FeS2/Fe composites were mechanochemically prepared with iron powder and pyrite for the stabilization of ferrite arsenate sludge(FAS).The effects of preparation parameters on stabilization performance were investigated...FeS2/Fe composites were mechanochemically prepared with iron powder and pyrite for the stabilization of ferrite arsenate sludge(FAS).The effects of preparation parameters on stabilization performance were investigated.The results show that the optimum conditions are FeS2/Fe molar ratio of 5:5,milling time of 2 h,ball-to-material mass ratio of 15:1 and milling with stainless steel ball.Then,the composites were characterized by XRD,SEM,FTIR,etc.The physicochemical properties of FeS2/Fe mixture change dramatically,which is responsible for its excellent performance.Finally,the stabilization process of FAS was optimized.When the FAS is mixed with composites at mass ratio of 4:1 and milled for 30 min,the As leaching concentration of FAS can be reduced from 639.15 to 4.74 mg/L with the stabilization ratio of 99.2%.展开更多
Coral sand is widely encountered in coastal areas of tropical and subtropical regions.Compared with silica sand,it usually exhibits weaker performance from the perspective of engineering geology.To improve the geomech...Coral sand is widely encountered in coastal areas of tropical and subtropical regions.Compared with silica sand,it usually exhibits weaker performance from the perspective of engineering geology.To improve the geomechanical performance of coral sand and meet the requirement of foundation construction in coastal areas,a novel alkali activation-based sustainable binder was developed.The alkaliactivated slag(AAS)binder material was composed of ground granulated blast-furnace slag(GGBS)and hydrated lime with the amendment of biochar,an agricultural waste-derived material.The biocharamended AAS stabilized coral sand was subjected to a series of laboratory tests to determine its mechanical,physicochemical,and microstructural characteristics.Results show that adding a moderate amount of biochar in AAS could improve soil strength,elastic modulus,and water holding capacity by up to 20%,70%,and 30%,respectively.Moreover,the addition of biochar in AAS had a marginal effect on the sulfate resistance of the stabilized sand,especially at high biochar content.However,the resistance of the AAS stabilized sand to wet-dry cycles slightly deteriorated with the addition of biochar.Based on these observations,a conceptual model showing biochar-AAS-sand interactions was proposed,in which biochar served as an internal curing agent,micro-reinforcer,and mechanically weak point.展开更多
The purpose of this case study is to describe the chiropractic care of a 4-year-old male patient with agenesis of the corpus callosum. Methods: Chiropractic care plan consisted of weekly appointments with the inclusio...The purpose of this case study is to describe the chiropractic care of a 4-year-old male patient with agenesis of the corpus callosum. Methods: Chiropractic care plan consisted of weekly appointments with the inclusion of at-home exercises coupled with academic intervention of physical and occupational therapies and assistive gait devices. Functional changes were monitored via objective clinic findings, independent clinical examination, and parental observation. Results: Agitated flexion contracted non-weight bearing child with gastrointestinal dysfunction and developmentally shunted growth responds to co-managed chiropractic care. Focus on aiding structural balance helped improve the weight bearing movement and mobility, physical calmness and contentment, emotional and verbal communication, as well as gastointestinal function. Discussion: This therapeutic approach decreased aberrant posture and enhanced quality of life. Conclusion: Chiropractic care in combination with academic intervention improved this child’s postural abnormalities, attitude, and cognitive development warranting consideration in subsequent care investigation.展开更多
The reverse transformation has never occurred in a quenched and aged specimen upon heating from room temperature to 320℃ at which the martensite disappears thoroughly.Both B2 9R and DO_318R coexist in step-quenched a...The reverse transformation has never occurred in a quenched and aged specimen upon heating from room temperature to 320℃ at which the martensite disappears thoroughly.Both B2 9R and DO_318R coexist in step-quenched and short-time isothermally treated specimen. As prolonging the isothermal holding,the B29R disappears and DO_318R intensifies. B29R occurs only in specimen quenched and up-quenched immediately to 100—150℃. Rapid quenching from high temperatures will depress the B2→DO_3 ordering but not the A2 →B2 one.A plenty enough concentration of vacancy is a necessary condition of occurrence of B2→DO_3 ordering.The possible mechanism for the stabilization of martensite in a Cu-Zn-Al alloy was also discussed.展开更多
Sulfide-based all-solid-state lithium batteries(ASSLBs) with nickel-rich oxide cathodes are emerging as primary contenders for the next generation rechargeable batteries,owing to their superior safety and energy densi...Sulfide-based all-solid-state lithium batteries(ASSLBs) with nickel-rich oxide cathodes are emerging as primary contenders for the next generation rechargeable batteries,owing to their superior safety and energy density.However,the all-solid-state batteries with nickel-rich oxide cathodes suffer from performance degradation due to the reactions between the highly reactive surface oxygen of the cathode and the electrolyte,as well as the instability of the bulk oxygen structure in the cathode.Herein,we propose a synergistic modification design scheme to adjust the oxygen activity from surface to bulk.The LiBO_(2)coating inhibits the reactivity of surface lattice oxygen ions.Meanwhile,Zr doping in the bulk phase forms strong Zr-O covalent bonds that stabilize the bulk lattice oxygen structure.The synergistic effect of these modifications prevents the release of oxygen,thus avoiding the degradation of the cathode/SE interface.Additionally,the regulation of surface-to-bulk oxygen activity establishes a highly stable interface,thereby enhancing the lithium ion diffusion kinetics and mechanical stability of the cathode.Consequently,cathodes modified with this synergistic strategy exhibit outstanding performance in sulfide-based ASSLBs,including an ultra-long cycle life of 100,000 cycles,ultra-high rate capability at 45C,and 85% high active material content in the composite cathode.Additionally,ASSLB exhibits stable cycling under high loading conditions of 82.82 mg cm^(-2),achieving an areal capacity of 17.90 mA h cm^(-2).These encouraging results pave the way for practical applications of ASSLBs in fast charging,long cycle life,and high energy density in the future.展开更多
Posterior hip dislocation with greater trochanter fracture is an uncommon injury pattern in the acute trauma patient. Frequently associated injury includes a combination of hip dislocation with posterior wall of aceta...Posterior hip dislocation with greater trochanter fracture is an uncommon injury pattern in the acute trauma patient. Frequently associated injury includes a combination of hip dislocation with posterior wall of acetabulum, head of femur fracture, intertrochanteric fracture and even the most severe type of combined acetabular fracture. We report a 42-year-old man post traumatic bilateral hip injuries with irreducible posterior hip dislocation and associated isolated greater trochanteric fracture successfully managed with open reduction and fixation of greater trochanter with universal locking trochanteric stabilization plate.展开更多
The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has...The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has been employed as a coating agent.The SEM micrographs revealed distinct features of both pure AN and NC,contrasting with the irregular granular surface topography of the coated AN particles,demonstrating the adherence of NC on the AN surface.Structural analysis via infrared spectroscopy(IR)demonstrated a successful association of AN and NC,with slight shifts observed in IR bands indicating interfacial interactions.Powder X-ray Diffraction(PXRD)analysis further elucidated the structural changes induced by the coating process,revealing that the NC coating altered the crystallization pattern of its pure form.Thermal analysis demonstrates distinct profiles for pure and coated AN,for which the coated sample exhibits a temperature increase and an enthalpy decrease of the room temperature allotropic transition by 6℃,and 36%,respectively.Furthermore,the presence of NC coating alters the intermolecular forces within the composite system,leading to a reduction in melting enthalpy of coated AN by~39%compared to pure AN.The thermal decomposition analysis shows a two-step thermolysis process for coated AN,with a significant increase in the released heat by about 78%accompanied by an increase in the activation barrier of NC and AN thermolysis,demonstrating a stabilized reactivity of the AN-NC particles.These findings highlight the synergistic effect of NC coating on AN particles,which contributed to a structural and reactive stabilization of both AN and NC,proving the potential application of NC-coated AN as a strategically advantageous oxidizer in composite solid propellant formulations.展开更多
Objectives:Cold-acclimated organisms accumulate low molecular weight organic solutes such as sugar alcohols and soluble sugars.This study aimed to compare the efficacy of five sugar alcohols and 14 soluble sugars in s...Objectives:Cold-acclimated organisms accumulate low molecular weight organic solutes such as sugar alcohols and soluble sugars.This study aimed to compare the efficacy of five sugar alcohols and 14 soluble sugars in stabilizing proteins under freezing,freeze-drying,and air-drying stresses.Materials and methods:Glucose-6-Phosphate Dehydrogenase(G6PD)was used as the model protein.G6PD solutions with or without sugar alcohols and or sugars were subjected to freezing,freeze-drying,and air-drying stresses.The recovery of G6PD activity was measured to evaluate the protective efficacy of these compounds.Results:Without stabilizers,freezing G6PD at-20℃ or-80℃ reduced enzyme activity by around 24%,while freeze-drying or air-drying reduced activity by 90%-95%.Among the five sugar alcohols tested,pinitol,quebrachitol and sorbitol stabilized G6PD,whereas mannitol and myo-inositol destabilized it.Among 14 soluble sugars,trehalose and raffinose showed slightly lower enzyme recovery after repeated freeze-thaw cycles at-20℃.Most soluble sugars(except arabinose and xylose)protected G6PD during freeze-drying,with di-,tri-,and oligosaccharides generally outperforming monosaccharides.During air-drying,lactose was ineffective,while arabinose,galactose,and xylose were detrimental.Conclusion:The study highlights the diverse mechanisms of sugar alcohols and sugars in protein stabilization under stress,offering insights for formulating stable protein-and cell-based drugs.展开更多
This study investigates the innovative reuse of sewage sludge with eco-friendly alkaline solutes to improve clayey soil without conventional cementitious binders.The unconfined compressive strength(UCS)was the main cr...This study investigates the innovative reuse of sewage sludge with eco-friendly alkaline solutes to improve clayey soil without conventional cementitious binders.The unconfined compressive strength(UCS)was the main criterion to assess the quality and effectiveness of the proposed solutions,as this test was performed to measure the strength of the stabilized clay by varying binders’dosages and curing times.Moreover,the direct shear test(DST)was used to investigate the Mohr-Coulomb parameters of the treated soil.Microstructure observations of the natural and treated soil were conducted using scanning electron microscope(SEM),energy-dispersive spectroscopy(EDS),and FTIR.Furthermore,toxicity characteristic leaching procedure(TCLP)tests were performed on the treated soil to investigate the leachability of metals.According to the results,using 2.5%of sewage sludge activated by NaOH and Na_(2)SiO_(3)increases the UCS values from 176 kPa to 1.46 MPa after 7 d and 56 d of curing,respectively.The results of the DST indicate that sewage sludge as a precursor increases cohesion and enhances frictional resistance,thereby improving the Mohr-Coulomb parameters of the stabilized soil.The SEM micrographs show that alkali-activated sewage sludge increases the integrity and reduces the cavity volumes in the stabilized soil.Moreover,TCLP tests revealed that the solubility of metals in the treated soil alkaliactivated by sewage sludge significantly decreased.This study suggests that using sewage sludge can replace cement and lime in ground improvement,improve the circular economy,and reduce the carbon footprint of construction projects.展开更多
Weathering steel exhibits excellent corrosion resistance and is widely used in bridges,towers,railways,highways,and other engineering projects that are exposed to the atmosphere for long periods of time.However,before...Weathering steel exhibits excellent corrosion resistance and is widely used in bridges,towers,railways,highways,and other engineering projects that are exposed to the atmosphere for long periods of time.However,before the formation of stable rust layers,weathering steel is prone to liquid rust sagging and spattering,leading to environmental pollution and city appearance concerns.These factors limit the application and development of weathering steel.In this study,a rapid and environmentally friendly method was de-veloped by introducing alloying elements,specifically investigating the role of Sn in the rapid stabilization of rust layers in marine atmo-spheric environments.The rust layer formed on weathering low-alloy steel exposed to prolonged outdoor conditions and laboratory im-mersion experiments was explored using electron probe micro-analyzer(EPMA),micro-Raman,X-ray photoelectron spectroscopy(XPS),and electrochemical measurements.Results showed an optimal synergistic effect between Sn and Cr,which facilitated the accelerated densification of the rust layer.This beneficial effect enhanced the capability of the rust layer to resist Cl^(-)erosion and improved the protec-tion performance of the rust layer.展开更多
The effects of plasma screening on the ^(1)P^(o) resonance states of H-and He below the n=3 and n=4 thresholds of the respective subsystemsare investigated using the stabilization method and correlated exponential wav...The effects of plasma screening on the ^(1)P^(o) resonance states of H-and He below the n=3 and n=4 thresholds of the respective subsystemsare investigated using the stabilization method and correlated exponential wave functions.Two plasma mediums,namely,the Debye plasma and quantum plasma environments are considered.The screened Coulomb potential(SCP)obtained from Debye-Hückel model is used to represent Debye plasma environments and the exponential cosine screened Coulomb potential(ECSCP)obtained from a modified Debye-Hückel model is used to represent quantum plasma environments.The resonance parameters(resonance positions and widths)are presented in terms of the screening parameters.展开更多
Improving and optimizing the target properties of ceramics via the high entropy strategy has attracted significant attention.Rare earth niobate is a potential thermal barrier coating(TBCs)material,but its poor high-te...Improving and optimizing the target properties of ceramics via the high entropy strategy has attracted significant attention.Rare earth niobate is a potential thermal barrier coating(TBCs)material,but its poor high-temperature phase stability limits its further application.In this work,four sets of TBCs high-entropy ceramics,(Sm_(1/5)Dy_(1/5)Ho_(1/5)Er_(1/5)Yb_(1/5))(Nb_(1/2)Ta_(1/2))O_(4)(5NbTa),(Sm_(1/6)Dy_(1/6)Ho_(1/6)Er_(1/6)Yb_(1/6)Lu_(1/6))(Nb_(1/2)Ta_(1/2))O_(4)(6NbTa),(Sm_(1/7)Gd_(1/7)Dy_(1/7)Ho_(1/7)Er_(1/7)Yb_(1/7)Lu_(1/7))(Nb_(1/2)Ta_(1/2))O_(4)(7NbTa),(Sm_(1/8)Gd_(1/8)Dy_(1/8)Ho_(1/8)Er_(1/8)Tm_(1/8)Yb_(1/8)Lu_(1/8))(Nb_(1/2)Ta_(1/2))O_(4)(8NbTa)are synthesized using a solid-state reaction method at 1650℃for 6 h.Firstly,the X-ray diffractometer(XRD)patterns display that the samples are all single-phase solid solution structures(space group C 2/c).Differential scanning calorimetry(DSC)and the high-temperature XRD of 8NbTa cross-check that the addition of Ta element in 8HERN increases the phase transition temperature above 1400℃,which can be attributed to that the Ta/Nb co-doping at B site introduces the fluctuation of the bond strength of Ta-O and Nb-O.Secondly,compared to high-entropy rare-earth niobates,the introduction of Ta atoms at B site substantially reduce thermal conductivity(re-duced by 44%,800℃)with the seven components high entropy ceramic as an example.The low thermal conductivity means strong phonon scattering,which may originate from the softening acoustic mode and flattened phonon dispersion in 5–8 principal element high entropy rare earth niobium tantalates(5–8NbTa)revealed by the first-principles calculations.Thirdly,the Ta/Nb co-doping in 5–8NbTa systems can further optimize the insulation performance of oxygen ions.The oxygen-ion conductivity of 8NbTa(3.31×10^(−6)S cm^(−1),900℃)is about 5 times lower than that of 8HERN(15.8×10^(−6)S cm^(−1),900℃)because of the sluggish diffusion effect,providing better oxygen barrier capacity in 5–8NbTa systems to inhibit the overgrowth of the thermal growth oxide(TGO)of TBCs.In addition,influenced by lattice dis-tortion and solid solution strengthening,the samples possess higher hardness(7.51–8.15 GPa)and TECs(9.78×10^(−6)K−1^(-1)0.78×10^(−6)K^(−1),1500℃)than the single rare-earth niobates and tantalates.Based on their excellent overall properties,it is considered that 5–8NbTa can be used as auspicious TBCs.展开更多
Although perovskite solar cells(PSCs) demonstrate outstanding power conversion efficiency(PCE), their practical applications are still limited by stability issues caused by various problems such as poor crystal qualit...Although perovskite solar cells(PSCs) demonstrate outstanding power conversion efficiency(PCE), their practical applications are still limited by stability issues caused by various problems such as poor crystal quality triggered structural instability. Herein, to address the structural instability of perovskites, we introduced a polymer additive, poly-L-lysine hydrobromide(PLL), into the perovskite precursor to promote perovskite crystal growth, thereby constructing a stable crystal structure. The results show that the introduction of PLL modulates the colloidal aggregation state in the precursor solution, provides longer time for growth of perovskite and successfully realizes the formation of large-sized perovskite films with high crystallinity. More importantly, owing to its hydrophobic long-chain structure and the widespread distribution of C=O and NH on the chain, PLL firmly locks the perovskite crystals, enhancing their structural stability while blocking the intrusion of external factors such as water molecules, significantly enhances the overall stability of the device. The results show that the PLL-based PSC has negligible hysteresis and its PCE is improved from 22.20% to 23.66%. while the PLL-modified perovskite films and devices demonstrate excellent thermal and environmental stability. These findings highlight PLL as a promising additive for optimizing perovskite crystallization, offering guidance for fabricating efficient and stable photovoltaic devices.展开更多
Airborne area-array whisk-broom imaging systems typically adopt constant-speed scanning schemes.For large-inertia scanning systems,constant-speed scanning requires substantial time to complete the reversal motion,redu...Airborne area-array whisk-broom imaging systems typically adopt constant-speed scanning schemes.For large-inertia scanning systems,constant-speed scanning requires substantial time to complete the reversal motion,reducing the system's adaptability to high-speed reversal scanning and decreasing scanning efficiency.This study proposes a novel sinusoidal variable-speed roll scanning strategy,which reduces abrupt changes in speed and acceleration,minimizing time loss during reversals.Based on the forward image motion compensation strategy in the pitch direction,we establish a line-of-sight(LOS)position calculation model with vertical flight path correction(VFPC),ensuring that the central LOS of the scanned image remains stable on the same horizontal line,facilitating accurate image stitching in whisk-broom imaging.Through theoretical analysis and simulation experiments,the proposed method improves the scanning efficiency by approximately 18.6%at a 90o whiskbroom imaging angle under the same speed height ratio conditions.The new VFPC method enables wide-field,high-resolution imaging,achieving single-line LOS horizontal stability with an accuracy of better than O.4 mrad.The research is of great significance to promote the further development of airborne area-array whisk-broom imaging technology toward wider fields of view,higher speed height ratios,and greater scanning efficiency.展开更多
The stabilization problem of second-order bilinear systems with time delay is investigated.Feedback controls are chosen so that the strong and exponential stabilization of the system is ensured.The obtained results ar...The stabilization problem of second-order bilinear systems with time delay is investigated.Feedback controls are chosen so that the strong and exponential stabilization of the system is ensured.The obtained results are illustrated by wave and beam equations with simulation.展开更多
Dear Editor,This letter is concerned with stability analysis and stabilization design for sampled-data based load frequency control(LFC) systems via a data-driven method. By describing the dynamic behavior of LFC syst...Dear Editor,This letter is concerned with stability analysis and stabilization design for sampled-data based load frequency control(LFC) systems via a data-driven method. By describing the dynamic behavior of LFC systems based on a data-based representation, a stability criterion is derived to obtain the admissible maximum sampling interval(MSI) for a given controller and a design condition of the PI-type controller is further developed to meet the required MSI. Finally, the effectiveness of the proposed methods is verified by a case study.展开更多
This paper proposes a model-based control framework for vehicle platooning systems with secondorder nonlinear dynamics operating over switching signed networks,time-varying delays,and deception attacks.The study inclu...This paper proposes a model-based control framework for vehicle platooning systems with secondorder nonlinear dynamics operating over switching signed networks,time-varying delays,and deception attacks.The study includes two configurations:a leaderless structure using Finite-Time Non-Singular Terminal Bipartite Consensus(FNTBC)and Fixed-Time Bipartite Consensus(FXTBC),and a leader—follower structure ensuring structural balance and robustness against deceptive signals.In the leaderless model,a bipartite controller based on impulsive control theory,gauge transformation,and Markovian switching Lyapunov functions ensures mean-square stability and coordination under deception attacks and communication delays.The FNTBC achieves finite-time convergence depending on initial conditions,while the FXTBC guarantees fixed-time convergence independent of them,providing adaptability to different operating states.In the leader—follower case,a discontinuous impulsive control law synchronizes all followers with the leader despite deceptive attacks and switching topologies,maintaining robust coordination through nonlinear corrective mechanisms.To validate the approach,simulations are conducted on systems of five and seventeen vehicles in both leaderless and leader—follower configurations.The results demonstrate that the proposed framework achieves rapid consensus,strong robustness,and high resistance to deception attacks,offering a secure and scalable model-based control solution for modern vehicular communication networks.展开更多
We read with great interest the investigations conducted by Pourakbar et al.(2024)on the“Stabilization of clay soil using alkali-activated sewage sludge.”The authors have investigated the feasibility of utilizing al...We read with great interest the investigations conducted by Pourakbar et al.(2024)on the“Stabilization of clay soil using alkali-activated sewage sludge.”The authors have investigated the feasibility of utilizing alkali-activated sewage sludge(AASS)as a binder for stabilizing the clayey soil.Sewage sludge(SS)in varying proportions of 1.5%,2%,2.5%,3.5%,and 4.5%was utilized to prepare geopolymer binders using sodium and potassium-based alkali activators.Furthermore,unconfined compressive strength(UCS)and direct shear tests were conducted to examine the strength development of clayey soil stabilized with AASS.While the study presented some intriguing results,we have identified critical concerns regarding(i)the selection of SS as a precursor for alkali activation,(ii)technical inconsistencies associated with the compaction characteristics and microstructural analysis,and(iii)the feasibility of the proposed methodology for practical applications.Through our discussion,we seek to highlight these issues and provide constructive feedback to advance the understanding of alkali activation processes and their implications for soil stabilization.展开更多
Flying insects demonstrate remarkable control over their body movements and orientation,enabling them to perform rapid maneuvers and withstand external disturbances in just a few wing beats.This fast flight stabilizat...Flying insects demonstrate remarkable control over their body movements and orientation,enabling them to perform rapid maneuvers and withstand external disturbances in just a few wing beats.This fast flight stabilization mechanism has captured the interest of biologists and engineers,driving the exploration of flapping-wing flight control systems and their potential applications in bioinspired flying robots.While many control models have been developed within a rigorous mathematical framework using linear feedback systems,such as proportional(P),integral(I),and derivative(D)-based controllers,the exact mechanisms by which insects achieve the fastest stabilization-despite constraints such as passive aerodynamic damping and feedback delay-remain unclear.In this study,we demonstrate that flying insects employ a novel strategy for fast flight stabilization by minimizing the restoration time under external perturbations.We introduce a versatile PD-based control model that solves the closed-loop dynamics of insect flight and optimizes flight stabilization within a mathematical framework.Our findings reveal that passive aerodynamic damping plays a crucial role in stabilizing flight,acting as derivative feedback without delay,whereas feedback delay hinders stabilization.Additionally,we show that minimizing the restoring time leads to the fastest flight stabilization.Hovering flight analyses of fruit flies,honeybees,hawkmoths,and hummingbirds suggest that restoring time minimization through dynamic oscillatory modes rather than closed-loop time constants is a common strategy among small bioflies for effective maneuvering against disturbances.This strategy,which spans a broad range of Reynolds numbers(on the order of 102 to 104),could offer valuable insights for designing flight controllers in bioinspired flying robots.展开更多
In this paper, a class of discontinuous neutral-type neural networks (NTNNs) with proportional delays is considered. The targets of the paper are to study the problem of periodic solutions and fixed-time (FXT) stabili...In this paper, a class of discontinuous neutral-type neural networks (NTNNs) with proportional delays is considered. The targets of the paper are to study the problem of periodic solutions and fixed-time (FXT) stabilization of the addressed neural networks. In order to complete the targets, based on set-valued map, differential inclusions theory, coincidence theorem and Hölder inequality technique, some new proportional delay-dependent criteria shown by the inequalities are derived. Based on the fact of the existence of solution, further by applying the FXT stability lemmas and equivalent transformation, the zero solution of closed-loop system achieves FXT stabilization and the corresponding settling-times are estimated. Some previous related works on NTNNs are extended. Finally, one typical example is provided to show the effectiveness of the established results.展开更多
基金Projects(2018YFC1900305,2018YFC1903301)supported by the National Key R&D Program of ChinaProject(51825403)supported by the National Natural Science Foundation for Distinguished Young Scholars of China+1 种基金Project(51634010)supported by the National Natural Science Foundation of ChinaProject(2017RS3010)supported by the Science and Technology Program of Hunan Province,China
文摘FeS2/Fe composites were mechanochemically prepared with iron powder and pyrite for the stabilization of ferrite arsenate sludge(FAS).The effects of preparation parameters on stabilization performance were investigated.The results show that the optimum conditions are FeS2/Fe molar ratio of 5:5,milling time of 2 h,ball-to-material mass ratio of 15:1 and milling with stainless steel ball.Then,the composites were characterized by XRD,SEM,FTIR,etc.The physicochemical properties of FeS2/Fe mixture change dramatically,which is responsible for its excellent performance.Finally,the stabilization process of FAS was optimized.When the FAS is mixed with composites at mass ratio of 4:1 and milled for 30 min,the As leaching concentration of FAS can be reduced from 639.15 to 4.74 mg/L with the stabilization ratio of 99.2%.
基金supported by the Hawaii Department of Transportation(Grant No.2020-4ReSUPP)National Natural Science Foundation of China(Grant No.42007246)Fundamental Research Funds for the Central Universities.
文摘Coral sand is widely encountered in coastal areas of tropical and subtropical regions.Compared with silica sand,it usually exhibits weaker performance from the perspective of engineering geology.To improve the geomechanical performance of coral sand and meet the requirement of foundation construction in coastal areas,a novel alkali activation-based sustainable binder was developed.The alkaliactivated slag(AAS)binder material was composed of ground granulated blast-furnace slag(GGBS)and hydrated lime with the amendment of biochar,an agricultural waste-derived material.The biocharamended AAS stabilized coral sand was subjected to a series of laboratory tests to determine its mechanical,physicochemical,and microstructural characteristics.Results show that adding a moderate amount of biochar in AAS could improve soil strength,elastic modulus,and water holding capacity by up to 20%,70%,and 30%,respectively.Moreover,the addition of biochar in AAS had a marginal effect on the sulfate resistance of the stabilized sand,especially at high biochar content.However,the resistance of the AAS stabilized sand to wet-dry cycles slightly deteriorated with the addition of biochar.Based on these observations,a conceptual model showing biochar-AAS-sand interactions was proposed,in which biochar served as an internal curing agent,micro-reinforcer,and mechanically weak point.
文摘The purpose of this case study is to describe the chiropractic care of a 4-year-old male patient with agenesis of the corpus callosum. Methods: Chiropractic care plan consisted of weekly appointments with the inclusion of at-home exercises coupled with academic intervention of physical and occupational therapies and assistive gait devices. Functional changes were monitored via objective clinic findings, independent clinical examination, and parental observation. Results: Agitated flexion contracted non-weight bearing child with gastrointestinal dysfunction and developmentally shunted growth responds to co-managed chiropractic care. Focus on aiding structural balance helped improve the weight bearing movement and mobility, physical calmness and contentment, emotional and verbal communication, as well as gastointestinal function. Discussion: This therapeutic approach decreased aberrant posture and enhanced quality of life. Conclusion: Chiropractic care in combination with academic intervention improved this child’s postural abnormalities, attitude, and cognitive development warranting consideration in subsequent care investigation.
文摘The reverse transformation has never occurred in a quenched and aged specimen upon heating from room temperature to 320℃ at which the martensite disappears thoroughly.Both B2 9R and DO_318R coexist in step-quenched and short-time isothermally treated specimen. As prolonging the isothermal holding,the B29R disappears and DO_318R intensifies. B29R occurs only in specimen quenched and up-quenched immediately to 100—150℃. Rapid quenching from high temperatures will depress the B2→DO_3 ordering but not the A2 →B2 one.A plenty enough concentration of vacancy is a necessary condition of occurrence of B2→DO_3 ordering.The possible mechanism for the stabilization of martensite in a Cu-Zn-Al alloy was also discussed.
基金financially supported by the National Natural Science Foundation of China (52474338,22109084 and 52304338)the Hunan Provincial Key Research and Development Program (2024JK2093,2023GK2016)supported in part by the High Performance Computing Center of Central South University.
文摘Sulfide-based all-solid-state lithium batteries(ASSLBs) with nickel-rich oxide cathodes are emerging as primary contenders for the next generation rechargeable batteries,owing to their superior safety and energy density.However,the all-solid-state batteries with nickel-rich oxide cathodes suffer from performance degradation due to the reactions between the highly reactive surface oxygen of the cathode and the electrolyte,as well as the instability of the bulk oxygen structure in the cathode.Herein,we propose a synergistic modification design scheme to adjust the oxygen activity from surface to bulk.The LiBO_(2)coating inhibits the reactivity of surface lattice oxygen ions.Meanwhile,Zr doping in the bulk phase forms strong Zr-O covalent bonds that stabilize the bulk lattice oxygen structure.The synergistic effect of these modifications prevents the release of oxygen,thus avoiding the degradation of the cathode/SE interface.Additionally,the regulation of surface-to-bulk oxygen activity establishes a highly stable interface,thereby enhancing the lithium ion diffusion kinetics and mechanical stability of the cathode.Consequently,cathodes modified with this synergistic strategy exhibit outstanding performance in sulfide-based ASSLBs,including an ultra-long cycle life of 100,000 cycles,ultra-high rate capability at 45C,and 85% high active material content in the composite cathode.Additionally,ASSLB exhibits stable cycling under high loading conditions of 82.82 mg cm^(-2),achieving an areal capacity of 17.90 mA h cm^(-2).These encouraging results pave the way for practical applications of ASSLBs in fast charging,long cycle life,and high energy density in the future.
文摘Posterior hip dislocation with greater trochanter fracture is an uncommon injury pattern in the acute trauma patient. Frequently associated injury includes a combination of hip dislocation with posterior wall of acetabulum, head of femur fracture, intertrochanteric fracture and even the most severe type of combined acetabular fracture. We report a 42-year-old man post traumatic bilateral hip injuries with irreducible posterior hip dislocation and associated isolated greater trochanteric fracture successfully managed with open reduction and fixation of greater trochanter with universal locking trochanteric stabilization plate.
文摘The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has been employed as a coating agent.The SEM micrographs revealed distinct features of both pure AN and NC,contrasting with the irregular granular surface topography of the coated AN particles,demonstrating the adherence of NC on the AN surface.Structural analysis via infrared spectroscopy(IR)demonstrated a successful association of AN and NC,with slight shifts observed in IR bands indicating interfacial interactions.Powder X-ray Diffraction(PXRD)analysis further elucidated the structural changes induced by the coating process,revealing that the NC coating altered the crystallization pattern of its pure form.Thermal analysis demonstrates distinct profiles for pure and coated AN,for which the coated sample exhibits a temperature increase and an enthalpy decrease of the room temperature allotropic transition by 6℃,and 36%,respectively.Furthermore,the presence of NC coating alters the intermolecular forces within the composite system,leading to a reduction in melting enthalpy of coated AN by~39%compared to pure AN.The thermal decomposition analysis shows a two-step thermolysis process for coated AN,with a significant increase in the released heat by about 78%accompanied by an increase in the activation barrier of NC and AN thermolysis,demonstrating a stabilized reactivity of the AN-NC particles.These findings highlight the synergistic effect of NC coating on AN particles,which contributed to a structural and reactive stabilization of both AN and NC,proving the potential application of NC-coated AN as a strategically advantageous oxidizer in composite solid propellant formulations.
基金supported by a research grant from the National University of Singapore to WQS(RP-3960366)a collaborative research grant from Sichuan Zhongke Organ Co.Ltd(Chengdu,China).
文摘Objectives:Cold-acclimated organisms accumulate low molecular weight organic solutes such as sugar alcohols and soluble sugars.This study aimed to compare the efficacy of five sugar alcohols and 14 soluble sugars in stabilizing proteins under freezing,freeze-drying,and air-drying stresses.Materials and methods:Glucose-6-Phosphate Dehydrogenase(G6PD)was used as the model protein.G6PD solutions with or without sugar alcohols and or sugars were subjected to freezing,freeze-drying,and air-drying stresses.The recovery of G6PD activity was measured to evaluate the protective efficacy of these compounds.Results:Without stabilizers,freezing G6PD at-20℃ or-80℃ reduced enzyme activity by around 24%,while freeze-drying or air-drying reduced activity by 90%-95%.Among the five sugar alcohols tested,pinitol,quebrachitol and sorbitol stabilized G6PD,whereas mannitol and myo-inositol destabilized it.Among 14 soluble sugars,trehalose and raffinose showed slightly lower enzyme recovery after repeated freeze-thaw cycles at-20℃.Most soluble sugars(except arabinose and xylose)protected G6PD during freeze-drying,with di-,tri-,and oligosaccharides generally outperforming monosaccharides.During air-drying,lactose was ineffective,while arabinose,galactose,and xylose were detrimental.Conclusion:The study highlights the diverse mechanisms of sugar alcohols and sugars in protein stabilization under stress,offering insights for formulating stable protein-and cell-based drugs.
文摘This study investigates the innovative reuse of sewage sludge with eco-friendly alkaline solutes to improve clayey soil without conventional cementitious binders.The unconfined compressive strength(UCS)was the main criterion to assess the quality and effectiveness of the proposed solutions,as this test was performed to measure the strength of the stabilized clay by varying binders’dosages and curing times.Moreover,the direct shear test(DST)was used to investigate the Mohr-Coulomb parameters of the treated soil.Microstructure observations of the natural and treated soil were conducted using scanning electron microscope(SEM),energy-dispersive spectroscopy(EDS),and FTIR.Furthermore,toxicity characteristic leaching procedure(TCLP)tests were performed on the treated soil to investigate the leachability of metals.According to the results,using 2.5%of sewage sludge activated by NaOH and Na_(2)SiO_(3)increases the UCS values from 176 kPa to 1.46 MPa after 7 d and 56 d of curing,respectively.The results of the DST indicate that sewage sludge as a precursor increases cohesion and enhances frictional resistance,thereby improving the Mohr-Coulomb parameters of the stabilized soil.The SEM micrographs show that alkali-activated sewage sludge increases the integrity and reduces the cavity volumes in the stabilized soil.Moreover,TCLP tests revealed that the solubility of metals in the treated soil alkaliactivated by sewage sludge significantly decreased.This study suggests that using sewage sludge can replace cement and lime in ground improvement,improve the circular economy,and reduce the carbon footprint of construction projects.
基金support of the National Natural Science Foundation of China(No.52171063).
文摘Weathering steel exhibits excellent corrosion resistance and is widely used in bridges,towers,railways,highways,and other engineering projects that are exposed to the atmosphere for long periods of time.However,before the formation of stable rust layers,weathering steel is prone to liquid rust sagging and spattering,leading to environmental pollution and city appearance concerns.These factors limit the application and development of weathering steel.In this study,a rapid and environmentally friendly method was de-veloped by introducing alloying elements,specifically investigating the role of Sn in the rapid stabilization of rust layers in marine atmo-spheric environments.The rust layer formed on weathering low-alloy steel exposed to prolonged outdoor conditions and laboratory im-mersion experiments was explored using electron probe micro-analyzer(EPMA),micro-Raman,X-ray photoelectron spectroscopy(XPS),and electrochemical measurements.Results showed an optimal synergistic effect between Sn and Cr,which facilitated the accelerated densification of the rust layer.This beneficial effect enhanced the capability of the rust layer to resist Cl^(-)erosion and improved the protec-tion performance of the rust layer.
基金Supported by the Natural Science Foundation of Heilongjiang Province(LH2024A025)。
文摘The effects of plasma screening on the ^(1)P^(o) resonance states of H-and He below the n=3 and n=4 thresholds of the respective subsystemsare investigated using the stabilization method and correlated exponential wave functions.Two plasma mediums,namely,the Debye plasma and quantum plasma environments are considered.The screened Coulomb potential(SCP)obtained from Debye-Hückel model is used to represent Debye plasma environments and the exponential cosine screened Coulomb potential(ECSCP)obtained from a modified Debye-Hückel model is used to represent quantum plasma environments.The resonance parameters(resonance positions and widths)are presented in terms of the screening parameters.
基金support from Yunnan Major Scientific and Technological Projects(No.202302AG050010)Yunnan Fundamental Research Projects(Nos.202101AW070011 and202101BE070001–015)+1 种基金National Natural Science Foundation of China(No.52303295)Project Funds of“Xingdian Talent Support Program”.
文摘Improving and optimizing the target properties of ceramics via the high entropy strategy has attracted significant attention.Rare earth niobate is a potential thermal barrier coating(TBCs)material,but its poor high-temperature phase stability limits its further application.In this work,four sets of TBCs high-entropy ceramics,(Sm_(1/5)Dy_(1/5)Ho_(1/5)Er_(1/5)Yb_(1/5))(Nb_(1/2)Ta_(1/2))O_(4)(5NbTa),(Sm_(1/6)Dy_(1/6)Ho_(1/6)Er_(1/6)Yb_(1/6)Lu_(1/6))(Nb_(1/2)Ta_(1/2))O_(4)(6NbTa),(Sm_(1/7)Gd_(1/7)Dy_(1/7)Ho_(1/7)Er_(1/7)Yb_(1/7)Lu_(1/7))(Nb_(1/2)Ta_(1/2))O_(4)(7NbTa),(Sm_(1/8)Gd_(1/8)Dy_(1/8)Ho_(1/8)Er_(1/8)Tm_(1/8)Yb_(1/8)Lu_(1/8))(Nb_(1/2)Ta_(1/2))O_(4)(8NbTa)are synthesized using a solid-state reaction method at 1650℃for 6 h.Firstly,the X-ray diffractometer(XRD)patterns display that the samples are all single-phase solid solution structures(space group C 2/c).Differential scanning calorimetry(DSC)and the high-temperature XRD of 8NbTa cross-check that the addition of Ta element in 8HERN increases the phase transition temperature above 1400℃,which can be attributed to that the Ta/Nb co-doping at B site introduces the fluctuation of the bond strength of Ta-O and Nb-O.Secondly,compared to high-entropy rare-earth niobates,the introduction of Ta atoms at B site substantially reduce thermal conductivity(re-duced by 44%,800℃)with the seven components high entropy ceramic as an example.The low thermal conductivity means strong phonon scattering,which may originate from the softening acoustic mode and flattened phonon dispersion in 5–8 principal element high entropy rare earth niobium tantalates(5–8NbTa)revealed by the first-principles calculations.Thirdly,the Ta/Nb co-doping in 5–8NbTa systems can further optimize the insulation performance of oxygen ions.The oxygen-ion conductivity of 8NbTa(3.31×10^(−6)S cm^(−1),900℃)is about 5 times lower than that of 8HERN(15.8×10^(−6)S cm^(−1),900℃)because of the sluggish diffusion effect,providing better oxygen barrier capacity in 5–8NbTa systems to inhibit the overgrowth of the thermal growth oxide(TGO)of TBCs.In addition,influenced by lattice dis-tortion and solid solution strengthening,the samples possess higher hardness(7.51–8.15 GPa)and TECs(9.78×10^(−6)K−1^(-1)0.78×10^(−6)K^(−1),1500℃)than the single rare-earth niobates and tantalates.Based on their excellent overall properties,it is considered that 5–8NbTa can be used as auspicious TBCs.
基金the financial support from the National Key R&D Program of China (No. 2021YFB3800102)the National Natural Science Foundation of China (Nos. 52102196 and 52302324)CASHIPS Director's Fund (Nos. YZJJ-GGZX-2022-01 and YZJJ202304-CX)。
文摘Although perovskite solar cells(PSCs) demonstrate outstanding power conversion efficiency(PCE), their practical applications are still limited by stability issues caused by various problems such as poor crystal quality triggered structural instability. Herein, to address the structural instability of perovskites, we introduced a polymer additive, poly-L-lysine hydrobromide(PLL), into the perovskite precursor to promote perovskite crystal growth, thereby constructing a stable crystal structure. The results show that the introduction of PLL modulates the colloidal aggregation state in the precursor solution, provides longer time for growth of perovskite and successfully realizes the formation of large-sized perovskite films with high crystallinity. More importantly, owing to its hydrophobic long-chain structure and the widespread distribution of C=O and NH on the chain, PLL firmly locks the perovskite crystals, enhancing their structural stability while blocking the intrusion of external factors such as water molecules, significantly enhances the overall stability of the device. The results show that the PLL-based PSC has negligible hysteresis and its PCE is improved from 22.20% to 23.66%. while the PLL-modified perovskite films and devices demonstrate excellent thermal and environmental stability. These findings highlight PLL as a promising additive for optimizing perovskite crystallization, offering guidance for fabricating efficient and stable photovoltaic devices.
基金Supported by the National Key Research and Development Program(2023YFC3107602)。
文摘Airborne area-array whisk-broom imaging systems typically adopt constant-speed scanning schemes.For large-inertia scanning systems,constant-speed scanning requires substantial time to complete the reversal motion,reducing the system's adaptability to high-speed reversal scanning and decreasing scanning efficiency.This study proposes a novel sinusoidal variable-speed roll scanning strategy,which reduces abrupt changes in speed and acceleration,minimizing time loss during reversals.Based on the forward image motion compensation strategy in the pitch direction,we establish a line-of-sight(LOS)position calculation model with vertical flight path correction(VFPC),ensuring that the central LOS of the scanned image remains stable on the same horizontal line,facilitating accurate image stitching in whisk-broom imaging.Through theoretical analysis and simulation experiments,the proposed method improves the scanning efficiency by approximately 18.6%at a 90o whiskbroom imaging angle under the same speed height ratio conditions.The new VFPC method enables wide-field,high-resolution imaging,achieving single-line LOS horizontal stability with an accuracy of better than O.4 mrad.The research is of great significance to promote the further development of airborne area-array whisk-broom imaging technology toward wider fields of view,higher speed height ratios,and greater scanning efficiency.
文摘The stabilization problem of second-order bilinear systems with time delay is investigated.Feedback controls are chosen so that the strong and exponential stabilization of the system is ensured.The obtained results are illustrated by wave and beam equations with simulation.
基金supported in part by the National Natural Science Foundation of China(62373337,62373333)the 111 Project(B17040)State Key Laboratory of Advanced Electromagnetic Technology(2024KF002)
文摘Dear Editor,This letter is concerned with stability analysis and stabilization design for sampled-data based load frequency control(LFC) systems via a data-driven method. By describing the dynamic behavior of LFC systems based on a data-based representation, a stability criterion is derived to obtain the admissible maximum sampling interval(MSI) for a given controller and a design condition of the PI-type controller is further developed to meet the required MSI. Finally, the effectiveness of the proposed methods is verified by a case study.
基金Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under grant number RGP.2/103/46”Deanship of Scientific Research at Northern Border University,Arar,Saudi Arabia for funding this research work through project number“NBU-FFR-2025-871-15”funding from Prince Sattam bin Abdulaziz University project number(PSAU/2025/R/1447).
文摘This paper proposes a model-based control framework for vehicle platooning systems with secondorder nonlinear dynamics operating over switching signed networks,time-varying delays,and deception attacks.The study includes two configurations:a leaderless structure using Finite-Time Non-Singular Terminal Bipartite Consensus(FNTBC)and Fixed-Time Bipartite Consensus(FXTBC),and a leader—follower structure ensuring structural balance and robustness against deceptive signals.In the leaderless model,a bipartite controller based on impulsive control theory,gauge transformation,and Markovian switching Lyapunov functions ensures mean-square stability and coordination under deception attacks and communication delays.The FNTBC achieves finite-time convergence depending on initial conditions,while the FXTBC guarantees fixed-time convergence independent of them,providing adaptability to different operating states.In the leader—follower case,a discontinuous impulsive control law synchronizes all followers with the leader despite deceptive attacks and switching topologies,maintaining robust coordination through nonlinear corrective mechanisms.To validate the approach,simulations are conducted on systems of five and seventeen vehicles in both leaderless and leader—follower configurations.The results demonstrate that the proposed framework achieves rapid consensus,strong robustness,and high resistance to deception attacks,offering a secure and scalable model-based control solution for modern vehicular communication networks.
文摘We read with great interest the investigations conducted by Pourakbar et al.(2024)on the“Stabilization of clay soil using alkali-activated sewage sludge.”The authors have investigated the feasibility of utilizing alkali-activated sewage sludge(AASS)as a binder for stabilizing the clayey soil.Sewage sludge(SS)in varying proportions of 1.5%,2%,2.5%,3.5%,and 4.5%was utilized to prepare geopolymer binders using sodium and potassium-based alkali activators.Furthermore,unconfined compressive strength(UCS)and direct shear tests were conducted to examine the strength development of clayey soil stabilized with AASS.While the study presented some intriguing results,we have identified critical concerns regarding(i)the selection of SS as a precursor for alkali activation,(ii)technical inconsistencies associated with the compaction characteristics and microstructural analysis,and(iii)the feasibility of the proposed methodology for practical applications.Through our discussion,we seek to highlight these issues and provide constructive feedback to advance the understanding of alkali activation processes and their implications for soil stabilization.
基金supported by the Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research (Grant Nos. 19H02060 , 23H01373 , and 23K26068)the Excellent International Student Scholarship provided by Chiba University
文摘Flying insects demonstrate remarkable control over their body movements and orientation,enabling them to perform rapid maneuvers and withstand external disturbances in just a few wing beats.This fast flight stabilization mechanism has captured the interest of biologists and engineers,driving the exploration of flapping-wing flight control systems and their potential applications in bioinspired flying robots.While many control models have been developed within a rigorous mathematical framework using linear feedback systems,such as proportional(P),integral(I),and derivative(D)-based controllers,the exact mechanisms by which insects achieve the fastest stabilization-despite constraints such as passive aerodynamic damping and feedback delay-remain unclear.In this study,we demonstrate that flying insects employ a novel strategy for fast flight stabilization by minimizing the restoration time under external perturbations.We introduce a versatile PD-based control model that solves the closed-loop dynamics of insect flight and optimizes flight stabilization within a mathematical framework.Our findings reveal that passive aerodynamic damping plays a crucial role in stabilizing flight,acting as derivative feedback without delay,whereas feedback delay hinders stabilization.Additionally,we show that minimizing the restoring time leads to the fastest flight stabilization.Hovering flight analyses of fruit flies,honeybees,hawkmoths,and hummingbirds suggest that restoring time minimization through dynamic oscillatory modes rather than closed-loop time constants is a common strategy among small bioflies for effective maneuvering against disturbances.This strategy,which spans a broad range of Reynolds numbers(on the order of 102 to 104),could offer valuable insights for designing flight controllers in bioinspired flying robots.
基金supported by Social Science Fund of Hunan province(Grant No.22JD074)the Research Foundation of Education Bureau of Hunan province(Grant No.22B0912).
文摘In this paper, a class of discontinuous neutral-type neural networks (NTNNs) with proportional delays is considered. The targets of the paper are to study the problem of periodic solutions and fixed-time (FXT) stabilization of the addressed neural networks. In order to complete the targets, based on set-valued map, differential inclusions theory, coincidence theorem and Hölder inequality technique, some new proportional delay-dependent criteria shown by the inequalities are derived. Based on the fact of the existence of solution, further by applying the FXT stability lemmas and equivalent transformation, the zero solution of closed-loop system achieves FXT stabilization and the corresponding settling-times are estimated. Some previous related works on NTNNs are extended. Finally, one typical example is provided to show the effectiveness of the established results.