期刊文献+
共找到203,596篇文章
< 1 2 250 >
每页显示 20 50 100
The Application and Prospect of Stabilization/Solidification Technology for Hazardous Waste in China 被引量:1
1
作者 WANG Ji-wei ZHANG Pei-yu CHEN Shu ZHENG Meng(Environmental Science and Engineering Department of Qingdao University,Qingdao Shandong,266071) 《科技视界》 2011年第23期57-58,56,共3页
The number of hazardous waste in our country increased dramatically in recent years,stabilization/solidification technology begins to attract a wide spread attention by domestic scholars.Based on the domestic related ... The number of hazardous waste in our country increased dramatically in recent years,stabilization/solidification technology begins to attract a wide spread attention by domestic scholars.Based on the domestic related literature,this paper discussed the present situation about the treatment of the solid waste using stabilization/solidification technology;meanwhile we have a variety of outlooks on the future of the stabilization/solidification technology. 展开更多
关键词 摘要 编辑部 编辑工作 读者
在线阅读 下载PDF
pH effect on stabilization/solidification of industrial heavy metal sludge
2
作者 Huili LIU Kaixuan ZOU Yinian ZHU 《Chinese Journal Of Geochemistry》 EI CAS 2006年第B08期86-87,共2页
关键词 淤泥 重金属 稳定性 凝固 PH值 毒性
在线阅读 下载PDF
The Application and Prospect of Stabilization/Solidification Technology for Hazardous Waste in China
3
作者 WANG Ji-wei ZHANG Pei-yu CHEN Shu ZHENG Meng 《科技信息》 2011年第27期I0018-I0019,共2页
The number of hazardous waste in our country increased dramatically in recent years,stabilization/solidification technology begins to attract a wide spread attention by domestic scholars.Based on the domestic related ... The number of hazardous waste in our country increased dramatically in recent years,stabilization/solidification technology begins to attract a wide spread attention by domestic scholars.Based on the domestic related literature,this paper discussed the present situation about the treatment of the solid waste using stabilization/solidification technology;meanwhile we have a variety of outlooks on the future of the stabilization/solidification technology. 展开更多
关键词 学位论文 研究生 青岛大学 凝固工艺
在线阅读 下载PDF
Muti-scale analysis of solidification/stabilization(S/S)of Pbcontaminated dredged sediment using nano-SiO_(2)modified cement
4
作者 Wei Zhang Lei Lang +3 位作者 Zhen Qi Yao-Yi Wang Qiang Xue Jiang-Shan Li 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5781-5799,共19页
The remediation of lead-contaminated dredged sediments(LDS)presents significant environmental challenges.This study investigates the solidification/stabilization(S/S)mechanisms of ordinary Portland cement(OPC)modified... The remediation of lead-contaminated dredged sediments(LDS)presents significant environmental challenges.This study investigates the solidification/stabilization(S/S)mechanisms of ordinary Portland cement(OPC)modified with nano-silica(NS)across a continuum from nanoscale interactions to macroscopic performance.For this,a series of macroscopic experiments was conducted to evaluate the mechanical performance and lead-encapsulation efficiency,including unconfined compressive strength(UCS)and toxicity characteristic leaching procedure(TCLP).Microstructural and phase transformations were characterized using X-ray diffraction,thermogravimetric analysis,and scanning electron microscope.Molecular dynamics simulations revealed the interactions between NS-modified cement,calcium silicate hydrates(C-S-H)gel,and Illite,focusing on interaction energies,atomic density distributions and structural changes.Macroscopic analyses demonstrated that increasing NS content from 0%to 8%improved Pb-immobilization rate from 88.7%to 97.6%and enhanced UCS from 764 kPa to 1358 kPa.These improvements were attributed to NS enhancing the microstructural integrity of C-S-H gel and filling pores in samples.Nanoscale simulations elucidated that Pb-stabilization occurs through coordination bonds with oxygen atoms in the C-S-H silicon chains and on Illite surfaces,complemented by the formation of stable Pb_(3)(CO)_(3)(OH)_(2)precipitates.Additionally,the simulations revealed that Ca^(2+)migration from hydration products to mineral surfaces generated substantial repulsive interaction energies,reducing Illite layer dispersion.However,the presence of Pb impeded further Ca^(2+)migration,leading to expansion of the C-S-H gel,which collectively degraded the mechanical properties of the material.Furthermore,wet-dry and freeze-thaw cycles showed that after 10 cycles,UCS and TCLP results still met the United States Environmental Protection Agency standards,confirming long-term durability.This study provides a theoretical foundation for resource utilization of the contaminated sediments and offers a perspective for design of the cement-based curing agents,particularly in addressing variations in pollutant concentrations and environmental conditions,advancing the application of responsive and controlled release curing agents. 展开更多
关键词 Pb-contaminated dredged sediments Multi-scale Molecular dynamics simulation Nano-silica modified cement solidification/stabilization mechanism
在线阅读 下载PDF
Stabilization/solidification mechanisms of tin tailings and fuming slag-based geopolymers for different heavy metals
5
作者 Xian Zhou Zhengfu Zhang Hui Yang 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2024年第5期43-55,共13页
Tin mine tailings(TMT)and fuming slag(FS)contain many heavy metals(As,Cr,Cu,Zn and Mn)that cause severe pollution to the environment.Herein,geopolymers were prepared using TMT,FS and flue gas desulfurization gypsum(FG... Tin mine tailings(TMT)and fuming slag(FS)contain many heavy metals(As,Cr,Cu,Zn and Mn)that cause severe pollution to the environment.Herein,geopolymers were prepared using TMT,FS and flue gas desulfurization gypsum(FGDG)to immobilize heavy metals,and their compressive strength and heavy metal leaching toxicity were investigated.It was first determined that T4F5(TMT:FS=4:5)sample exhibited the highest compressive strength(7.83 MPa).T4F5 achieved 95%immobilization efficiency for As and Cr,and nearly 100%for Cu,Zn and Mn,showing good immobilization performance.A series of characterization analyses showed that heavy metal cations can balance the charge in the geopolymer and replace Al in the geopolymer structure to form covalent bonds.In addition,about 2%–20%of heavy metal Fe was immobilized in hydration products,heavy metal hydroxides and non-bridging Si–O and Al–O coordination with silica-aluminate matrices.AsO_(3)^(3−) was oxidized into AsO_(4)^(3−),which may form Ca–As or Fe–As precipitates.Cr_(2)O_(7)^(2−)was converted to CrO_(4)^(2−)under alkaline environment and then combined with OH−to form Cr(OH)3 precipitates.Mn^(2+)may react directly with dissolved silicate to form Mn_(2)SiO_(4) and also form Mn(OH)_(2) precipitates.The unstable Mn(OH)_(2) can be further oxidized to MnO_(2).The heavy metal cations were immobilized in the silicoaluminate lattice,while the anions tended to form insoluble precipitates.These results may benefit the industry and government for better handling of TMT,FS and solid wastes containing the abovementioned five heavy metals. 展开更多
关键词 Heavy metals Cementitious materials Tin tailings stabilization/solidification Redox
原文传递
Effects of calcined aluminum salts on the advanced dewatering and solidification/stabilization of sewage sludge 被引量:16
6
作者 Guangyin Zhen Xiaofei Yan +3 位作者 Haiyan Zhou Hua Chen Tiantao Zhao Youcai Zhao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2011年第7期1225-1232,共8页
The high moisture content (80%) in the sewage dewatered sludge is the main obstacle to disposal and recycling. A chemical dewatering and stabilization/solidification (S/S) alternative for the sludge was developed,... The high moisture content (80%) in the sewage dewatered sludge is the main obstacle to disposal and recycling. A chemical dewatering and stabilization/solidification (S/S) alternative for the sludge was developed, using calcined aluminum salts (AS) as solidifier, and CaCl 2 , Na 2 SO 4 and CaSO 4 as accelerators, to enhance the mechanical compressibility making the landfill operation possible. The properties of the resultant matrixes were determined in terms of moisture contents, unconfined compressive strength, products of hydration, and toxicity characteristics. The results showed that AS exhibited a moderate pozzolanic activity, and the mortar AS 0 obtained with 5% AS and 10% CaSO 4 of AS by weight presented a moisture contents below 50%–60% and a compressive strength of (51.32 ± 2.9) kPa after 5–7 days of curing time, meeting the minimum requirement for sanitary landfill. The use of CaSO 4 obviously improved the S/S performance, causing higher strength level. X-ray diffraction, scanning electron microscopy and thermogravimetry- differential scanning calorimetry investigations revealed that a large amount of hydrates (viz., gismondine and CaCO 3 ) were present in solidified sludge, leading to the depletion of evaporable water and the enhancement of the strength. In addition, the toxicity characteristic leaching procedure (TCLP) and horizontal vibration (HJ 557-2009) leaching test were conducted to evaluate their environmental compatibility. It was found that the solidified products conformed to the toxicity characteristic criteria in China and could be safely disposed of in a sanitary landfill. 展开更多
关键词 solidification/stabilization solidifier pozzolanic activity leaching test sanitary landfill
原文传递
MSWI Fly Ash Based Novel Solidification/Stabilization Matrices for Heavy Metals 被引量:2
7
作者 邓发庆 钱光人 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第6期955-960,共6页
The possibilities of MSWI fly ash as a major constituent of novel solidification/stabilization matrices for secure landfill were investigated by mixing MSWI fly ash with rich aluminum components, which was added as ba... The possibilities of MSWI fly ash as a major constituent of novel solidification/stabilization matrices for secure landfill were investigated by mixing MSWI fly ash with rich aluminum components, which was added as bauxite cement or metakaolinite instead, to form Friedel and Ettringite phases with high fixing capacities for heavy metals. The physical properties, heavy metals-fixing capacity, mineral phases and its vibration bands in the novel matrices were characterized by compressive strength, TCLP(toxic characteristic leaching procedure), XRD (x-ray diffraction) , DTG (derivative thermogravimetry), and FTIR (fourier transform infrared spectroscopy), respectively. The Tessier's five-step sequential extraction procedure was used to analyze the fractions of chemical speciation for Pb, Cd and Zn ions. The experimental results indicate that Friedel-Ettringite based novel solidification/stabilization matrices can incorporate Pb, Cd and Zn ions effectively by physical encapsulation and chemical fixation, and it exhibits a great potential in co-landfill treatment of MSWI fly ash with some heavy metals-bearing hazardous wastes. 展开更多
关键词 MSWI fly ash heavy metals chemical speciation fraction secure landfill solidification/stabilization
原文传递
Solidification Efficiency and Mechanism of Conventional Curing Agents for Sewage Sludge Stabilization and Dewatering 被引量:1
8
作者 Siliang Li Liangliang Wei +1 位作者 Qingliang Zhao Lu Li 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第6期1-10,共10页
One of the challenges faced by sewage sludge treatment and disposal is its higher water content,and how to efficient dewater those hazardous materials properly is welcome in practice. This study stabilized the sewage ... One of the challenges faced by sewage sludge treatment and disposal is its higher water content,and how to efficient dewater those hazardous materials properly is welcome in practice. This study stabilized the sewage sludge via the using of conventional curing agents and calcined aluminum salts,and the corresponding dewatering mechanisms and structural changes of the stabilized sludge were further comparable analyzed.Experimental results showed that wollastonite and kaolin exhibit a relative higher dewatering efficiency as compared to other conventional curing agents; however the releasing rate of heavy metals of Cu,Cr,Ni for kaolin solidification and Zn,Pb for wollastonite solidification is higher than the sludge samples solidified by other curing agents. For comparison,the sludge samples solidified by calcined aluminum salts (AS),calcium ash,Mg-based curing agent,tricalcium aluminate( C_3A) show a lower heavy metals leaching potential and unconfined compressive strength. In addition,the economic characteristics and local availability of AS,calcium ash,C_3A and CaO makes it have a broad prospect in extension and application. These findings are of great significance for stabilization and dewatering of sewage sludge. 展开更多
关键词 sludge dewatering curing agents solidification/stabilization heavy metal leaching
在线阅读 下载PDF
Mechanisms of eutectic lamellar destabilization upon rapid solidification of an undercooled Ag-39.9 at.% Cu eutectic alloy 被引量:7
9
作者 H.Dong Y.Z.Chen +3 位作者 Z.R.Zhang G.B.Shan W.X.Zhang F.Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第24期173-179,共7页
The eutectic Ag-Cu alloys exhibiting fine Ag-Cu lamellar eutectic structure formed upon rapid solidification have great potentials being used in various engineering fields.However,the desired fine primary lamellar eut... The eutectic Ag-Cu alloys exhibiting fine Ag-Cu lamellar eutectic structure formed upon rapid solidification have great potentials being used in various engineering fields.However,the desired fine primary lamellar eutectic structure(PLES)is usually replaced by a coarse anomalous eutectic structure(AES)when the undercooling prior to solidification exceeds a certain value.The forming mechanism of AES in the undercooled eutectic Ag-Cu alloy has been a controversial issue.In this work,the undercooled Ag-39.9 at.% Cu eutectic alloy is solidified under different cooling conditions by using techniques of melt fluxing and copper mold casting.The results show that the coupled eutectic growth of this alloy undergoes a transition from a slow eutectic-cellular growth(ECG)to a rapid eutectic-dendritic growth(EDG)above a undercooling of 72 K,accompanying with an abrupt change of the distribution and amount of AES in as-solidified microstructures.Two kinds of primary lamellar eutectic structures are formed by ECG and EDG during recalescence,respectively.The destabilization of PLES that causes the formation of AES is ascribed to two different mechanisms based on the microstructural examination and theoretical calculations.Below 72 K,the destabilization of PLES formed by slow ECG is caused by the mechanism of"termination migration"driven by interfacial energy.While above 72 K,the destabilization of PLES formed by rapid EDG is attributed to the unstable perturbation of interface driven by interfacial energy and solute supersaturation. 展开更多
关键词 Ag-Cu alloys Rapid solidification UNDERCOOLING EUTECTICS DEstabilization
原文传递
Solidification/Stabilization of Zinc-lead Tailings by Alkali Activated Slag Cement 被引量:2
10
作者 潘志华 ZHANG Jun LIU Weiqing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第1期105-108,共4页
An appropriate proportion of alkali activated slag cement, abbreviated as AASC later, was determined based on strength test of paste specimens. Results showed that AASC prepared from 14% low modulus water glass and bl... An appropriate proportion of alkali activated slag cement, abbreviated as AASC later, was determined based on strength test of paste specimens. Results showed that AASC prepared from 14% low modulus water glass and blast furnace slag presented its compressive strength of hardened cement paste of 69.6, 84.0 and 91.8 MPa at 3, 7, and 28 d curing ages respectively. Flowability of the fresh railings-cement pastes and the strength development of hardened tailings-cement paste were also tested both in the cases with addition of AASC and Portland cement. The fresh tailings-cemant paste added with AASC presented much better flowability and the corresponding hardened paste presented higher compressive strength, especially the long term strength, than those added with Portland cement. Therefore, tallings paste added with AASC allowed lager solid content than that of Portland cement in order to keep the similar flowability. SEM observation on the microstructure of the hardened tailings-AASC mixture pastes showed obvious cementation effect. MIP measurements also showed that the total porosity of the hardened tailings-cement pastes decreased, and the portion of larger pore also decreased when the dosage of AASC increased. It is believed that AASC is more suitable to be used as a binder for the stabilization of zinc-lead railings and for its backfilling operation than Portland cement. 展开更多
关键词 TAILINGS stabilization SLAG ALKALI
原文传递
Low-carbon stabilization/solidification of municipal solid waste incineration fly ash 被引量:2
11
作者 Chen Sun Lei Wang +3 位作者 Xiaoqing Lin Shengyong Lu Qunxing Huang Jianhua Yan 《Waste Disposal and Sustainable Energy》 2022年第2期69-74,共6页
Municipal solid waste incineration(MSWI)fly ash(FA)is classified as hazardous waste,which requires additional treatment before disposal or further utilization.Stabilization/solidification(S/S)is regarded as a low-cost... Municipal solid waste incineration(MSWI)fly ash(FA)is classified as hazardous waste,which requires additional treatment before disposal or further utilization.Stabilization/solidification(S/S)is regarded as a low-cost and high-efficient method for MSWI FA treatment.“Low-carbon S/S”has captured extensive interest in recent years,which could treat hazardous wastes and enable resource recycling in a sustainable way.This article introduced the state-of-art low-carbon S/S strategies for MSWI FA treatment.The immobilization mechanisms of pollutants in various matrices were also discussed.Prospects were raised to foster the actualization of sustainable management of MSWI FA. 展开更多
关键词 Municipal solid waste incineration fly ash stabilization solidification Potential toxic elements Hazardous waste treatment Green and sustainable remediation Carbon neutrality
原文传递
Solidification/stabilization of Dewatered Sludge with Multi-Component Solidifying Agents 被引量:1
12
作者 Jun-Qiu Jiang Kun Wang +3 位作者 Zi-Ye Li Yang Li Qing-Liang Zhao Guang-Yi Liu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第6期46-52,共7页
This work experimentally examined the optimal proportioning of sludge curing agent for dewatered sludge curing on solidified sludge,two components sludge curing agent consisted of cement and slag,and three components ... This work experimentally examined the optimal proportioning of sludge curing agent for dewatered sludge curing on solidified sludge,two components sludge curing agent consisted of cement and slag,and three components consisted of cement,slag and inorganic salt. The results showed that,increasing of curing ages could increase unconfined compressive strength and reduce moisture content for solidified sludge. For the test of two components,the biggest unconfined compressive strength of the solidified sludge achieved to 543. 72 kPa and the minimum moisture content achieved to 3. 56% of 21 d. The optimum proportion of the sludge curing agent of two components is sludge: cement: slag = 1 ∶ 0. 05 ∶ 0. 2 which selected by Design-expert. It could rapidly increasing the unconfined compressive strength of solidified sludge when added three components sludge curing agent( sludge: cement: slag: MgSO4= 1 ∶ 0. 05 ∶ 0. 2 ∶ 0. 03) on sludge curing. The results showed that,curing ages of 7 d,the unconfined compressive strength could achieve to 126. 74 kPa,which was more than 11 times comparison with the solidified sludge curing by two components curing agent. Two or three components sludge curing agent all could stabilize the heavy metals on solidified sludge and the leaching of heavy metals was below the government standard,while the stability of the heavy metals was superior for three components sludge curing agent. 展开更多
关键词 dewatered sludge solidification curing agent stabilizationCLC number:X705 Document code:AArticle ID:1005-9113(2013)06-0046-07
在线阅读 下载PDF
Development of Steel Slag-Based Solidification/Stabilization Materials for High Moisture Content Soil 被引量:5
13
作者 Yu Jia Sudong Hua +3 位作者 Liying Qian Xiaojian Ren Jie Zuo Yanfang Zhang 《Journal of Renewable Materials》 SCIE EI 2022年第3期735-749,共15页
To solve the problems of high moisture content,high viscosity,and poor engineering mechanical properties of soil,this paper using with steel slag(SS)and desulfurization ash(DS)as initial raw materials,realizing the co... To solve the problems of high moisture content,high viscosity,and poor engineering mechanical properties of soil,this paper using with steel slag(SS)and desulfurization ash(DS)as initial raw materials,realizing the coop-erative treatment of solid waste and solidification of silt soil.The synergistic utilization of SS and DS can reduce the production cost of curing agent and promote its own consumption.According to blended cement of various SS contents and inspected compressive strength performances,the most suitable raw materials ratio was selected.The best formula for this curing agent is cement:steel slag=3:7 with 5%DS,and its 28-day compressive strength can reach 30 MPa.The experiment shows that the effect of DS and Na_(2)SO_(4) reagent with the same quality on early compressive strength improvement of cement and SS system is not much different.In this study,the mineral composition and microstructure of different gel system blocks were characterized by XRD,SEM and EDX,and a large number of webbed structures were found in the SEM test,which was not seen in previous studies.Besides,unconfined compressive strength(UCS),water resistance,and toxic characteristic leaching procedure(TCLP)were used to evaluate silt solidified soil properties.The results demonstrated that the solidified silt could meet not only the standard of general subgrade;but also has a partial stabilization effect of heavy metal ions. 展开更多
关键词 Steel slag desulfurization ash high moisture content soil synergistic effect STRENGTH stabilized soil
在线阅读 下载PDF
Solidification/Stabilization of Chromium in Red Mud-based Geopolymer
14
作者 田崇霏 LUO Zhongtao +4 位作者 LIU Lei LIU Xiaohai 张美香 陈萌 HAI Ran 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期819-830,共12页
Up to 1.5wt%of Cr(Ⅲ)salts(CrCl_(3),and Cr_(2)O_(3))and Cr(Ⅵ)salts(Na_(2)CrO_(4),and CaCr_(2)O_(7))were incorporated into red mud-based geopolymers,respectively.The solidification/stabilization,compressive strength,a... Up to 1.5wt%of Cr(Ⅲ)salts(CrCl_(3),and Cr_(2)O_(3))and Cr(Ⅵ)salts(Na_(2)CrO_(4),and CaCr_(2)O_(7))were incorporated into red mud-based geopolymers,respectively.The solidification/stabilization,compressive strength,and durability of the Cr-containing geopolymers were investigated.The experimental results indicate that the red mud-based geopolymer could effectively solidify/stabilize different types of Cr salts with solidification/stabilization rates of above 99.61%.Geopolymers are environmentally safe when the dosage of CaCr_(2)O_(7)is≤1.0wt%,or the dosage of CrCl_(3),Cr_(2)O_(3),and Na_(2)CrO_(4)is≤1.5wt%,respectively.The effects of Cr salts on the compressive strength varies with the type and content of Cr salts.The freeze-thaw cycle is more destructive to geopolymer properties than sulfate attack or acid rain erosion.The solidification/stabilization of Cr is mainly attributed to the following reasons:a)The chemical binding of Cr is related to the formation of Cr-containing hydrates(eg,magnesiochromite((Mg,Fe)(Cr,Al)_(2)O_(4)))and doping into N-A-S-H gel and C-A-S-H gel framework;b)The physical effect is related to the encapsulation by the hydration products(e g,N-A-S-H gel and C-A-S-H gel).This study provides a reference for the treatment of hazardous Cr-containing wastes by solid waste-based geopolymers. 展开更多
关键词 CHROMIUM solidification/stabilization GEOPOLYMER red mud DURABILITY
原文传递
Correction to:Low-carbon stabilization/solidification of municipal solid waste incineration fly ash
15
作者 Chen Sun Lei Wang +3 位作者 Xiaoqing Lin Shengyong Lu Qunxing Huang Jianhua Yan 《Waste Disposal and Sustainable Energy》 EI CSCD 2023年第2期247-247,共1页
Correction to:Waste Disposal&Sustainable Energy(2022)4:69-74 https://doi.0rg/10.1007/s42768-022-00102-6 The section‘Conflict of Interest'has been amended:"Jianhua Yan is the Editor-in-Chief of Waste Disp... Correction to:Waste Disposal&Sustainable Energy(2022)4:69-74 https://doi.0rg/10.1007/s42768-022-00102-6 The section‘Conflict of Interest'has been amended:"Jianhua Yan is the Editor-in-Chief of Waste Disposal&Sustainable Energy,Qunxing Huang is the Associate Editor of Waste Disposal&Sustainable Energy,Lei Wang is an Editorial Board Member of Waste Disposal&Sustainable Energy.'The revised Conflict of Interest'is as follows:Jianhua Yan is the Editor-in-Chief of Waste Disposal&Sustainable Energy. 展开更多
关键词 SUSTAINABLE stabilization solidification
原文传递
Stability of remelting and solidification interfaces of triple-phase region during peritectic reaction at lower speed 被引量:1
16
作者 王书杰 王亮 +4 位作者 骆良顺 苏彦庆 董福宇 郭景杰 傅恒志 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第6期1951-1958,共8页
Peritectic reaction was studied by directional solidification of Cu-Ge alloys.A larger triple junction region of peritectic reaction was used to analyze the interface stability of the triple junction region during per... Peritectic reaction was studied by directional solidification of Cu-Ge alloys.A larger triple junction region of peritectic reaction was used to analyze the interface stability of the triple junction region during peritectic reaction.Under different growth conditions and compositions,different growth morphologies of triple junction region are presented.For the hypoperitectic Cu-13.5%Ge alloy,as the pulling velocity(v) increases from 2 to 5 μm/s,the morphological instability of the peritectic phase occurs during the peritectic reaction and the remelting interface of the primary phase is relatively stable.However,for the hyperperitectic Cu-15.6%Ge alloy wim v=5 μm/s,the nonplanar remelting interface near the trijunction is presented.The morphological stabilities of the solidifying peritectic phase and the remelting primary phase are analyzed in terms of the constitutional undercooling criterion. 展开更多
关键词 peritectic reaction Cu-Ge alloys directional solidification microstructure constitutional undercooling
在线阅读 下载PDF
Inclusions and solidification structures of high pure ferritic stainless steels dual stabilized by niobium and titanium 被引量:5
17
作者 Hong-Po Wang Li-Feng Sun +3 位作者 Jun-Jie Shi Cheng-Jun Liu Mao-Fa Jiang Chi Zhang 《Rare Metals》 SCIE EI CAS CSCD 2014年第6期761-766,共6页
As the raw materials in the post process of rolling and heat treatment, ingots have great effects on the properties of the final products. Inclusions and solidification structures are the most important aspects of the... As the raw materials in the post process of rolling and heat treatment, ingots have great effects on the properties of the final products. Inclusions and solidification structures are the most important aspects of the quality of ingots. Niobium and titanium are usually used to react with carbon and nitrogen to improve the properties of ferritic stainless steels. In this research, combined with thermodynamic calculation, effects of niobium and titanium on the inclusions and solidification structures in three kinds of high pure ferritic stainless steels with different titanium additions were investigated by optical microscope(OM), scanning electron microscope(SEM), transmission electron microscope(TEM), and energy disperse spectrometer(EDS). Results show that Al2O3 and a few(Nb,Ti)N particles form when titanium addition is 0.01 %.Furthermore, inclusions are mainly Ti N and Al2O3–Ti Ox–Ti N duplex inclusions when titanium addition is more than0.10 %. Those two types of inclusions are in well distribution, and can afford nuclei to the solidification process.Therefore, the ratio of equiaxed zone increases with the increase of titanium addition. The ratio increases from42.1 % to 64.0 % with the titanium addition increasing from 0.01 % to 0.10 %, and it increases to 85.7 % when the titanium addition reaches 0.34 %. 展开更多
关键词 High pure ferritic stainless steel Inclusion solidification structure Equiaxed zone stabilization element
原文传递
Effect of cooling rate on the phase transformation and stability of the mushy zone during the solidification of Waspaloy 被引量:3
18
作者 Ling Wang Yi-jun Yao +2 位作者 Bin Liu Bo-ying Zhong Jian-xin Dong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第4期464-469,共6页
Scanning electron microscopy(SEM) and energy dispersive X-ray analysis(EDAX) were used to study the microstructure,microsegregation, and fluid flow tendency of the superalloy Waspaloy in the mushy zone,which had b... Scanning electron microscopy(SEM) and energy dispersive X-ray analysis(EDAX) were used to study the microstructure,microsegregation, and fluid flow tendency of the superalloy Waspaloy in the mushy zone,which had been solidified at different cooling rates. The investigation was accompanied with the calculation of Rayleigh numbers.It is found that Ti is the main segregating element and the content of Ti is the highest in the final liquid at the cooling rates of 3-6℃/min.The eta phase(η) precipitate presented in the residual liquid at the cooling rates higher than 6℃/min is responsible for the fluctuations in the curves of Ti content.The dendrite arm spacing is found to markedly decrease with the increase of cooling rate.The maximum relative Rayleigh number occurs at 10-20℃below the liquidus temperature at a cooling rate of 1℃/min,where the mushy zone is most unstable and fluid flow is most prone to occur. 展开更多
关键词 WASPALOY cooling rate solidification SEGREGATION stabilITY mushy zone
在线阅读 下载PDF
Phase field investigation on the initial planar instability with surface tension anisotropy during directional solidification of binary alloys 被引量:4
19
作者 王志军 王锦程 杨根仓 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第1期492-496,共5页
Phase field investigation reveals that the stability of the planar interface is related to the anisotropic intensity of surface tension and the misorientation of preferred crystallographic orientation with respect to ... Phase field investigation reveals that the stability of the planar interface is related to the anisotropic intensity of surface tension and the misorientation of preferred crystallographic orientation with respect to the heat flow direction. The large anisotropic intensity may compete to determine the stability of the planar interface. The destabilizing effect or the stabilizing effect depends on the misorientation. Moreover, the interface morphology of initial instability is also affected by the surface tension anisotropy. 展开更多
关键词 surface tension anisotropy directional solidification interracial stability
原文传递
Generalized stability criterion for controlling solidification segregation upon twin-roll casting 被引量:5
20
作者 Pan Wu Yubing Zhang +7 位作者 Jiaqi Hu Shaojie Song Yong Li Huiyuan Wang Guo Yuan Zhaodong Wang Shizhong Wei Feng Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第3期163-177,共15页
Macro-and micro-segregation formed upon twin-roll casting(TRC)can be inherited from sub-rapid solid-ification to solid-state transformation,even to plastic deformation,thus deteriorating drastically mechan-ical proper... Macro-and micro-segregation formed upon twin-roll casting(TRC)can be inherited from sub-rapid solid-ification to solid-state transformation,even to plastic deformation,thus deteriorating drastically mechan-ical properties of as-produced thin sheets.Although many works focusing mainly on controlling fields of thermal,concentration and convection have been reported,how to control artificially and quantitatively the segregation using a theoretical connection between processing parameters and solidification models,has not been realized,yet.Regarding it,a systematical framework integrating non-equilibrium dendritic growth and overall solidification kinetics with the TRC parameters,was constructed applying a general-ized stability(GS)conception deduced from transient thermodynamic driving force△G^(t)and transient ki-netic energy barrier Q_(eff)^(t)evolving upon solidification.Departing from this framework considering synergy of thermodynamics and kinetics(i.e.,thermo-kinetic synergy),a criterion of high△G^(t)-high GS guaranteed that the macro(i.e.,the centerline)and the micro(i.e.,the edge)segregation can be suppressed by in-creasing△G^(t)and GS at the beginning and the ending stage of sub-rapid solidification,respectively.This typical thermo-kinetic combination producing the microstructure can be inherited into the plastic de-formation,as reflected by corresponding strength-ductility combinations.This work realized quantitative controlling of TRC by a theoretical connection between processing parameters and solidification models,where,an optimization for sub-rapid solidification segregation using the GS conception including△G^(t)and Q_(eff)^(t)has been performed. 展开更多
关键词 SEGREGATION Sub-rapid solidification Generalized stability Twin-roll casting Thermo-kinetics
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部