Big data has ushered in an era of unprecedented access to vast amounts of new,unstructured data,particularly in the realm of sensitive information.It presents unique opportunities for enhancing risk alerting systems,b...Big data has ushered in an era of unprecedented access to vast amounts of new,unstructured data,particularly in the realm of sensitive information.It presents unique opportunities for enhancing risk alerting systems,but also poses challenges in terms of extraction and analysis due to its diverse file formats.This paper proposes the utilization of a DAE-based(Deep Auto-encoders)model for projecting risk associated with financial data.The research delves into the development of an indicator assessing the degree to which organizations successfully avoid displaying bias in handling financial information.Simulation results demonstrate the superior performance of the DAE algorithm,showcasing fewer false positives,improved overall detection rates,and a noteworthy 9%reduction in failure jitter.The optimized DAE algorithm achieves an accuracy of 99%,surpassing existing methods,thereby presenting a robust solution for sensitive data risk projection.展开更多
With the rapid development of mechanical equipment,mechanical health monitoring field has entered the era of big data.Deep learning has made a great achievement in the processing of large data of image and speech due ...With the rapid development of mechanical equipment,mechanical health monitoring field has entered the era of big data.Deep learning has made a great achievement in the processing of large data of image and speech due to the powerful modeling capabilities,this also brings influence to the mechanical fault diagnosis field.Therefore,according to the characteristics of motor vibration signals(nonstationary and difficult to deal with)and mechanical‘big data’,combined with deep learning,a motor fault diagnosis method based on stacked de-noising auto-encoder is proposed.The frequency domain signals obtained by the Fourier transform are used as input to the network.This method can extract features adaptively and unsupervised,and get rid of the dependence of traditional machine learning methods on human extraction features.A supervised fine tuning of the model is then carried out by backpropagation.The Asynchronous motor in Drivetrain Dynamics Simulator system was taken as the research object,the effectiveness of the proposed method was verified by a large number of data,and research on visualization of network output,the results shown that the SDAE method is more efficient and more intelligent.展开更多
文摘Big data has ushered in an era of unprecedented access to vast amounts of new,unstructured data,particularly in the realm of sensitive information.It presents unique opportunities for enhancing risk alerting systems,but also poses challenges in terms of extraction and analysis due to its diverse file formats.This paper proposes the utilization of a DAE-based(Deep Auto-encoders)model for projecting risk associated with financial data.The research delves into the development of an indicator assessing the degree to which organizations successfully avoid displaying bias in handling financial information.Simulation results demonstrate the superior performance of the DAE algorithm,showcasing fewer false positives,improved overall detection rates,and a noteworthy 9%reduction in failure jitter.The optimized DAE algorithm achieves an accuracy of 99%,surpassing existing methods,thereby presenting a robust solution for sensitive data risk projection.
基金This research is supported financially by Natural Science Foundation of China(Grant No.51505234,51405241,51575283).
文摘With the rapid development of mechanical equipment,mechanical health monitoring field has entered the era of big data.Deep learning has made a great achievement in the processing of large data of image and speech due to the powerful modeling capabilities,this also brings influence to the mechanical fault diagnosis field.Therefore,according to the characteristics of motor vibration signals(nonstationary and difficult to deal with)and mechanical‘big data’,combined with deep learning,a motor fault diagnosis method based on stacked de-noising auto-encoder is proposed.The frequency domain signals obtained by the Fourier transform are used as input to the network.This method can extract features adaptively and unsupervised,and get rid of the dependence of traditional machine learning methods on human extraction features.A supervised fine tuning of the model is then carried out by backpropagation.The Asynchronous motor in Drivetrain Dynamics Simulator system was taken as the research object,the effectiveness of the proposed method was verified by a large number of data,and research on visualization of network output,the results shown that the SDAE method is more efficient and more intelligent.