间序列特征方面的良好特性,通过LSTM神经网络与Softmax多分类器构建故障... 针对电机故障诊断采用传统神经网络存在的梯度消失等问题,提出了一种长短时记忆(LSTM)神经网络与Softmax多分类器结合的诊断方法。首先,利用LSTM神经网络在提取时间序列特征方面的良好特性,通过LSTM神经网络与Softmax多分类器构建故障诊断模型。然后,通过Tensorflow学习框架有效提取故障数据特征,并将具有强泛化能力和鲁棒性的Softmax多分类器对其分类,从而诊断出电机内圈、外圈和滚珠三种常见故障,提高诊断结果的准确率,改善传统方法存在的不足。最后,仿真验证所提方法的有效性与可行性。与传统神经网络和堆栈稀疏自编码器分类结果相比,采用LSTM神经网络诊断方法其准确率达到98. 3%,在电机故障诊断中具有更好的诊断效果,且对提高故障诊断的准确率有一定的作用。 展开更多
关键词 电机故障诊断 梯度消失 传统神经网络 长短时记忆神经网络 堆栈稀疏自编码器 Softmax多分类器 泛化能力 时间序列
在线阅读 下载PDF
基于多特征优化的PolSAR数据农作物精细分类方法 被引量:1
18
作者 郭交 王鹤颖 +2 位作者 项诗雨 连嘉茜 王辉 《农业机械学报》 EI CAS CSCD 北大核心 2024年第9期275-285,共11页
农作物精细分类在农业资源调查、农作物种植结构监管等诸多领域具有重要意义。极化合成孔径雷达(Polarimetric synthetic aperture radar,PolSAR)能够有效探测伪装和穿透掩盖物,提取多种散射特征信息,获取覆盖农作物生长关键物候阶段的... 农作物精细分类在农业资源调查、农作物种植结构监管等诸多领域具有重要意义。极化合成孔径雷达(Polarimetric synthetic aperture radar,PolSAR)能够有效探测伪装和穿透掩盖物,提取多种散射特征信息,获取覆盖农作物生长关键物候阶段的连续时序信息,有效提升表达作物遥感特征的丰富度,在农作物分类中独具优势。但多时相和多特征的引入必然导致模型运算量剧增,不利于工程应用。针对上述问题,本文提出了一种基于多特征优化的PolSAR数据农作物精细分类方法,首先对PolSAR数据进行多种极化目标分解及参数提取以获得多个散射特征;然后使用基于栈式稀疏自编码网络和ReliefF优选的方法进行特征增强与优化,获取最优特征集;最后构建具有2个分支结构的卷积神经网络,融合不同卷积深度输出的特征,完成农作物的高精度分类。通过对单时相数据的特征分析、单时相数据初步分类实验和多时相数据不同特征集结合分类器的对比实验,证明本文所提方法能够在低维特征输入的前提下,最大程度提取不同作物之间的差异性特征,准确高效地实现对农作物的精细分类,最高分类精度和Kappa系数分别达到97.69%和97.24%。 展开更多
关键词 农作物分类 POLSAR 栈式稀疏自编码网络 RELIEFF 卷积神经网络
在线阅读 下载PDF
栈式稀疏加噪自编码深度神经网络的滚动轴承损伤程度诊断 被引量:18
19
作者 陈仁祥 杨星 +3 位作者 杨黎霞 王家序 徐向阳 陈思杨 《振动与冲击》 EI CSCD 北大核心 2017年第21期125-131,137,共8页
针对滚动轴承损伤程度的特征自学习提取与智能诊断问题,提出栈式稀疏加噪自编码深度神经网络的滚动轴承损伤程度诊断方法。滚动轴承损伤特征受到工况、环境噪声等干扰,浅层自编码网络对损伤特征的自学习、提取能力不足。为此,论文将稀... 针对滚动轴承损伤程度的特征自学习提取与智能诊断问题,提出栈式稀疏加噪自编码深度神经网络的滚动轴承损伤程度诊断方法。滚动轴承损伤特征受到工况、环境噪声等干扰,浅层自编码网络对损伤特征的自学习、提取能力不足。为此,论文将稀疏项限制和加噪编码融入自编码网络,同时将自编码网络堆栈并添加分类层,构建出栈式稀疏加噪自编码深度神经网络,进行轴承损伤特征非监督自动提取与损伤程度智能诊断。稀疏项限制和深度神经网络的构建提高了特征学习能力,加噪编码的融入改善了网络的鲁棒性。所构建深度神经网络通过多层无监督逐层自学习和有监督微调,完成损伤特征自动提取与表达,并实现了损伤程度智能诊断。不同工况下轴承损伤程度诊断的实验验证证明了所提方法的可行性和有效性。 展开更多
关键词 滚动轴承 损伤程度 稀疏加噪自编码 深度神经网络 诊断
在线阅读 下载PDF
基于堆叠稀疏去噪自编码器的混合入侵检测方法 被引量:9
20
作者 田世林 李焕洲 +2 位作者 唐彰国 张健 李其臻 《四川师范大学学报(自然科学版)》 CAS 2024年第4期517-527,共11页
针对高维数据场景下传统入侵检测方法特征提取困难、检测准确率低等问题,提出一种集成多种深度学习模型的混合入侵检测方法.该方法由特征降维算法和混合检测模型2部分组成.首先,利用堆叠稀疏去噪自编码器对原始数据进行特征降维,从而剔... 针对高维数据场景下传统入侵检测方法特征提取困难、检测准确率低等问题,提出一种集成多种深度学习模型的混合入侵检测方法.该方法由特征降维算法和混合检测模型2部分组成.首先,利用堆叠稀疏去噪自编码器对原始数据进行特征降维,从而剔除可能存在的噪声干扰和冗余信息.然后,采用一维卷积神经网络和双向门控循环单元学习数据中的空间维度特征和时序维度特征,将融合后的空时特征通过注意力分配不同的权重系数,从而使有用的信息得到更好表达,再经由全连接层训练后进行分类.为检验方案的可行性,在UNSW-NB15数据集上进行验证.结果表明,该模型与其他同类型入侵检测算法相比,拥有更优秀的检测性能,其准确率达到99.57%,误报率仅为0.68%. 展开更多
关键词 异常检测 注意力机制 堆叠稀疏去噪自编码器 一维卷积神经网络 双向门控循环单元
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部