The macroprocess of particle formation from suspension droplets of styrene in a pdymerizationsystem was investigated.Inorganic hydroxyapatite or its mixture with polyvinyl alcohol as thepolymerization system was used....The macroprocess of particle formation from suspension droplets of styrene in a pdymerizationsystem was investigated.Inorganic hydroxyapatite or its mixture with polyvinyl alcohol as thepolymerization system was used.Those items such as the effects of the Weight fraction of dispersed-phase,the amount of the inorganic stabilizer and the agitation speed on the breakup and coalescence of thetransient dispersed drops etc.Were examined.Results showd that the dynamic behavior of the transi-ent polymer droplets changed in the presence of the suspension stabilizer during the reaction.展开更多
We investigate a class of non-integrable two-particle Calogero-Moser systems modulated by a power-law external potential.The local well-posedness of the Cauchy problem is established under the strict initial separatio...We investigate a class of non-integrable two-particle Calogero-Moser systems modulated by a power-law external potential.The local well-posedness of the Cauchy problem is established under the strict initial separation condition for the particles.For suitably prepared initial configurations,local solutions can be extended globally via energy conservation;conversely,negative energy conditions induce(in)finite-time blowup.The linear(in)stability of stationary solutions is analyzed,with their energy serving as a threshold.Numerical investigations employ a fourth-order Runge-Kutta scheme with adaptive step-size control.Simulations demonstrate that the trajectories either converge to steady states or exhibit blowup,depending on the power exponentαand initial conditions.Increasingαaccelerates the convergence rate and dampens oscillatory dynamics,promoting a transition from periodic behavior to static equilibrium.展开更多
A novel technique for the optimal tuning of power system stabilizer (PSS) was proposed,by integrating the modified particle swarm optimization (MPSO) with the chaos (MPSOC).Firstly,a modification in the particle swarm...A novel technique for the optimal tuning of power system stabilizer (PSS) was proposed,by integrating the modified particle swarm optimization (MPSO) with the chaos (MPSOC).Firstly,a modification in the particle swarm optimization (PSO) was made by introducing passive congregation (PC).It helps each swarm member in receiving a multitude of information from other members and thus decreases the possibility of a failed attempt at detection or a meaningless search.Secondly,the MPSO and chaos were hybridized (MPSOC) to improve the global searching capability and prevent the premature convergence due to local minima.The robustness of the proposed PSS tuning technique was verified on a multi-machine power system under different operating conditions.The performance of the proposed MPSOC was compared to the MPSO,PSO and GA through eigenvalue analysis,nonlinear time-domain simulation and statistical tests.Eigenvalue analysis shows acceptable damping of the low-frequency modes and time domain simulations also show that the oscillations of synchronous machines can be rapidly damped for power systems with the proposed PSSs.The results show that the presented algorithm has a faster convergence rate with higher degree of accuracy than the GA,PSO and MPSO.展开更多
Power system stability is enhanced through a novel stabilizer developed around an adaptive fuzzy sliding mode approach which applies the Nussbaum gain to a nonlinear model of a single-machine infinite-bus (SMIB) and...Power system stability is enhanced through a novel stabilizer developed around an adaptive fuzzy sliding mode approach which applies the Nussbaum gain to a nonlinear model of a single-machine infinite-bus (SMIB) and multi-machine power system stabilizer subjected to a three phase fault. The Nussbaum gain is used to avoid the positive sign constraint and the problem of controllability of the system. A comparative simulation study is presented to evaluate the achieved performance.展开更多
We discuss the global stabilization procedure which renders a general class of feedback nonlinear systems exponential convergent, Our stabilizer consists of a nested saturation function, which is a nonlinear combinati...We discuss the global stabilization procedure which renders a general class of feedback nonlinear systems exponential convergent, Our stabilizer consists of a nested saturation function, which is a nonlinear combination of saturation functions. Here we prove the exponential convergence of the stabilizer for the first time and give numerical examples to illustrate the efficiency of the result given above,展开更多
In this paper,we develop a novel hybrid automatic-repeat-request(ARQ)protocol for the quantum communication system using quantum stabilizer codes.The quantum information is encoded by stabilizer codes to against the c...In this paper,we develop a novel hybrid automatic-repeat-request(ARQ)protocol for the quantum communication system using quantum stabilizer codes.The quantum information is encoded by stabilizer codes to against the channel noise.The twophoton entangled state is prepared for codeword secure transmission.Hybrid ARQ protocol rules the recognition and retransmission of error codewords.In this protocol,the property of quantum entangled state ensures the security of information,the theory of hybrid ARQ system improves the reliability of transmission,the theory of quantum stabilizer codes corrects the flipping errors of codewords.Finally,we verify the security and throughput efficiency of this protocol.展开更多
One method for eliminating oscillations in power systems is using stabilizers.By applying an appropriate control signal in the excitation system of a generator,a power system stabilizer improves the dynamic stability ...One method for eliminating oscillations in power systems is using stabilizers.By applying an appropriate control signal in the excitation system of a generator,a power system stabilizer improves the dynamic stability of power systems.However,the issue that is of high importance is the correct design of these stabilizers.These stabilizers must be designed to have proper performance when operating conditions change.When designed incorrectly,not only they do not improve the stability margin,but also increase the oscillations.In this paper,the robust design of power system stabilizers on a four-machine power system has been performed.For this purpose,the differential evolution algorithm has been used.The studies have been repeated as three scenarios by producing different loading conditions for the generators.The performances of the conventional stabilizer and the optimized one have been compared.Simulation results indicate that the designed robust stabilizer outperforms other stabilizers in different conditions and has damped the interarea and intra-area oscillation modes in the shortest time with minimum amplitude.展开更多
In themarine electric power system,the marine generators will be disturbed by the large change of loads or the fault of the power system.The marine generators usually installed power system stabilizers to damp power s...In themarine electric power system,the marine generators will be disturbed by the large change of loads or the fault of the power system.The marine generators usually installed power system stabilizers to damp power system oscillations through the excitation control.This paper proposes a novel method to obtain optimal parameter values for Power System Stabilizer(PSS)to suppress low-frequency oscillations in the marine electric power system.In this paper,a newly developed immune clone selection algorithm was improved from the three aspects of the adaptive incentive degree,vaccination,and adaptive mutation strategies.Firstly,the typical PSS implementation type of leader-lag structure was adopted and the objective function was set in the optimization process.The performance of PSS tuned by improved immune clone selection algorithm was compared with PSS tuned by basic immune clone selection algorithm(ICSA)under various operating conditions and disturbances.Then,an improved immune clone selection algorithm(IICSA)optimization technique was implemented on two test systems for test purposes.Based on the simulations,it is found that an improved immune clone selection algorithm demonstrates superiority over the basic immune clone selection algorithm in getting a smaller number of iterations and fast convergence rates to achieve the optimal parameters of the power system stabilizers.Moreover,the proposed approach improves the stability and dynamic performance under various loads conditions and disturbances of the marine electric power system.展开更多
In this paper, we examine the problem of designing power system stabilizer (PSS). A new technique is developed using particle swarm optimization (PSO) combined with linear matrix inequality (LMI). The main feature of ...In this paper, we examine the problem of designing power system stabilizer (PSS). A new technique is developed using particle swarm optimization (PSO) combined with linear matrix inequality (LMI). The main feature of PSO, not sticking into a local minimum, is used to eliminate the conservativeness of designing a static output feedback (SOF) stabilizer within an iterative solution of LMIs. The technique is further extended to guarantee robustness against uncertainties wherein power systems operation is changing continuously due to load changes. Numerical simulation ahs illustrated the utility of the developed technique.展开更多
This paper proposes a robust power system stabilizer(PSS)for a steam synchronous generator in Barka II power station.The PSS should be capable of damping small-disturbance oscillations(inherently existing in power sys...This paper proposes a robust power system stabilizer(PSS)for a steam synchronous generator in Barka II power station.The PSS should be capable of damping small-disturbance oscillations(inherently existing in power systems due to e.g.load changes,lines switching...etc.)within a certain settling time for different load conditions.Also,the proposed PSS must have the conventional structure and its parameters must not be violated.To achieve this goal,robust control provides many advantages.The suggested controller is tuned by the Kharitonov’s theorem and uses the standard structure employed in industry.The problem is cast into a nonlinear constrained optimization problem to achieve the desired settling time without violating the practical values of the controller parameters.Performance of the robust PSS is evaluated by several simulations in the presence of system uncertainty due to load changes.展开更多
This research paper deals with the identification of the best location of the Power System Stabilizers (PSS) and also the tuning of PSS parameters in order to improve the overall dynamic stability of multi machine pow...This research paper deals with the identification of the best location of the Power System Stabilizers (PSS) and also the tuning of PSS parameters in order to improve the overall dynamic stability of multi machine power systems. The location of PSS is determined by identifying the critical modes and their corresponding first and second order eigenvalue sensitivities. In this formulation, sensitivity analysis of a particular mode can be performed with only its eigenvalues and their left and right eigenvectors. The simplicity and efficiency of this approach sharply contrast to the complexity of the traditional approach, where all eigenvalues and eigenvectors are required at the same time. The effectiveness of this method in selecting the optimum location for placement of PSSs is compared with the participation factor method. The proposed sensitivity theory used to identify the best PSS location in a five machine, eight bus El-Metwally and Malik System to increase the damping of both local and inter area modes for various operating conditions.展开更多
Oil-based drilling fluids possess excellent properties such as shale inhibition, cuttings suspension, and superior lubrication, making them essential in the development of unconventional oil and gas reservoirs.However...Oil-based drilling fluids possess excellent properties such as shale inhibition, cuttings suspension, and superior lubrication, making them essential in the development of unconventional oil and gas reservoirs.However, wellbore instability, caused by the invasion of drilling fluids into shale formations, remains a significant challenge for the safe and efficient extraction of shale oil and gas. This work reports the preparation of mesoporous SiO2nanoparticles with low surface energy, utilized as multifunctional agents to enhance the performance of oil-based drilling fluids aimed at improving wellbore stability. The results indicate that the coating prepared from these nanoparticles exhibit excellent hydrophobicity and antifouling properties, increasing the water contact angle from 32°to 146°and oil contact angle from 24°to134.8°. Additionally, these nanoparticles exhibit exceptional chemical stability and thermal resistance.Incorporating these nanoparticles into oil-based drilling fluids reduced the surface energy of the mud cake from 34.99 to 8.17 m J·m-2and increased the roughness of shale from 0.26 to 2.39 μm. These modifications rendered the mud cake and shale surfaces amphiphobic, effectively mitigating capillary infiltration and delaying the long-term strength degradation of shale in oil-based drilling fluids. After 28days of immersion in oil-based drilling fluid, shale cores treated with MF-SiO2exhibited a 30.5% increase in compressive strength compared to untreated cores. Additionally, these nanoparticles demonstrated the ability to penetrate and seal rock pores, reducing the API filtration volume of the drilling fluid from11.2 to 7.6 m L. This study introduces a novel approach to enhance the development of shale gas and oil resources, offering a promising strategy for wellbore stabilization in oil-based drilling fluid systems.展开更多
The gear transmission system directly affects the operational performance of high-speed trains(HST).However,current research on gear transmission systems of HST often overlooks the effects of gear eccentricity and run...The gear transmission system directly affects the operational performance of high-speed trains(HST).However,current research on gear transmission systems of HST often overlooks the effects of gear eccentricity and running resistance,and the dynamic models of gear transmission system are not sufficiently comprehensive.This paper aims to establish an electromechanical coupling dynamic model of HST traction transmission system and study its electromechanical coupling vibration characteristics,in which the internal excitation factors such as gear eccentricity,time-varying meshing stiffness,backlash,meshing error,and external excitation factors such as electromagnetic torque and running resistance are stressed.The research results indicate that gear eccentricity and running resistance have a significant impact on the stability of the system,and gear eccentricity leads to intensified system vibration and decreased anti-interference ability.In addition,the characteristic frequency of gear eccentricity can be extracted from mechanical signals and current signals as a preliminary basis for eccentricity detection,and electrical signals can also be used to monitor changes in train running resistance in real time.The results of this study provide some useful insights into designing dynamic performance parameters for HST transmission systems and monitoring train operational states.展开更多
Understanding the factors triggering slope failure is essential to ensure the safety of buildings and transportation infrastructure on slopes. Specifically,the failure of stabilizing piles due to groundwater migration...Understanding the factors triggering slope failure is essential to ensure the safety of buildings and transportation infrastructure on slopes. Specifically,the failure of stabilizing piles due to groundwater migration and freeze–thaw(FT) cycles is a significant factor causing slope failure. This study aims to investigate the transmedia seepage characteristics at slope–concrete stabilizing pile interface systems by using silty clay and concrete with varying microstructure characteristics under FT cycles. To this end, a self-developed indoor test device for transmedia water migration, combined with a macro-meso-micro multiscale testing approach, was used to analyze the laws and mechanisms of transmedia seepage at the interface systems. The effect of the medium's microstructure characteristics on the transmedia seepage behavior at the interface systems under FT cycles was also assessed. Results indicated that the transmedia water migration exhibited particularity due to the migration of soil particles and the low permeability characteristics of concrete. The water content in the media increased significantly within the range of 1/3–2/3 of the height from the interface for soil and within 5 mm from the interface for concrete.FT cycles promoted the increase and penetration of cracks within the medium, enhancing the permeability of the slope-concrete stabilizing pile interface systems.With the increase in FT cycles, the porosity inside the medium first decreased and then increased, and the porosity reached the minimum after 25 FT cycles and the maximum after 75 FT cycles, and the water content of the medium after water migration was positively correlated with the porosity. FT cycles also significantly influenced the temporal variation characteristics of soil moisture and the migration path of water in concrete. The study results could serve as a reference for related research on slope stability assessment.展开更多
In underground mining,especially in entry-type excavations,the instability of surrounding rock structures can lead to incalculable losses.As a crucial tool for stability analysis in entry-type excavations,the critical...In underground mining,especially in entry-type excavations,the instability of surrounding rock structures can lead to incalculable losses.As a crucial tool for stability analysis in entry-type excavations,the critical span graph must be updated to meet more stringent engineering requirements.Given this,this study introduces the support vector machine(SVM),along with multiple ensemble(bagging,adaptive boosting,and stacking)and optimization(Harris hawks optimization(HHO),cuckoo search(CS))techniques,to overcome the limitations of the traditional methods.The analysis indicates that the hybrid model combining SVM,bagging,and CS strategies has a good prediction performance,and its test accuracy reaches 0.86.Furthermore,the partition scheme of the critical span graph is adjusted based on the CS-BSVM model and 399 cases.Compared with previous empirical or semi-empirical methods,the new model overcomes the interference of subjective factors and possesses higher interpretability.Since relying solely on one technology cannot ensure prediction credibility,this study further introduces genetic programming(GP)and kriging interpolation techniques.The explicit expressions derived through GP can offer the stability probability value,and the kriging technique can provide interpolated definitions for two new subclasses.Finally,a prediction platform is developed based on the above three approaches,which can rapidly provide engineering feedback.展开更多
This paper presented PSS (Power system stabilizer) design based on Genetic Algorithm - Fuzzy PID (Proportional Integral and derivative) or GAFPID. GAFPID based PSS design is considered for multimachine power syste...This paper presented PSS (Power system stabilizer) design based on Genetic Algorithm - Fuzzy PID (Proportional Integral and derivative) or GAFPID. GAFPID based PSS design is considered for multimachine power system. The main motivation for this design is to stabilize or to control low-fi'equency oscillation and terminal voltage of power systems. Genetic Algorithm (GA) is employed for the optimization of the parameter of stabilizer. By minimizing an objective function in which the oscillatory speed deviation of the generator, small signal and large signal performance of the system is improved. The effectiveness of the proposed PSS in increasing the damping of system electromechanical oscillation is demonstrated in a simple two-area power system.展开更多
This paper presents a new concept for damping electro-mechanical oscillations in large turbo generator. The proposed concept is based on coordination between Power System Stabilizer (PSS) and Thyristor Controlled Br...This paper presents a new concept for damping electro-mechanical oscillations in large turbo generator. The proposed concept is based on coordination between Power System Stabilizer (PSS) and Thyristor Controlled Braking Resistor (TCBR). This coordination will enhance the stability of the inertial and torsional oscillatory modes. The study is performed on system-I of the second IEEE benchmark for simulation of Sub-Synchronous Oscillations, using eigenvalue analysis and verified by detailed digital simulation. A dynamic fundamental frequency model for TCBR is developed. The pole placement technique is used to design the control system of TCBR and PSS. The shaft torque's following a disturbance is computed and analyzed. The obtained results indicate that substantial damping is achieved by the proposed coordination.展开更多
A method of enhancing power system stability for a single machine to infinite bus power system is presented. The technique used compromises the effectiveness of Proportional-Integral-Derivative controller (PID). In ...A method of enhancing power system stability for a single machine to infinite bus power system is presented. The technique used compromises the effectiveness of Proportional-Integral-Derivative controller (PID). In order to satisfy the damping characteristics for the proposed power system over a wide range of operating interval, rotational speed, torque angle and terminal voltage signals of the synchronous machine are utilized as control signals of the system. It is well known that these variables have significant effects on damping the generators shaft mechanical oscillations, it'll be so easy to validate the most suitable controller as seen from the simulation results.展开更多
Thermal quenching(TQ)at elevated temperature is a major factor affecting the luminescent intensity and efficiency of phosphors.Improving the thermal stability of phosphors and weakening the TQ effect are of significan...Thermal quenching(TQ)at elevated temperature is a major factor affecting the luminescent intensity and efficiency of phosphors.Improving the thermal stability of phosphors and weakening the TQ effect are of significance for the high-quality illumination of phosphor-converted WLEDs.Here,a novel red-emitting phosphor K_(2)Zn(PO_(3))_(4)∶Mn^(2+)is synthesized by standard high temperature solid state reaction in ambient atmosphere,which is a new member of self-reduction system.An effective synthesis strategy is proposed to optimize its photoluminescent performances.Combined with X-ray photoelectron spectroscopy and X-ray absorption fine structure spectroscopy,oxygen vacancy defects introduced by Mn doping are proved to play an important role in the transition of Mn^(4+)→Mn^(2+).Thermoluminescence analysis reveals that the distribution of trap levels,especially the deep ones,is effectively regulated by the controllable crystallization and significantly affect the thermal stability of phosphors.Then a defect-assisted model is proposed to address the inner mechanism of the phenomenon.The carriers trapped by deep trap levels can be released under the high-temperature stimulus,which return back to the luminescent centers and participate in the radiative recombination to improve thermal stability.This study provides a new crystallographic idea and theoretical support for obtaining luminescent materials with high thermal stability.展开更多
The paper considers the methodology for a comprehensive analysis of the stability of an open pit-dump system,using limit equilibrium(LEM)and finite element(FEM)methods in the Russian CAE(computer-aided engineering)sof...The paper considers the methodology for a comprehensive analysis of the stability of an open pit-dump system,using limit equilibrium(LEM)and finite element(FEM)methods in the Russian CAE(computer-aided engineering)software Fidesys.It briefly highlights the issues of comparing limit equilibrium methods using the VNIMI(Research Institute of Geomechanics and Mine Surveying-Intersectoral Scientific Center"VNIMI")methodology and a specialized software product with numerical methods.The main focus of this study is to compare the results of the stability analysis in the volumetric model of the open pit-dump system using limit equilibrium and finite element methods in the CAE software Fidesys.It was found that,when modeling the combined operation of an open pit-dump system in complex terrain,both methods should be used,as each has its own advantages.The finite element method,for instance,has certain features that are not present in the calculations using the limit equilibrium approach.As a key scientific contribution,this paper introduces an automation program for calculating the stability of open-pit walls using the limit equilibrium method in CAE Fidesys,which was not previously integrated in the original software.The calculations performed with the use of this newly developed module were compared to those obtained from other widely used software solutions available on the market.The findings demonstrate a remarkable level of convergence in the calculation results for all relevant parameters,including the safety factor,localization,instability type,and deformation.The proposed approach i mproves the accuracy of calculati ons and ensures consistency between the higher stress design zones and the actual deformation and fracture patterns.It also enhances the ability to predict the behavior of rock mass when calculating stability parameters for facilities,both during operation and desi gn.展开更多
文摘The macroprocess of particle formation from suspension droplets of styrene in a pdymerizationsystem was investigated.Inorganic hydroxyapatite or its mixture with polyvinyl alcohol as thepolymerization system was used.Those items such as the effects of the Weight fraction of dispersed-phase,the amount of the inorganic stabilizer and the agitation speed on the breakup and coalescence of thetransient dispersed drops etc.Were examined.Results showd that the dynamic behavior of the transi-ent polymer droplets changed in the presence of the suspension stabilizer during the reaction.
基金Supported by National Natural Science Foundation of China(12201118)Guangdong Basic and Applied Basic Research Foundation(2023A1515010706)。
文摘We investigate a class of non-integrable two-particle Calogero-Moser systems modulated by a power-law external potential.The local well-posedness of the Cauchy problem is established under the strict initial separation condition for the particles.For suitably prepared initial configurations,local solutions can be extended globally via energy conservation;conversely,negative energy conditions induce(in)finite-time blowup.The linear(in)stability of stationary solutions is analyzed,with their energy serving as a threshold.Numerical investigations employ a fourth-order Runge-Kutta scheme with adaptive step-size control.Simulations demonstrate that the trajectories either converge to steady states or exhibit blowup,depending on the power exponentαand initial conditions.Increasingαaccelerates the convergence rate and dampens oscillatory dynamics,promoting a transition from periodic behavior to static equilibrium.
文摘A novel technique for the optimal tuning of power system stabilizer (PSS) was proposed,by integrating the modified particle swarm optimization (MPSO) with the chaos (MPSOC).Firstly,a modification in the particle swarm optimization (PSO) was made by introducing passive congregation (PC).It helps each swarm member in receiving a multitude of information from other members and thus decreases the possibility of a failed attempt at detection or a meaningless search.Secondly,the MPSO and chaos were hybridized (MPSOC) to improve the global searching capability and prevent the premature convergence due to local minima.The robustness of the proposed PSS tuning technique was verified on a multi-machine power system under different operating conditions.The performance of the proposed MPSOC was compared to the MPSO,PSO and GA through eigenvalue analysis,nonlinear time-domain simulation and statistical tests.Eigenvalue analysis shows acceptable damping of the low-frequency modes and time domain simulations also show that the oscillations of synchronous machines can be rapidly damped for power systems with the proposed PSSs.The results show that the presented algorithm has a faster convergence rate with higher degree of accuracy than the GA,PSO and MPSO.
文摘Power system stability is enhanced through a novel stabilizer developed around an adaptive fuzzy sliding mode approach which applies the Nussbaum gain to a nonlinear model of a single-machine infinite-bus (SMIB) and multi-machine power system stabilizer subjected to a three phase fault. The Nussbaum gain is used to avoid the positive sign constraint and the problem of controllability of the system. A comparative simulation study is presented to evaluate the achieved performance.
文摘We discuss the global stabilization procedure which renders a general class of feedback nonlinear systems exponential convergent, Our stabilizer consists of a nested saturation function, which is a nonlinear combination of saturation functions. Here we prove the exponential convergence of the stabilizer for the first time and give numerical examples to illustrate the efficiency of the result given above,
基金The work is supported by was supported by the Shandong Province Higher Educational Science and Technology Program(Grant No.J18KZ012)the National Natural Science Foundation of China(Grant No.11975132,61772295)the Shandong Provincial Natural Science Foundation,China(Grant No.ZR2019YQ01).
文摘In this paper,we develop a novel hybrid automatic-repeat-request(ARQ)protocol for the quantum communication system using quantum stabilizer codes.The quantum information is encoded by stabilizer codes to against the channel noise.The twophoton entangled state is prepared for codeword secure transmission.Hybrid ARQ protocol rules the recognition and retransmission of error codewords.In this protocol,the property of quantum entangled state ensures the security of information,the theory of hybrid ARQ system improves the reliability of transmission,the theory of quantum stabilizer codes corrects the flipping errors of codewords.Finally,we verify the security and throughput efficiency of this protocol.
文摘One method for eliminating oscillations in power systems is using stabilizers.By applying an appropriate control signal in the excitation system of a generator,a power system stabilizer improves the dynamic stability of power systems.However,the issue that is of high importance is the correct design of these stabilizers.These stabilizers must be designed to have proper performance when operating conditions change.When designed incorrectly,not only they do not improve the stability margin,but also increase the oscillations.In this paper,the robust design of power system stabilizers on a four-machine power system has been performed.For this purpose,the differential evolution algorithm has been used.The studies have been repeated as three scenarios by producing different loading conditions for the generators.The performances of the conventional stabilizer and the optimized one have been compared.Simulation results indicate that the designed robust stabilizer outperforms other stabilizers in different conditions and has damped the interarea and intra-area oscillation modes in the shortest time with minimum amplitude.
基金This work is supported by Shanghai Science and Technology Planning Project(Project No.20040501200).
文摘In themarine electric power system,the marine generators will be disturbed by the large change of loads or the fault of the power system.The marine generators usually installed power system stabilizers to damp power system oscillations through the excitation control.This paper proposes a novel method to obtain optimal parameter values for Power System Stabilizer(PSS)to suppress low-frequency oscillations in the marine electric power system.In this paper,a newly developed immune clone selection algorithm was improved from the three aspects of the adaptive incentive degree,vaccination,and adaptive mutation strategies.Firstly,the typical PSS implementation type of leader-lag structure was adopted and the objective function was set in the optimization process.The performance of PSS tuned by improved immune clone selection algorithm was compared with PSS tuned by basic immune clone selection algorithm(ICSA)under various operating conditions and disturbances.Then,an improved immune clone selection algorithm(IICSA)optimization technique was implemented on two test systems for test purposes.Based on the simulations,it is found that an improved immune clone selection algorithm demonstrates superiority over the basic immune clone selection algorithm in getting a smaller number of iterations and fast convergence rates to achieve the optimal parameters of the power system stabilizers.Moreover,the proposed approach improves the stability and dynamic performance under various loads conditions and disturbances of the marine electric power system.
文摘In this paper, we examine the problem of designing power system stabilizer (PSS). A new technique is developed using particle swarm optimization (PSO) combined with linear matrix inequality (LMI). The main feature of PSO, not sticking into a local minimum, is used to eliminate the conservativeness of designing a static output feedback (SOF) stabilizer within an iterative solution of LMIs. The technique is further extended to guarantee robustness against uncertainties wherein power systems operation is changing continuously due to load changes. Numerical simulation ahs illustrated the utility of the developed technique.
文摘This paper proposes a robust power system stabilizer(PSS)for a steam synchronous generator in Barka II power station.The PSS should be capable of damping small-disturbance oscillations(inherently existing in power systems due to e.g.load changes,lines switching...etc.)within a certain settling time for different load conditions.Also,the proposed PSS must have the conventional structure and its parameters must not be violated.To achieve this goal,robust control provides many advantages.The suggested controller is tuned by the Kharitonov’s theorem and uses the standard structure employed in industry.The problem is cast into a nonlinear constrained optimization problem to achieve the desired settling time without violating the practical values of the controller parameters.Performance of the robust PSS is evaluated by several simulations in the presence of system uncertainty due to load changes.
文摘This research paper deals with the identification of the best location of the Power System Stabilizers (PSS) and also the tuning of PSS parameters in order to improve the overall dynamic stability of multi machine power systems. The location of PSS is determined by identifying the critical modes and their corresponding first and second order eigenvalue sensitivities. In this formulation, sensitivity analysis of a particular mode can be performed with only its eigenvalues and their left and right eigenvectors. The simplicity and efficiency of this approach sharply contrast to the complexity of the traditional approach, where all eigenvalues and eigenvectors are required at the same time. The effectiveness of this method in selecting the optimum location for placement of PSSs is compared with the participation factor method. The proposed sensitivity theory used to identify the best PSS location in a five machine, eight bus El-Metwally and Malik System to increase the damping of both local and inter area modes for various operating conditions.
基金support from the National Natural:Science Foundation of China(NO.52174014)the National Natural Science Foundation Basic Science Center(NO.52288101).
文摘Oil-based drilling fluids possess excellent properties such as shale inhibition, cuttings suspension, and superior lubrication, making them essential in the development of unconventional oil and gas reservoirs.However, wellbore instability, caused by the invasion of drilling fluids into shale formations, remains a significant challenge for the safe and efficient extraction of shale oil and gas. This work reports the preparation of mesoporous SiO2nanoparticles with low surface energy, utilized as multifunctional agents to enhance the performance of oil-based drilling fluids aimed at improving wellbore stability. The results indicate that the coating prepared from these nanoparticles exhibit excellent hydrophobicity and antifouling properties, increasing the water contact angle from 32°to 146°and oil contact angle from 24°to134.8°. Additionally, these nanoparticles exhibit exceptional chemical stability and thermal resistance.Incorporating these nanoparticles into oil-based drilling fluids reduced the surface energy of the mud cake from 34.99 to 8.17 m J·m-2and increased the roughness of shale from 0.26 to 2.39 μm. These modifications rendered the mud cake and shale surfaces amphiphobic, effectively mitigating capillary infiltration and delaying the long-term strength degradation of shale in oil-based drilling fluids. After 28days of immersion in oil-based drilling fluid, shale cores treated with MF-SiO2exhibited a 30.5% increase in compressive strength compared to untreated cores. Additionally, these nanoparticles demonstrated the ability to penetrate and seal rock pores, reducing the API filtration volume of the drilling fluid from11.2 to 7.6 m L. This study introduces a novel approach to enhance the development of shale gas and oil resources, offering a promising strategy for wellbore stabilization in oil-based drilling fluid systems.
基金supported by Sichuan Science and Technology Program(Grant No.2020YFH0080)the National Natural Science Foundation of China(Grant No.51475386)the National Basic Research Project of China(973 Program,Grant No.2015CB654801).
文摘The gear transmission system directly affects the operational performance of high-speed trains(HST).However,current research on gear transmission systems of HST often overlooks the effects of gear eccentricity and running resistance,and the dynamic models of gear transmission system are not sufficiently comprehensive.This paper aims to establish an electromechanical coupling dynamic model of HST traction transmission system and study its electromechanical coupling vibration characteristics,in which the internal excitation factors such as gear eccentricity,time-varying meshing stiffness,backlash,meshing error,and external excitation factors such as electromagnetic torque and running resistance are stressed.The research results indicate that gear eccentricity and running resistance have a significant impact on the stability of the system,and gear eccentricity leads to intensified system vibration and decreased anti-interference ability.In addition,the characteristic frequency of gear eccentricity can be extracted from mechanical signals and current signals as a preliminary basis for eccentricity detection,and electrical signals can also be used to monitor changes in train running resistance in real time.The results of this study provide some useful insights into designing dynamic performance parameters for HST transmission systems and monitoring train operational states.
基金financially supported by Jilin Provincial Natural Science Foundation (No.20220101164JC)。
文摘Understanding the factors triggering slope failure is essential to ensure the safety of buildings and transportation infrastructure on slopes. Specifically,the failure of stabilizing piles due to groundwater migration and freeze–thaw(FT) cycles is a significant factor causing slope failure. This study aims to investigate the transmedia seepage characteristics at slope–concrete stabilizing pile interface systems by using silty clay and concrete with varying microstructure characteristics under FT cycles. To this end, a self-developed indoor test device for transmedia water migration, combined with a macro-meso-micro multiscale testing approach, was used to analyze the laws and mechanisms of transmedia seepage at the interface systems. The effect of the medium's microstructure characteristics on the transmedia seepage behavior at the interface systems under FT cycles was also assessed. Results indicated that the transmedia water migration exhibited particularity due to the migration of soil particles and the low permeability characteristics of concrete. The water content in the media increased significantly within the range of 1/3–2/3 of the height from the interface for soil and within 5 mm from the interface for concrete.FT cycles promoted the increase and penetration of cracks within the medium, enhancing the permeability of the slope-concrete stabilizing pile interface systems.With the increase in FT cycles, the porosity inside the medium first decreased and then increased, and the porosity reached the minimum after 25 FT cycles and the maximum after 75 FT cycles, and the water content of the medium after water migration was positively correlated with the porosity. FT cycles also significantly influenced the temporal variation characteristics of soil moisture and the migration path of water in concrete. The study results could serve as a reference for related research on slope stability assessment.
基金supported by the National Natural Science Foundation of China(Grant No.42177164)the Distinguished Youth Science Foundation of Hunan Province of China(Grant No.2022JJ10073)the Outstanding Youth Project of Hunan Provincial Department of Education,China(Grant No.23B0008).
文摘In underground mining,especially in entry-type excavations,the instability of surrounding rock structures can lead to incalculable losses.As a crucial tool for stability analysis in entry-type excavations,the critical span graph must be updated to meet more stringent engineering requirements.Given this,this study introduces the support vector machine(SVM),along with multiple ensemble(bagging,adaptive boosting,and stacking)and optimization(Harris hawks optimization(HHO),cuckoo search(CS))techniques,to overcome the limitations of the traditional methods.The analysis indicates that the hybrid model combining SVM,bagging,and CS strategies has a good prediction performance,and its test accuracy reaches 0.86.Furthermore,the partition scheme of the critical span graph is adjusted based on the CS-BSVM model and 399 cases.Compared with previous empirical or semi-empirical methods,the new model overcomes the interference of subjective factors and possesses higher interpretability.Since relying solely on one technology cannot ensure prediction credibility,this study further introduces genetic programming(GP)and kriging interpolation techniques.The explicit expressions derived through GP can offer the stability probability value,and the kriging technique can provide interpolated definitions for two new subclasses.Finally,a prediction platform is developed based on the above three approaches,which can rapidly provide engineering feedback.
文摘This paper presented PSS (Power system stabilizer) design based on Genetic Algorithm - Fuzzy PID (Proportional Integral and derivative) or GAFPID. GAFPID based PSS design is considered for multimachine power system. The main motivation for this design is to stabilize or to control low-fi'equency oscillation and terminal voltage of power systems. Genetic Algorithm (GA) is employed for the optimization of the parameter of stabilizer. By minimizing an objective function in which the oscillatory speed deviation of the generator, small signal and large signal performance of the system is improved. The effectiveness of the proposed PSS in increasing the damping of system electromechanical oscillation is demonstrated in a simple two-area power system.
文摘This paper presents a new concept for damping electro-mechanical oscillations in large turbo generator. The proposed concept is based on coordination between Power System Stabilizer (PSS) and Thyristor Controlled Braking Resistor (TCBR). This coordination will enhance the stability of the inertial and torsional oscillatory modes. The study is performed on system-I of the second IEEE benchmark for simulation of Sub-Synchronous Oscillations, using eigenvalue analysis and verified by detailed digital simulation. A dynamic fundamental frequency model for TCBR is developed. The pole placement technique is used to design the control system of TCBR and PSS. The shaft torque's following a disturbance is computed and analyzed. The obtained results indicate that substantial damping is achieved by the proposed coordination.
文摘A method of enhancing power system stability for a single machine to infinite bus power system is presented. The technique used compromises the effectiveness of Proportional-Integral-Derivative controller (PID). In order to satisfy the damping characteristics for the proposed power system over a wide range of operating interval, rotational speed, torque angle and terminal voltage signals of the synchronous machine are utilized as control signals of the system. It is well known that these variables have significant effects on damping the generators shaft mechanical oscillations, it'll be so easy to validate the most suitable controller as seen from the simulation results.
文摘Thermal quenching(TQ)at elevated temperature is a major factor affecting the luminescent intensity and efficiency of phosphors.Improving the thermal stability of phosphors and weakening the TQ effect are of significance for the high-quality illumination of phosphor-converted WLEDs.Here,a novel red-emitting phosphor K_(2)Zn(PO_(3))_(4)∶Mn^(2+)is synthesized by standard high temperature solid state reaction in ambient atmosphere,which is a new member of self-reduction system.An effective synthesis strategy is proposed to optimize its photoluminescent performances.Combined with X-ray photoelectron spectroscopy and X-ray absorption fine structure spectroscopy,oxygen vacancy defects introduced by Mn doping are proved to play an important role in the transition of Mn^(4+)→Mn^(2+).Thermoluminescence analysis reveals that the distribution of trap levels,especially the deep ones,is effectively regulated by the controllable crystallization and significantly affect the thermal stability of phosphors.Then a defect-assisted model is proposed to address the inner mechanism of the phenomenon.The carriers trapped by deep trap levels can be released under the high-temperature stimulus,which return back to the luminescent centers and participate in the radiative recombination to improve thermal stability.This study provides a new crystallographic idea and theoretical support for obtaining luminescent materials with high thermal stability.
文摘The paper considers the methodology for a comprehensive analysis of the stability of an open pit-dump system,using limit equilibrium(LEM)and finite element(FEM)methods in the Russian CAE(computer-aided engineering)software Fidesys.It briefly highlights the issues of comparing limit equilibrium methods using the VNIMI(Research Institute of Geomechanics and Mine Surveying-Intersectoral Scientific Center"VNIMI")methodology and a specialized software product with numerical methods.The main focus of this study is to compare the results of the stability analysis in the volumetric model of the open pit-dump system using limit equilibrium and finite element methods in the CAE software Fidesys.It was found that,when modeling the combined operation of an open pit-dump system in complex terrain,both methods should be used,as each has its own advantages.The finite element method,for instance,has certain features that are not present in the calculations using the limit equilibrium approach.As a key scientific contribution,this paper introduces an automation program for calculating the stability of open-pit walls using the limit equilibrium method in CAE Fidesys,which was not previously integrated in the original software.The calculations performed with the use of this newly developed module were compared to those obtained from other widely used software solutions available on the market.The findings demonstrate a remarkable level of convergence in the calculation results for all relevant parameters,including the safety factor,localization,instability type,and deformation.The proposed approach i mproves the accuracy of calculati ons and ensures consistency between the higher stress design zones and the actual deformation and fracture patterns.It also enhances the ability to predict the behavior of rock mass when calculating stability parameters for facilities,both during operation and desi gn.