期刊文献+
共找到44篇文章
< 1 2 3 >
每页显示 20 50 100
一种基于自编码器降维的神经卷积网络入侵检测模型 被引量:3
1
作者 孙敬 丁嘉伟 冯光辉 《电信科学》 北大核心 2025年第2期129-138,共10页
为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dim... 为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dimensionality reduction,IRFD),进而缓解传统机器学习入侵检测模型的低准确率问题。IRFD采用堆叠降噪稀疏自编码器策略对数据进行降维,从而提取有效特征。利用卷积注意力机制对残差网络进行改进,构建能提取关键特征的分类网络,并利用两个典型的入侵检测数据集验证IRFD的检测性能。实验结果表明,IRFD在数据集UNSW-NB15和CICIDS 2017上的准确率均达到99%以上,且F1-score分别为99.5%和99.7%。与基线模型相比,提出的IRFD在准确率、精确率和F1-score性能上均有较大提升。 展开更多
关键词 网络攻击 入侵检测模型 堆叠降噪稀疏自编码器 卷积注意力机制 残差网络
在线阅读 下载PDF
基于改进稀疏自编码的车载 CAN 总线异常检测
2
作者 申子彬 廖光忠 《计算机与数字工程》 2025年第7期1928-1933,1953,共7页
针对车载控制局域网总线简单的特性带来的安全隐患以及目前针对车载CAN异常检测技术存在的检测准确率低、误报率高、消耗大等问题,提出了一种基于BiGRU-SSAE的CAN异常检测模型,尝试融合自适应过采样算法与改进堆叠稀疏自编码模型。使用A... 针对车载控制局域网总线简单的特性带来的安全隐患以及目前针对车载CAN异常检测技术存在的检测准确率低、误报率高、消耗大等问题,提出了一种基于BiGRU-SSAE的CAN异常检测模型,尝试融合自适应过采样算法与改进堆叠稀疏自编码模型。使用ADASYN算法对数据进行过采样处理来达到数据平衡的效果,结合双向门控制循环单元的学习序列相关性和堆叠稀疏自编码的鲁棒性对数据进行深层特征提取和加权,利用提取到的深层特征进行精准分类,实现车载CAN总线的异常检测。基于真实汽车采集的CAN数据进行实验结果后表明,该方法有效提高了异常检测的可靠性和精确性。 展开更多
关键词 异常检测 控制器局域网络总线 门控制循环单元 堆叠稀疏自动编码器 网络安全
在线阅读 下载PDF
基于SSAE和改进的IndRNN电力物联网入侵检测方法研究
3
作者 闵永仓 王勇 《计算机应用与软件》 北大核心 2025年第10期358-366,共9页
随着物联网技术和电力系统的不断融合,通过物联网终端设备向电力系统发起的入侵层出不穷,为了提高防护能力,提出一种基于堆栈稀疏自编码器(SSAE)和独立循环神经网络(IndRNN)的混合入侵检测模型。利用SSAE解决电力物联网高维数据充斥大... 随着物联网技术和电力系统的不断融合,通过物联网终端设备向电力系统发起的入侵层出不穷,为了提高防护能力,提出一种基于堆栈稀疏自编码器(SSAE)和独立循环神经网络(IndRNN)的混合入侵检测模型。利用SSAE解决电力物联网高维数据充斥大量冗余特征问题,并通过改进的IndRNN捕获时序信息,引入分层注意力机制,对关键特征进行增强。实验结果表明,该模型在准确率和误报率达到99.36%和0.67%的同时还大大缩短了检测时间,是一种有效电力物联网入侵检测模型。 展开更多
关键词 堆栈稀疏自编码器 独立循环神经网络 入侵检测 电力物联网
在线阅读 下载PDF
基于堆叠稀疏自编码器与GAN的线损分层定位
4
作者 杜月 王慧琴 +2 位作者 余兆媛 钱亚林 魏敏俊 《电子设计工程》 2025年第5期115-119,共5页
线损数据中存在噪声数据,维度与线损数据一致,导致线损定位结果不精准。为此,提出基于堆叠稀疏自编码器与GAN的线损分层定位方法。构建线损分层定位GAN结构,判别假数据和真数据,获取线损分层数据。依据分层采集结果,计算分层供入、供出... 线损数据中存在噪声数据,维度与线损数据一致,导致线损定位结果不精准。为此,提出基于堆叠稀疏自编码器与GAN的线损分层定位方法。构建线损分层定位GAN结构,判别假数据和真数据,获取线损分层数据。依据分层采集结果,计算分层供入、供出电量和统计线损,以此作为分层存在异常线损的依据。基于堆叠稀疏自编码器的定位原理,通过在代价函数中增加散度,引导输出结果稀疏。根据确定的稀疏编码所在空间,借助SVM分类核函数,定位线损所在层次。由实验结果可知,所研究方法统计的四种线损变化范围分别是3.0~4.0 kW·h、1.0~3.0 kW·h、0.4~0.7 kW·h、4.2~4.8 kW·h,对应的窃电位置分别为表箱1层、表箱2层、表箱3层、表箱4层,具有精准的定位效果。 展开更多
关键词 堆叠稀疏自编码器 生成对抗网络 线损分层定位 SVM分类 稀疏编码
在线阅读 下载PDF
面向电力工程信息处理的多元数据特征提取与融合
5
作者 徐晓军 李奎 +2 位作者 张秋琼 张方银 王曙光 《电子设计工程》 2025年第5期120-124,共5页
针对输变电工程影响因素多、数据样本复杂多变容易导致工程数据处理和预测难度增加的问题,文中提出了一种基于多元数据特征提取与融合技术的电力工程信息处理模型。该模型运用多个堆栈稀疏自编码器(SSAE)从电力工程各类数据中分别提取... 针对输变电工程影响因素多、数据样本复杂多变容易导致工程数据处理和预测难度增加的问题,文中提出了一种基于多元数据特征提取与融合技术的电力工程信息处理模型。该模型运用多个堆栈稀疏自编码器(SSAE)从电力工程各类数据中分别提取特征信息,借助竞争粒子群算法优化的回声状态网络(CSO-ESN)实现信息融合并输出预测结果。以电力工程信息中的静态投资数据为样本进行的多组对比实验结果表明,所提模型的预测误差范围为1.82%~5.95%,可以有效实现电力工程数据信息的处理与合理预测,具有良好的普适性与准确性。 展开更多
关键词 电力工程数据 多元特征融合 堆栈稀疏自编码器 回声状态网络 趋势分析
在线阅读 下载PDF
基于深度SSDAE网络的刀具磨损状态识别 被引量:5
6
作者 郭润兰 尉卫卫 +1 位作者 王广书 黄华 《振动.测试与诊断》 EI CSCD 北大核心 2024年第2期305-312,410,411,共10页
针对刀具磨损状态识别过程中采集数据量大、干扰信号复杂且需人为选择特征参数的问题,为提高刀具磨损状态识别模型的鲁棒性与泛化性,提出了一种数据驱动下深度堆叠稀疏降噪自编码(stacking sparse denoising auto-encoder,简称SSDAE)网... 针对刀具磨损状态识别过程中采集数据量大、干扰信号复杂且需人为选择特征参数的问题,为提高刀具磨损状态识别模型的鲁棒性与泛化性,提出了一种数据驱动下深度堆叠稀疏降噪自编码(stacking sparse denoising auto-encoder,简称SSDAE)网络的刀具磨损状态识别方法,实现隐藏在数据中深层次的数据特征自动挖掘。首先,将原始振动信号分解为一系列固有模态分量(intrinsic mode function,简称IMF),并采用皮尔逊相关系数法选取了最优固有模态来组合一个新的信号;其次,采用SSDAE网络自适应提取特征后对刀具磨损阶段进行了状态识别,识别精度达到98%;最后,对网络模型进行实验验证,并与最常用的刀具磨损状态识别方法进行了对比。实验结果表明,所提出的方法能够很好地处理非平稳振动信号,对不同刀具磨损阶段状态的识别效果良好,并具有较好的泛化性能和可靠性。 展开更多
关键词 深度堆叠稀疏自编码网络 变分模态分解 K-最近邻分类器 自适应特征提取 状态识别
在线阅读 下载PDF
基于多特征优化的PolSAR数据农作物精细分类方法 被引量:1
7
作者 郭交 王鹤颖 +2 位作者 项诗雨 连嘉茜 王辉 《农业机械学报》 EI CAS CSCD 北大核心 2024年第9期275-285,共11页
农作物精细分类在农业资源调查、农作物种植结构监管等诸多领域具有重要意义。极化合成孔径雷达(Polarimetric synthetic aperture radar,PolSAR)能够有效探测伪装和穿透掩盖物,提取多种散射特征信息,获取覆盖农作物生长关键物候阶段的... 农作物精细分类在农业资源调查、农作物种植结构监管等诸多领域具有重要意义。极化合成孔径雷达(Polarimetric synthetic aperture radar,PolSAR)能够有效探测伪装和穿透掩盖物,提取多种散射特征信息,获取覆盖农作物生长关键物候阶段的连续时序信息,有效提升表达作物遥感特征的丰富度,在农作物分类中独具优势。但多时相和多特征的引入必然导致模型运算量剧增,不利于工程应用。针对上述问题,本文提出了一种基于多特征优化的PolSAR数据农作物精细分类方法,首先对PolSAR数据进行多种极化目标分解及参数提取以获得多个散射特征;然后使用基于栈式稀疏自编码网络和ReliefF优选的方法进行特征增强与优化,获取最优特征集;最后构建具有2个分支结构的卷积神经网络,融合不同卷积深度输出的特征,完成农作物的高精度分类。通过对单时相数据的特征分析、单时相数据初步分类实验和多时相数据不同特征集结合分类器的对比实验,证明本文所提方法能够在低维特征输入的前提下,最大程度提取不同作物之间的差异性特征,准确高效地实现对农作物的精细分类,最高分类精度和Kappa系数分别达到97.69%和97.24%。 展开更多
关键词 农作物分类 POLSAR 栈式稀疏自编码网络 RELIEFF 卷积神经网络
在线阅读 下载PDF
基于堆叠稀疏去噪自编码器的混合入侵检测方法 被引量:9
8
作者 田世林 李焕洲 +2 位作者 唐彰国 张健 李其臻 《四川师范大学学报(自然科学版)》 CAS 2024年第4期517-527,共11页
针对高维数据场景下传统入侵检测方法特征提取困难、检测准确率低等问题,提出一种集成多种深度学习模型的混合入侵检测方法.该方法由特征降维算法和混合检测模型2部分组成.首先,利用堆叠稀疏去噪自编码器对原始数据进行特征降维,从而剔... 针对高维数据场景下传统入侵检测方法特征提取困难、检测准确率低等问题,提出一种集成多种深度学习模型的混合入侵检测方法.该方法由特征降维算法和混合检测模型2部分组成.首先,利用堆叠稀疏去噪自编码器对原始数据进行特征降维,从而剔除可能存在的噪声干扰和冗余信息.然后,采用一维卷积神经网络和双向门控循环单元学习数据中的空间维度特征和时序维度特征,将融合后的空时特征通过注意力分配不同的权重系数,从而使有用的信息得到更好表达,再经由全连接层训练后进行分类.为检验方案的可行性,在UNSW-NB15数据集上进行验证.结果表明,该模型与其他同类型入侵检测算法相比,拥有更优秀的检测性能,其准确率达到99.57%,误报率仅为0.68%. 展开更多
关键词 异常检测 注意力机制 堆叠稀疏去噪自编码器 一维卷积神经网络 双向门控循环单元
在线阅读 下载PDF
基于融合模型的网络安全态势感知方法 被引量:11
9
作者 郭尚伟 刘树峰 +3 位作者 李子铭 欧阳德强 王宁 向涛 《计算机工程》 CAS CSCD 北大核心 2024年第11期1-9,共9页
伴随着网络技术的飞速发展,网络安全面临的风险也日益增加,网络攻击呈现复杂化、多样化的特征,给现有网络攻击应对措施带来了巨大挑战。态势感知技术作为一种新兴概念,为网络安全领域带来了新的思路。针对现有网络安全态势感知方法存在... 伴随着网络技术的飞速发展,网络安全面临的风险也日益增加,网络攻击呈现复杂化、多样化的特征,给现有网络攻击应对措施带来了巨大挑战。态势感知技术作为一种新兴概念,为网络安全领域带来了新的思路。针对现有网络安全态势感知方法存在数据特征提取及较长时间序列数据处理能力不足的问题,提出一种融合堆栈稀疏自编码器(SSAE)、卷积神经网络(CNN)、双向门控循环单元(BiGRU)和注意力机制(AM)的模型。通过SSAE和CNN提取数据特征,利用AM强化BiGRU对关键信息的关注度,实现对异常流量的攻击类别判定,并结合网络安全态势量化指标,对网络安全态势进行量化评分并划分等级。实验结果表明,融合模型在各项指标上均优于传统深度学习模型,能够准确感知网络态势。 展开更多
关键词 态势感知 威胁检测 堆叠稀疏自编码器 卷积神经网络 双向门控循环单元 注意力机制
在线阅读 下载PDF
基于山区大气电场演变特征与雷电定位数据的雷电临近预警方法 被引量:4
10
作者 齐玥 杨庆 +2 位作者 王科 胡逸 徐肖伟 《高电压技术》 EI CAS CSCD 北大核心 2024年第10期4760-4771,共12页
由于高原山区雷暴活动具有尺度小、离散性强的特点,实现山区重点资源区域的雷电灾害准确预警存在较大困难。考虑到雷暴时空演变与地面大气电场特征的关联关系,提出了一种基于大气电场监测数据与实时雷电定位信息的山区雷电临近预警方法... 由于高原山区雷暴活动具有尺度小、离散性强的特点,实现山区重点资源区域的雷电灾害准确预警存在较大困难。考虑到雷暴时空演变与地面大气电场特征的关联关系,提出了一种基于大气电场监测数据与实时雷电定位信息的山区雷电临近预警方法。通过分析典型高原山区不同雷暴发展情况下的大气电场演化特性,发现山区大气电场可作为雷电定位数据的补充源,充分表征雷云剧烈放电和雷暴临近发展的特征信息。在预警过程中,首先将大气电场形态学梯度提取的快速抖动、暂态突变特征与时空匹配的地闪活动特征输入堆叠稀疏自编码器网络模型,判断监测区域附近是否出现雷云放电迹象,再利用雷暴距离变化或者电场波形变化判断雷电活动的临近趋势,最后综合两者的结果完成半径15km监测区域的雷电活动短时预警。在2023年云南山区雷雨季节的雷暴算例分析中,通过双源数据共同提取的山区雷暴活动预警特征的有效识别,可以实现预警准确率为90%,约44%的警报提前时间不小于30 min。 展开更多
关键词 高原山区 大气电场特征 雷电定位数据 雷电临近预警 堆叠稀疏自编码器网络
原文传递
基于SCG优化SSAE-FFNN的电能质量复合扰动深度特征提取与分类 被引量:5
11
作者 丁皓月 吕干云 +3 位作者 史明明 费骏韬 俞明 吴启宇 《电力工程技术》 北大核心 2024年第3期99-110,共12页
随着智能电网的发展,电能质量问题已遍布电网并威胁着电网的安全稳定,且电能质量监测数据日渐庞大,因此实现大规模系统中电能质量扰动(power quality disturbances,PQDs)的深度特征提取及智能分类识别对电力系统污染检测与管理具有重要... 随着智能电网的发展,电能质量问题已遍布电网并威胁着电网的安全稳定,且电能质量监测数据日渐庞大,因此实现大规模系统中电能质量扰动(power quality disturbances,PQDs)的深度特征提取及智能分类识别对电力系统污染检测与管理具有重要意义。为此,文中提出一种基于堆叠稀疏自编码器(stacked sparse auto encoder,SSAE)和前馈神经网络(feedforward neural network,FFNN)的电能质量复合扰动分类方法。首先,基于IEEE标准构建PQDs仿真模型。然后,建立基于SSAE-FFNN的PQDs分类模型,并引入缩放共轭梯度(scaled conjugate gradient,SCG)算法对模型进行优化,以提高梯度下降速度和网络训练效率。接着,为有效降低堆叠网络的重构损失同时提取出深度的低维特征,构建SSAE的逐层训练集及微调策略。最后,通过算例分析验证文中方法的分类效果、鲁棒性、泛化性和适用场景规模。结果表明,文中方法能够有效识别电能质量复合扰动,对含误差扰动和某地市电网的21组实测扰动录波数据也有较高的分类准确率。 展开更多
关键词 电能质量 复合扰动分类 堆叠稀疏自编码器(SSAE) 深度特征提取 缩放共轭梯度(SCG) 前馈神经网络(FFNN)
在线阅读 下载PDF
基于SSAE-IARO-BiLSTM的工业过程故障诊断研究 被引量:2
12
作者 张瑞成 孙伟良 梁卫征 《振动与冲击》 EI CSCD 北大核心 2024年第15期244-250,260,共8页
针对工业过程故障诊断精度低的问题,提出了一种基于栈式稀疏自编码网络(stacked sparse auto-encoder network, SSAE)和改进人工兔算法优化双向长短时记忆神经网络(improved artificial rabbit algorithm optimized bidirectional long ... 针对工业过程故障诊断精度低的问题,提出了一种基于栈式稀疏自编码网络(stacked sparse auto-encoder network, SSAE)和改进人工兔算法优化双向长短时记忆神经网络(improved artificial rabbit algorithm optimized bidirectional long short-term memory neural network, IARO-BiLSTM)的故障诊断方法。首先,利用SSAE网络强大的特征提取能力,实现对原始数据进行降维处理;其次,引入Circle混沌映射以达到丰富种群数量的目的,提出权重系数和Levy飞行机制改进人工兔算法的位置更新公式,提高人工兔算法的寻优能力,进而对BiLSTM网络的参数进行优化。最后,利用优化后的BiLSTM网络实现对故障的识别和分类。通过选取多组数据集进行验证,结果表明,基于SSAE-IARO-BiLSTM故障诊断方法能够准确地对故障进行识别和分类,且诊断准确率可达98%以上。 展开更多
关键词 故障诊断 人工兔算法(IARO) 双向长短时记忆网络(BiLSTM) 栈式稀疏自编码器(SSAE)
在线阅读 下载PDF
A Time Series Intrusion Detection Method Based on SSAE,TCN and Bi-LSTM
13
作者 Zhenxiang He Xunxi Wang Chunwei Li 《Computers, Materials & Continua》 SCIE EI 2024年第1期845-871,共27页
In the fast-evolving landscape of digital networks,the incidence of network intrusions has escalated alarmingly.Simultaneously,the crucial role of time series data in intrusion detection remains largely underappreciat... In the fast-evolving landscape of digital networks,the incidence of network intrusions has escalated alarmingly.Simultaneously,the crucial role of time series data in intrusion detection remains largely underappreciated,with most systems failing to capture the time-bound nuances of network traffic.This leads to compromised detection accuracy and overlooked temporal patterns.Addressing this gap,we introduce a novel SSAE-TCN-BiLSTM(STL)model that integrates time series analysis,significantly enhancing detection capabilities.Our approach reduces feature dimensionalitywith a Stacked Sparse Autoencoder(SSAE)and extracts temporally relevant features through a Temporal Convolutional Network(TCN)and Bidirectional Long Short-term Memory Network(Bi-LSTM).By meticulously adjusting time steps,we underscore the significance of temporal data in bolstering detection accuracy.On the UNSW-NB15 dataset,ourmodel achieved an F1-score of 99.49%,Accuracy of 99.43%,Precision of 99.38%,Recall of 99.60%,and an inference time of 4.24 s.For the CICDS2017 dataset,we recorded an F1-score of 99.53%,Accuracy of 99.62%,Precision of 99.27%,Recall of 99.79%,and an inference time of 5.72 s.These findings not only confirm the STL model’s superior performance but also its operational efficiency,underpinning its significance in real-world cybersecurity scenarios where rapid response is paramount.Our contribution represents a significant advance in cybersecurity,proposing a model that excels in accuracy and adaptability to the dynamic nature of network traffic,setting a new benchmark for intrusion detection systems. 展开更多
关键词 network intrusion detection bidirectional long short-term memory network time series stacked sparse autoencoder temporal convolutional network time steps
在线阅读 下载PDF
基于改进深层网络的人脸识别算法 被引量:48
14
作者 李倩玉 蒋建国 齐美彬 《电子学报》 EI CAS CSCD 北大核心 2017年第3期619-625,共7页
目前的人脸识别算法在其特征提取过程中采用手工设计(hand-crafted)特征或利用深度学习自动提取特征.本文提出一种基于改进深层网络自动提取特征的人脸识别算法,可以更准确地提取出目标的鉴别性特征.算法首先对图像进行ZCA(Zero-mean Co... 目前的人脸识别算法在其特征提取过程中采用手工设计(hand-crafted)特征或利用深度学习自动提取特征.本文提出一种基于改进深层网络自动提取特征的人脸识别算法,可以更准确地提取出目标的鉴别性特征.算法首先对图像进行ZCA(Zero-mean Component Analysis)白化等预处理,减小特征相关性,降低网络训练复杂度.然后,基于卷积、池化、多层稀疏自动编码器构建深层网络特征提取器.所使用的卷积核是通过单独的无监督学习获得的.此改进的深层网络通过预训练和微调,得到一个自动的深层特征提取器.最后,利用Softmax回归模型对提取的特征进行分类.本文算法在多个常用人脸库上进行了实验,表明了其在性能上比传统方法和普通深度学习方法都有所提高. 展开更多
关键词 人脸识别 改进的深层网络 卷积 池化 多层稀疏自动编码器
在线阅读 下载PDF
叠后地震反演方法联合应用研究 被引量:8
15
作者 张宏 杨春峰 +3 位作者 常炳章 张驰 任军战 吴官生 《石油天然气学报》 CAS CSCD 北大核心 2009年第5期246-249,共4页
叠后地震反演方法很多,不同的反演方法具有不同的优缺点和用途。在叠后反演过程中,通常只选用一种方法进行一次反演,反演效果往往难以满足储层预测的精度要求。通过采用递推反演、约束稀疏脉冲反演和神经网络反演3种方法联合反演,不断... 叠后地震反演方法很多,不同的反演方法具有不同的优缺点和用途。在叠后反演过程中,通常只选用一种方法进行一次反演,反演效果往往难以满足储层预测的精度要求。通过采用递推反演、约束稀疏脉冲反演和神经网络反演3种方法联合反演,不断提高反演结果的分辨率,增加信息量。反演获得高精度的波阻抗、储层地球物理特征参数等多种数据体,可为储层预测提供高精度的资料。实际应用表明,该反演技术流程是可行、有效和实用的。 展开更多
关键词 叠后地震反演 递推反演 稀疏脉冲反演 神经网络反演 储层预测
在线阅读 下载PDF
基于深度神经网络的液压泵泄漏状态识别 被引量:21
16
作者 陈里里 何颖 董绍江 《仪器仪表学报》 EI CAS CSCD 北大核心 2020年第4期86-94,共9页
针对液压信号的高度复杂性以及难以识别的特点,构建了一种基于堆栈稀疏自编码器和Softmax的深度神经网络来对液压泵泄漏状态进行识别。利用小波变换和希尔伯特-黄变换提取液压信号的低维特征,并输入深度神经网络。通过堆栈稀疏自编码器... 针对液压信号的高度复杂性以及难以识别的特点,构建了一种基于堆栈稀疏自编码器和Softmax的深度神经网络来对液压泵泄漏状态进行识别。利用小波变换和希尔伯特-黄变换提取液压信号的低维特征,并输入深度神经网络。通过堆栈稀疏自编码器的逐层学习对特征进行优化并提取出高维特征,然后使用Softmax进行识别。实验结果表明,堆栈稀疏自编码器能够有效地提取液压泵泄漏状态的高维特征,构建的深度神经网络可有效地识别液压泵泄漏状态,识别精度达到了97.6%。此外与支持向量机、极限学习机、卷积神经网络以及长短期记忆网络相比,深度神经网络具有更好的识别效果。 展开更多
关键词 液压泵 泄漏 堆栈稀疏自编码器 深度神经网络
原文传递
基于深度学习的地空导弹发射区拟合算法 被引量:8
17
作者 高晓光 李新宇 +4 位作者 岳勐琪 张金辉 赵利强 吴高峰 李飞 《航空学报》 EI CAS CSCD 北大核心 2019年第9期232-245,共14页
目前地空导弹发射区的拟合算法主要是多项式拟合法和BP神经网络拟合法。多项式拟合法存在函数形式难以确定、函数范围不易分段等问题,且拟合精度较低;传统神经网络方法要想达到较高精度,需要大量的隐层节点,且在隐层节点数增加到一定程... 目前地空导弹发射区的拟合算法主要是多项式拟合法和BP神经网络拟合法。多项式拟合法存在函数形式难以确定、函数范围不易分段等问题,且拟合精度较低;传统神经网络方法要想达到较高精度,需要大量的隐层节点,且在隐层节点数增加到一定程度后,训练变得十分困难且精度很难继续提高。同时,传统神经网络需要大量的标签数据,进一步增大了实际应用的难度。为此,基于深度学习理论,设计了一种基于堆栈稀疏自编码器(SSAE)的深度拟合网络(DFN),并给出了相应的训练策略。仿真实验表明其相比传统算法具有更小的拟合误差优势。所设计的深度稀疏自编码器网络可以克服多项式拟合和传统神经网络的不足,不仅可以在大量无标签数据和少量标签数据条件下进行学习训练,而且可以进一步提升地空导弹发射区的拟合精度。 展开更多
关键词 地空导弹发射区 神经网络 深度学习 堆栈稀疏自编码器 深度拟合网络
原文传递
基于深度学习的兵棋演习数据特征提取方法研究 被引量:21
18
作者 郑书奎 吴琳 贺筱媛 《指挥与控制学报》 2016年第3期194-201,共8页
为使基于机器学习的兵棋演习战场态势分析理解取得更好结果,围绕兵棋演习数据特征提取问题,以深度学习方法为手段,提出了一种栈式稀疏降噪自编码网络模型,输入真实的兵棋演习数据进行了特征提取实验,通过分类精度表征了方法的效果,并进... 为使基于机器学习的兵棋演习战场态势分析理解取得更好结果,围绕兵棋演习数据特征提取问题,以深度学习方法为手段,提出了一种栈式稀疏降噪自编码网络模型,输入真实的兵棋演习数据进行了特征提取实验,通过分类精度表征了方法的效果,并进行了多种不同方法的对比实验,证明了深度学习方法的优势. 展开更多
关键词 深度学习 兵棋演习数据 特征提取 栈式稀疏降噪自编码网络
在线阅读 下载PDF
基于堆稀疏自编码的二叉树集成入侵检测方法 被引量:7
19
作者 柳毅 阴梓然 洪洲 《计算机应用研究》 CSCD 北大核心 2020年第5期1474-1477,1487,共5页
为了解决大规模入侵数据的分类问题,提出了堆稀疏自编码的lightGBM(light gridient boosting model)二叉树算法。首先将类别标签分为五类,构造成二叉树结构;然后通过上采样方法解决数据分布的不平衡问题,以上处理可以将大规模的数据分... 为了解决大规模入侵数据的分类问题,提出了堆稀疏自编码的lightGBM(light gridient boosting model)二叉树算法。首先将类别标签分为五类,构造成二叉树结构;然后通过上采样方法解决数据分布的不平衡问题,以上处理可以将大规模的数据分解开来以便之后分开训练;再采用稀疏自编码器网络进行特征降维,采用该种降维方法可以保证在原始数据中抽取出更深层特征的基础上节省降维时间;最后通过lightGBM集成算法进行分类,而采用lightGBM模型相比其他模型可以在保证分类性能的情况下节省训练时间。实验利用NSL-KDD数据集测量了所提方法的准确率、精确率、召回率,并且综合评价指标F1在五类分类上平均分别达到了87.42%、98.20%、91.31%,优于对比算法,且明显节省了运算时间。 展开更多
关键词 入侵检测 堆稀疏自编码网络 lightGBM算法 不平衡数据 NSL-KDD数据集
在线阅读 下载PDF
基于堆叠稀疏去噪自动编码网络与多隐层反向传播神经网络的铣刀磨损预测模型 被引量:10
20
作者 刘辉 张超勇 戴稳 《计算机集成制造系统》 EI CSCD 北大核心 2021年第10期2801-2812,共12页
刀具磨损状态是机械加工过程中需考虑的重要因素之一。针对铣刀磨损的在线预测问题,建立了一种基于深度学习的铣刀磨损预测模型。首先,将采集到的铣刀切削时的振动信号进行小波去噪后,利用快速傅里叶变换和小波包分解等技术提取时域、... 刀具磨损状态是机械加工过程中需考虑的重要因素之一。针对铣刀磨损的在线预测问题,建立了一种基于深度学习的铣刀磨损预测模型。首先,将采集到的铣刀切削时的振动信号进行小波去噪后,利用快速傅里叶变换和小波包分解等技术提取时域、频域及时频域上的特征参数,并根据相关性分析从中筛选出合格的特征参数合并为特征向量,以此作为堆叠稀疏去噪自动编码网络(SSDAE)的含噪样本。其次,利用特征后处理的方式对已经筛选出的特征参数进行单调不递减及平滑处理,并将其作为SSDAE的无噪样本来训练该网络。然后,将经过SSDAE降维后的特征向量作为多隐层反向传播神经网络(BPNN)的输入,以这些特征对应的实际铣刀的磨损量作为标签对该网络进行拟合训练。最后,对训练好的模型进行实验验证,通过测试数据集和人为加入噪声的测试数据集的对比,结果显示所提模型不仅具有较高的预测精度,还具有较高的鲁棒性。 展开更多
关键词 铣刀磨损 堆叠稀疏去噪自动编码网络 特征后处理 鲁棒性 反向传播神经网络
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部