期刊文献+
共找到13,504篇文章
< 1 2 250 >
每页显示 20 50 100
Targeting stability:Recent progress and perspectives on both anode and cathode interface of halide solid electrolytes
1
作者 Nan Zhang Xing-Qi Chen +5 位作者 Xiaoting Lin Peng-Fei Wang Zong-Lin Liu Jie Shu Ping He Ting-Feng Yi 《Journal of Energy Chemistry》 2025年第10期497-517,共21页
Halide solid-state electrolytes(SSEs)have become a new research focus for all-solid-state batteries because of their significant safety advantages,high ionic conductivity,high-voltage stability,and good ductility.None... Halide solid-state electrolytes(SSEs)have become a new research focus for all-solid-state batteries because of their significant safety advantages,high ionic conductivity,high-voltage stability,and good ductility.Nonetheless,stability issues are a key barrier to their practical application.In past reports,the analysis of halide electrolyte stability and its enhancement methods lacked relevance,which limited the design and optimization of halide solid electrolytes.This review focus on stability issues from a chemical,electrochemical,and interfacial point of view,with particular emphasis on the interaction of halide SSEs with anode and cathode interfaces.By focusing on innovative strategies to address the stability issue,this paper aims to further deepen the understanding and development of halide all-solid-state batteries by proposing to focus research efforts on improving their stability in order to address their inherent challenges and match higher voltage cathodes,paving the way for their wider application in the next generation of energy storage technologies. 展开更多
关键词 Halide solid electrolytes Ion transport mechanism Chemical stability Electrochemical stability Interface stability
在线阅读 下载PDF
A transient stability assessment method for power systems incorporating residual networks and BiGRU-attention
2
作者 Shan Cheng Qiping Xu +3 位作者 Haidong Wang Zihao Yu Rui Wang Tao Ran 《Global Energy Interconnection》 2025年第1期143-159,共17页
The traditional transient stability assessment(TSA)model for power systems has three disadvantages:capturing critical information during faults is difficult,aperiodic and oscillatory unstable conditions are not distin... The traditional transient stability assessment(TSA)model for power systems has three disadvantages:capturing critical information during faults is difficult,aperiodic and oscillatory unstable conditions are not distinguished,and poor generalizability is exhibited by systems with high renewable energy penetration.To address these issues,a novel ResGRU architecture for TSA is proposed in this study.First,a residual neural network(ResNet)is used for deep feature extraction of transient information.Second,a bidirectional gated recurrent unit combined with a multi-attention mechanism(BiGRU-Attention)is used to establish temporal feature dependencies.Their combination constitutes a TSA framework based on the ResGRU architecture.This method predicts three transient conditions:oscillatory instability,aperiodic instability,and stability.The model was trained offline using stochastic gradient descent with a thermal restart(SGDR)optimization algorithm in the offline training phase.This significantly improves the generalizability of the model.Finally,simulation tests on IEEE 145-bus and 39-bus systems confirmed that the proposed method has higher adaptability,accuracy,scalability,and rapidity than the conventional TSA approach.The proposed model also has superior robustness for PMU incomplete configurations,PMU noisy data,and packet loss. 展开更多
关键词 Transient stability assessment Aperiodic instability Oscillatory instability ResGRU SGDR
在线阅读 下载PDF
Landscape Stability Assessment and Simulation Analysis Under Urban Expansion:A Case Study of Hangzhou,China 被引量:1
3
作者 PEI Hui ZHANG Lin +4 位作者 ZHOU Minli NIE Wenbin ZHOU Shihao SHI Yan PAN Jianyun 《Chinese Geographical Science》 2025年第2期311-325,共15页
In recent years,rapid urbanization has had a profound impact on landscape stability.As a typical example of China's rapid urbanization,Hangzhou has also experienced significant landscape changes,which have profoun... In recent years,rapid urbanization has had a profound impact on landscape stability.As a typical example of China's rapid urbanization,Hangzhou has also experienced significant landscape changes,which have profoundly affected its ecological stability.Taking Hangzhou as an example,this study integrates land use change data from 1980 to 2020,combines dynamic simulation and ecological modeling techniques,and carries out a comprehensive analysis of historical trends and future predictions,to provide valuable insights into the complex interactions between urban expansion and landscape stability.The results indicate that:1)between 1980 and2020,Hangzhou experienced a significant increase in construction land at the expense of arable land,leading to a gradual decline in landscape stability,though the downward trend has slowed in recent years.2)The spatial distribution of landscape stability shows clear aggregation patterns,with lower stability concentrated in economically active flatlands and higher stability in the mountainous western regions.3)By 2040,further urban expansion is predicted to occur alongside increased landscape integration,reflecting the positive effects of ecological protection strategies.This study highlights the universal challenges of balancing economic growth with ecological stability in rapidly urbanizing regions.The combination of advanced simulation models and spatiotemporal analysis demonstrates a replicable framework for assessing urban expansion's ecological impacts.These findings underscore the importance of tailoring urban planning and ecological policies to address regional disparities,providing valuable insights for sustainable urban development and landscape management globally. 展开更多
关键词 landscape stability stability index Future Land Use Simulation(FLUS)model Hangzhou China
在线阅读 下载PDF
Stability and Stabilization of Sampled-Data Based LFC for Power Systems:A Data-Driven Method
4
作者 Yu-Long Fan Chuan-Ke Zhang Yong He 《IEEE/CAA Journal of Automatica Sinica》 2025年第1期291-293,共3页
Dear Editor,This letter is concerned with stability analysis and stabilization design for sampled-data based load frequency control(LFC) systems via a data-driven method. By describing the dynamic behavior of LFC syst... Dear Editor,This letter is concerned with stability analysis and stabilization design for sampled-data based load frequency control(LFC) systems via a data-driven method. By describing the dynamic behavior of LFC systems based on a data-based representation, a stability criterion is derived to obtain the admissible maximum sampling interval(MSI) for a given controller and a design condition of the PI-type controller is further developed to meet the required MSI. Finally, the effectiveness of the proposed methods is verified by a case study. 展开更多
关键词 sampling interval msi lfc systems stability analysis stability criterion design condition load frequency control lfc stabilization design
在线阅读 下载PDF
The H_(∞) Robust Stability and Performance Conditions for Uncertain Robot Manipulators
5
作者 Geun Il Song Hae Yeon Park Jung Hoon Kim 《IEEE/CAA Journal of Automatica Sinica》 2025年第1期270-272,共3页
Dear Editor,H_(∞)This letter develops a new framework for the robust stability and performance conditions as well as the relevant controller synthesis with respect to uncertain robot manipulators.There often exist mo... Dear Editor,H_(∞)This letter develops a new framework for the robust stability and performance conditions as well as the relevant controller synthesis with respect to uncertain robot manipulators.There often exist model uncertainties between the nominal model and the real robot manipulator and disturbances. Hence, dealing with their effects plays a crucial role in leading to high tracking performances, as discussed in [1]–[5]. 展开更多
关键词 robot manipulator robust stability performance conditions H performance conditions nominal model robot manipulatorsthere dealing their effects robust stability
在线阅读 下载PDF
Correction: Silencing of the long non-coding RNA LINC00265triggers autophagy and apoptosis in lung cancer by reducingprotein stability of SIN3A oncogene
6
作者 XIAOBI HUANG CHUNYUAN CHEN +9 位作者 YONGYANG CHEN HONGLIAN ZHOU YONGHUA CHEN ZHONG HUANG YULIU XIE BAIYANG LIU YUDONG GUO ZHIXIONG YANG GUANGHUA CHEN WENMEI SU 《Oncology Research》 2025年第5期1249-1250,共2页
In the article“Silencing of the long non-coding RNA LINC00265 triggers autophagy and apoptosis in lung cancer by reducing protein stability of SIN3A oncogene”(Oncology Research.2024,Vol.32,No.7,pp.1185–1195.doi:10.... In the article“Silencing of the long non-coding RNA LINC00265 triggers autophagy and apoptosis in lung cancer by reducing protein stability of SIN3A oncogene”(Oncology Research.2024,Vol.32,No.7,pp.1185–1195.doi:10.32604/or.2023.030771,https://www.techscience.com/or/v32n7/57163),an inadvertent error occurred during the compilation of Fig.3H.This needed corrections to ensure the accuracy and integrity of the data presented. 展开更多
关键词 lung cancer long non coding RNA reducing protein stability sin oncogene oncology AUTOPHAGY protein stability APOPTOSIS accuracy integrity SILENCING
暂未订购
Stability assessment of inverter-dominated power systems considering coupling between phase angle and voltage dynamics
7
作者 Cong Fu Shuiping Zhang +1 位作者 Shun Li Feng Liu 《iEnergy》 2025年第3期157-164,共8页
The integration of renewable energy sources(RESs)with inverter interfaces has fundamentally reshaped power system dynamics,challenging traditional stability analysis frameworks designed for synchronous generator-domin... The integration of renewable energy sources(RESs)with inverter interfaces has fundamentally reshaped power system dynamics,challenging traditional stability analysis frameworks designed for synchronous generator-dominated grids.Conventional classifica-tions,which decouple voltage,frequency,and rotor angle stability,fail to address the emerging strong voltage‒angle coupling effects caused by RES dynamics.This coupling introduces complex oscillation modes and undermines system robustness,neces-sitating novel stability assessment tools.Recent studies focus on eigenvalue distributions and damping redistribution but lack quantitative criteria and interpretative clarity for coupled stability.This work proposes a transient energy-based framework to resolve these gaps.By decomposing transient energy into subsystem-dissipated components and coupling-induced energy exchange,the method establishes stability criteria compatible with a broad variety of inverter-interfaced devices while offering an intuitive energy-based interpretation for engineers.The coupling strength is also quantified by defining the relative coupling strength index,which is directly related to the transient energy interpretation of the coupled stability.Angle‒voltage coupling may induce instability by injecting transient energy into the system,even if the individual phase angle and voltage dynamics themselves are stable.The main contributions include a systematic stability evaluation framework and an energy decomposition approach that bridges theoretical analysis with practical applicability,addressing the urgent need for tools for managing modern power system evolving stability challenges. 展开更多
关键词 Power system stability dynamic coupling inverter-interfaced device stability criteria phase angle dynamics voltage dynamics
在线阅读 下载PDF
Impact of Single-Phase Automatic Recloser of Critical Transmission Line on the Stability of the Power Transmission Network
8
作者 Chuulan Natsagdorj Ganbat Gantamir Erdenebileg Doljinsuren 《Journal of Power and Energy Engineering》 2025年第2期43-56,共14页
In order to increase the stability of the Mongolia power system, a single-phase automatic reclosing device (SPAR) was introduced on double-circuit power lines built with a size of 330 kV, operating on a voltage of 220... In order to increase the stability of the Mongolia power system, a single-phase automatic reclosing device (SPAR) was introduced on double-circuit power lines built with a size of 330 kV, operating on a voltage of 220 kV and a length of 250 km. These overhead power lines (L-213, L-214) connect the 220/110/35 kV “Songino” substation with the “Mandal” substation and form system networks. This paper presents the challenges encountered when implementing single-phase automatic reclosing (SPAR) devices and compares the changes in power system parameters before and after SPAR deployment for a long 220 kV line. Simulations and analyses were carried out using DIgSILENT PowerFactory software, focusing on rotor angle stability, and the overall impact on the power system during short-circuit faults. The evaluation also utilized measurement data from the Wide Area Monitoring System (WAMS) to compare system behavior pre- and post-implementation of SPAR. The findings reveal that SPAR significantly enhances system reliability and stability, effectively mitigating the risk of oscillations and stability loss triggered by short circuits. This improvement contributes to a more resilient power system, reducing the potential for disturbances caused by faults. 展开更多
关键词 Automatic Reclosing Single-Phase Automatic Reclosing Relay Protection Overhead Power Lines System stability Rotor Angle stability
在线阅读 下载PDF
Stability Analysis of a Floating Multirobot Coordinated Towing System Based on the Stability Cone Method
9
作者 Xiangtang Zhao Zhigang Zhao +1 位作者 Cheng Su Jiadong Meng 《哈尔滨工程大学学报(英文版)》 2025年第2期449-457,共9页
Currently,the cranes used at sea do not have enough flexibility,efficiency,and safety.Thus,this study proposed a floating multirobot coordinated towing system to meet the demands for offshore towing.Because of the fle... Currently,the cranes used at sea do not have enough flexibility,efficiency,and safety.Thus,this study proposed a floating multirobot coordinated towing system to meet the demands for offshore towing.Because of the flexibility of rope-driven robots,the one-way pulling characteristics of the rope,and the floating characteristics of the base,towing robots are easily overturned.First,the spatial configuration of the towing system was established according to the towing task,and the kinematic model of the towing system was established using the coordinate transformation.Then,the dynamic model of the towing system was established according to the rigid-body dynamics and hydrodynamic theory.Finally,the stability of the towing system was analyzed using the stability cone method.The simulation experiments provide a reference for the practical application of the floating multirobot coordinated towing system,which can improve the stability of towing systems by changing the configuration of the towing robot. 展开更多
关键词 Offshore towing Kinematic model Dynamic model stability cone method stability
在线阅读 下载PDF
Stability Frontiers and Mixed-Dimensional Physics in the Kagome Intermetallics Ln_(3)ScBi_(5)(Ln=La-Nd,Sm)
10
作者 Zhongchen Xu Wenbo Ma +5 位作者 Shijun Guo Ziyi Zhan Quansheng Wu Xianmin Zhang Xiuliang Yuan Youguo Shi 《Chinese Physics Letters》 2025年第10期194-211,共18页
Low-dimensional physics provides profound insights into strongly correlated interactions,leading to enhancedquantum effects and the emergence of exotic quantum states.The Ln_(3)ScBi_(5)family stands out as a chemicall... Low-dimensional physics provides profound insights into strongly correlated interactions,leading to enhancedquantum effects and the emergence of exotic quantum states.The Ln_(3)ScBi_(5)family stands out as a chemicallyversatile kagome platform with mixed low-dimensional structural framework and tunable physical properties.Ourresearch initiates with a comprehensive evaluation of the currently known Ln_(3)ScBi_(5)(Ln=La-Nd,Sm)materials,providing a robust methodology for assessing their stability frontiers within this system.Focusing on Pr_(3)ScBi_(5),we investigate the influence of the zigzag chains of quasi-one-dimensional(Q1D)motifs and the distorted kagomelayers of quasi-two-dimensional(Q2D)networks in the mixed-dimensional structure on the intricate magneticground states and unique spin fluctuations.Our study reveals that the noncollinear antiferromagnetic(AFM)moments of Pr^(3+)ions are confined within the Q2D kagome planes,displaying minimal in-plane anisotropy.Incontrast,a strong AFM coupling is observed within the Q1D zigzag chains,significantly constraining spin motion.Notably,magnetic frustration is partially a consequence of coupling to conduction electrons via Ruderman-Kittel-Kasuya-Yosida interaction,highlighting a promising framework for future investigations into mixed-dimensional frustration in Ln_(3)ScBi_(5) systems. 展开更多
关键词 strongly correlated interactionsleading mixed dimensional physics ln scbi low dimensional physics chemicallyversatile kagome platform assessing their stability frontiers withi stability frontiers enhancedquantum effects
原文传递
Investigation of flight stability for fixed canard dual-spin projectile via CFD/RBD coupled method
11
作者 Gang Wang Tengyue Zhang +2 位作者 Tianyu Lin Haizhen Lin Ke Xi 《Defence Technology(防务技术)》 2025年第11期1-18,共18页
In this paper,a high-fidelity computational fluid dynamics(CFD)and rigid body dynamics(RBD)coupled platform for virtual flight simulation is developed to investigate the flight stability of fixed canard dual-spin proj... In this paper,a high-fidelity computational fluid dynamics(CFD)and rigid body dynamics(RBD)coupled platform for virtual flight simulation is developed to investigate the flight stability of fixed canard dual-spin projectile.The platform's reliability is validated by reproducing the characteristic resonance instability of such projectiles.By coupling the solution of the Unsteady Reynolds-Averaged Navier-Stokes equations and the seven-degree-of-freedom RBD equations,the virtual flight simulations of fixed canard dual-spin projectiles at various curvature trajectories are achieved,and the dynamic mechanism of the trajectory following process is analyzed.The instability mechanism of the dynamic instability during trajectory following process of the fixed canard dual-spin projectile is elucidated by simulating the rolling/coning coupled forced motion,and subsequently validated through virtual flight simulations.The findings suggest that an appropriate yaw moment can drive the projectile axis to precession in the tangential direction of the trajectory,thereby enhancing the trajectory following stability.However,the damping of the projectile attains its minimum value when the forward body equilibrium rotational speed(-128 rad/s)is equal to the negative of the fast mode frequency of the projectile.Insufficient damping leads to the fixed canard dual-spin projectile exiting the dynamic stability domain during the trajectory following,resulting in weakly damped instability.Keeping the forward body not rotating or increasing the spin rates to-192 rad/s can enhance the projectile's damping,thereby improving its dynamic stability. 展开更多
关键词 Fixed canard dual-spin projectile CFD/RBD coupled method Virtualflight simulation Following stability Dynamic stability
在线阅读 下载PDF
Stability analysis of conformable fractional order systems
12
作者 Imed Basdouri Souad Kasmi Jean Lerbet 《Applied Mathematics(A Journal of Chinese Universities)》 2025年第3期752-762,共11页
In this paper, we study the stability of a class of conformable fractional-order systems using the Lyapunov function. We assume that the nonlinear part of the system satisfies the one-sided Lipschitz condition and the... In this paper, we study the stability of a class of conformable fractional-order systems using the Lyapunov function. We assume that the nonlinear part of the system satisfies the one-sided Lipschitz condition and the quadratic inner-bounded condition. We provide some sufficient conditions that ensure the asymptotic stability of the system. Furthermore, we present the construction of a feedback stabilizing controller for conformable fractional bilinear systems. 展开更多
关键词 conformable fractional exponential stability asymptotical stability one-sided Lipschitz
在线阅读 下载PDF
Quantitative Analysis of the Fatty Acid Compositions of Different Oils and Associations with Antioxidant Capacity and Oxidative Stability 被引量:1
13
作者 LIU Junchen SUN Xiaoman +3 位作者 ZHANG Huirong SHAO Haofan LING Xiao LI Li 《现代食品科技》 北大核心 2025年第4期305-315,共11页
Fatty acids are the main constituents of vegetable oils.To determine the fatty acid compositions of small trade vegetable oils and some less well studied beneficial vegetable oils,and investigate their relationships w... Fatty acids are the main constituents of vegetable oils.To determine the fatty acid compositions of small trade vegetable oils and some less well studied beneficial vegetable oils,and investigate their relationships with antioxidant activity and oxidative stability,gas chromatography-mass spectrometry was performed to characterize the associated fatty acid profiles.The antioxidant activity of vegetable oils,based on their DPPH-scavenging capacity(expressed as IC_(50) values),was used to assess their impact on human health,and their oxidative stability was characterized by performing lipid oxidation analysis to determine the oxidative induction time of fats and oils.In addition,correlation analyses were performed to examine associations between the fatty acid composition of the oils and DPPH-scavenging capacity and oxidative stability.The results revealed that among the assessed oils,coffee seed oil has the highest saturated fatty acid content(355.10 mg/g),whereas Garddenia jaminoides oil has the highest unsaturated fatty acid content(844.84 mg/g).Coffee seed oil was also found have the lowest DPPH IC_(50) value(2.30 mg/mL)and the longest oxidation induction time(17.09 h).Correlation analysis revealed a significant linear relationship(P<0.05)between oxidative stability and unsaturated fatty acid content,with lower contents tending to be associated with better oxidative stability.The findings of this study provide reference data for the screening of functional edible vegetable oils. 展开更多
关键词 gas chromatography-mass spectrometry vegetable oil fatty acid composition oxidative stability antioxidant capacity
在线阅读 下载PDF
Assessing ground stability of a vertical backfilled stope considering creep behaviors of surrounding rocks 被引量:2
14
作者 Ruofan Wang Lang Liu +4 位作者 Mengbo Zhu Huafu Qiu Bingbing Tu Huisheng Qu Hao Cui 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期187-199,共13页
Backfill is often employed in mining operations for ground support,with its positive impact on ground stability acknowledged in many underground mines.However,existing studies have predominantly focused only on the st... Backfill is often employed in mining operations for ground support,with its positive impact on ground stability acknowledged in many underground mines.However,existing studies have predominantly focused only on the stress development within the backfill material,leaving the influence of stope backfilling on stress distribution in surrounding rock mass and ground stability largely unexplored.Therefore,this paper presents numerical models in FLAC3D to investigate,for the first time,the time-dependent stress redistribution around a vertical backfilled stope and its implications on ground stability,considering the creep of surrounding rock mass.Using the Soft Soil constitutive model,the compressibility of backfill under large pressure was captured.It is found that the creep deformation of rock mass exercises compression on backfill and results in a less void ratio and increased modulus for fill material.The compacted backfill conversely influenced the stress distribution and ground stability of rock mass which was a combined effect of wall creep and compressibility of backfill.With the increase of time or/and creep deformation,the minimum principal stress in the rocks surrounding the backfilled stope increased towards the pre-mining stress state,while the deviatoric stress reduces leading to an increased factor of safety and improved ground stability.This improvement effect of backfill on ground stability increased with the increase of mine depth and stope height,while it is also more pronounced for the narrow stope,the backfill with a smaller compression index,and the soft rocks with a smaller viscosity coefficient.Furthermore,the results emphasize the importance of minimizing empty time and backfilling extracted stope as soon as possible for ground control.Reduction of filling gap height enhances the local stability around the roof of stope. 展开更多
关键词 Ground stability Time dependency CREEP Surrounding rocks Backfilled stope
在线阅读 下载PDF
Mini review:Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries 被引量:2
15
作者 Lingjiang Kou Yong Wang +5 位作者 Jiajia Song Taotao Ai Wenhu Li Mohammad Yeganeh Ghotbi Panya Wattanapaphawong Koji Kajiyoshi 《Chinese Chemical Letters》 2025年第1期214-224,共11页
As battery technology evolves and demand for efficient energy storage solutions,aqueous zinc ion batteries(AZIBs)have garnered significant attention due to their safety and environmental benefits.However,the stability... As battery technology evolves and demand for efficient energy storage solutions,aqueous zinc ion batteries(AZIBs)have garnered significant attention due to their safety and environmental benefits.However,the stability of cathode materials under high-voltage conditions remains a critical challenge in improving its energy density.This review systematically explores the failure mechanisms of high-voltage cathode materials in AZIBs,including hydrogen evolution reaction,phase transformation and dissolution phenomena.To address these challenges,we propose a range of advanced strategies aimed at improving the stability of cathode materials.These strategies include surface coating and doping techniques designed to fortify the surface properties and structure integrity of the cathode materials under high-voltage conditions.Additionally,we emphasize the importance of designing antioxidant electrolytes,with a focus on understanding and optimizing electrolyte decomposition mechanisms.The review also highlights the significance of modifying conductive agents and employing innovative separators to further enhance the stability of AZIBs.By integrating these cutting-edge approaches,this review anticipates substantial advancements in the stability of high-voltage cathode materials,paving the way for the broader application and development of AZIBs in energy storage. 展开更多
关键词 Aqueous zinc ion battery High-voltage cathode materials stability enhancement Failure mechanisms Electrolyte optimization
原文传递
Suppressing the oxygen-ionic conductivity and promoting the phase stability of the high-entropy rare earth niobates via Ta substitution 被引量:2
16
作者 Mengdi Gan Liping Lai +5 位作者 Jiankun Wang Jun Wang Lin Chen Jingjin He Jing Feng Xiaoyu Chong 《Journal of Materials Science & Technology》 2025年第6期79-94,共16页
Improving and optimizing the target properties of ceramics via the high entropy strategy has attracted significant attention.Rare earth niobate is a potential thermal barrier coating(TBCs)material,but its poor high-te... Improving and optimizing the target properties of ceramics via the high entropy strategy has attracted significant attention.Rare earth niobate is a potential thermal barrier coating(TBCs)material,but its poor high-temperature phase stability limits its further application.In this work,four sets of TBCs high-entropy ceramics,(Sm_(1/5)Dy_(1/5)Ho_(1/5)Er_(1/5)Yb_(1/5))(Nb_(1/2)Ta_(1/2))O_(4)(5NbTa),(Sm_(1/6)Dy_(1/6)Ho_(1/6)Er_(1/6)Yb_(1/6)Lu_(1/6))(Nb_(1/2)Ta_(1/2))O_(4)(6NbTa),(Sm_(1/7)Gd_(1/7)Dy_(1/7)Ho_(1/7)Er_(1/7)Yb_(1/7)Lu_(1/7))(Nb_(1/2)Ta_(1/2))O_(4)(7NbTa),(Sm_(1/8)Gd_(1/8)Dy_(1/8)Ho_(1/8)Er_(1/8)Tm_(1/8)Yb_(1/8)Lu_(1/8))(Nb_(1/2)Ta_(1/2))O_(4)(8NbTa)are synthesized using a solid-state reaction method at 1650℃for 6 h.Firstly,the X-ray diffractometer(XRD)patterns display that the samples are all single-phase solid solution structures(space group C 2/c).Differential scanning calorimetry(DSC)and the high-temperature XRD of 8NbTa cross-check that the addition of Ta element in 8HERN increases the phase transition temperature above 1400℃,which can be attributed to that the Ta/Nb co-doping at B site introduces the fluctuation of the bond strength of Ta-O and Nb-O.Secondly,compared to high-entropy rare-earth niobates,the introduction of Ta atoms at B site substantially reduce thermal conductivity(re-duced by 44%,800℃)with the seven components high entropy ceramic as an example.The low thermal conductivity means strong phonon scattering,which may originate from the softening acoustic mode and flattened phonon dispersion in 5–8 principal element high entropy rare earth niobium tantalates(5–8NbTa)revealed by the first-principles calculations.Thirdly,the Ta/Nb co-doping in 5–8NbTa systems can further optimize the insulation performance of oxygen ions.The oxygen-ion conductivity of 8NbTa(3.31×10^(−6)S cm^(−1),900℃)is about 5 times lower than that of 8HERN(15.8×10^(−6)S cm^(−1),900℃)because of the sluggish diffusion effect,providing better oxygen barrier capacity in 5–8NbTa systems to inhibit the overgrowth of the thermal growth oxide(TGO)of TBCs.In addition,influenced by lattice dis-tortion and solid solution strengthening,the samples possess higher hardness(7.51–8.15 GPa)and TECs(9.78×10^(−6)K−1^(-1)0.78×10^(−6)K^(−1),1500℃)than the single rare-earth niobates and tantalates.Based on their excellent overall properties,it is considered that 5–8NbTa can be used as auspicious TBCs. 展开更多
关键词 Thermal barrier coating(TBCs) High-entropy rare earth oxides(HEOs) High-temperature phase stability Oxygen-ionic conductivity Thermal conductivity
原文传递
Improve Strategy for Transient Power Angle Stability Control of VSG Combining Frequency Difference Feedback and Virtual Impedance 被引量:2
17
作者 Dianlang Wang Qi Yin +3 位作者 Haifeng Wang Jing Chen Hong Miao Yihan Chen 《Energy Engineering》 2025年第2期651-666,共16页
As the penetration rate of distributed energy increases,the transient power angle stability problem of the virtual synchronous generator(VSG)has gradually become prominent.In view of the situation that the grid impeda... As the penetration rate of distributed energy increases,the transient power angle stability problem of the virtual synchronous generator(VSG)has gradually become prominent.In view of the situation that the grid impedance ratio(R/X)is high and affects the transient power angle stability of VSG,this paper proposes a VSG transient power angle stability control strategy based on the combination of frequency difference feedback and virtual impedance.To improve the transient power angle stability of the VSG,a virtual impedance is adopted in the voltage loop to adjust the impedance ratio R/X;and the PI control feedback of the VSG frequency difference is introduced in the reactive powervoltage link of theVSGto enhance the damping effect.Thesecond-orderVSGdynamic nonlinearmodel considering the reactive power-voltage loop is established and the influence of different proportional integral(PI)control parameters on the system balance stability is analyzed.Moreover,the impact of the impedance ratio R/X on the transient power angle stability is presented using the equal area criterion.In the simulations,during the voltage dips with the reduction of R/X from 1.6 to 0.8,Δδ_(1)is reduced from 0.194 rad to 0.072 rad,Δf_(1)is reduced from 0.170 to 0.093 Hz,which shows better transient power angle stability.Simulation results verify that compared with traditional VSG,the proposedmethod can effectively improve the transient power angle stability of the system. 展开更多
关键词 Transient synchronous stability virtual synchronous generator impedance ratio
在线阅读 下载PDF
Film thickness effect on 2D lead-free hybrid double perovskite properties: Band gap, photocurrent and stability 被引量:1
18
作者 Mohamed Saber Lassoued Faizan Ahmad Yanzhen Zheng 《Chinese Chemical Letters》 2025年第4期449-454,共6页
Lead-free hybrid double perovskites(LFHDPs) have received a lot of attention due to their environmental friendliness and promising attributes. However, studying the effect of film thickness on LFHDPs optoelectronic pr... Lead-free hybrid double perovskites(LFHDPs) have received a lot of attention due to their environmental friendliness and promising attributes. However, studying the effect of film thickness on LFHDPs optoelectronic properties has not yet been investigated. Herein, we synthesized two new Ruddlesden–Popper LFHDPs, namely(C_(5)H_(12)N)_(4)AgBiI_(8)(CAB-1) and(C_(6)H_(14)N)_(4)Ag Bi I8(CAB-2) using cyclopentylamine and cyclohexylamine as monoamine ligands. Indeed, these two Ag(Ⅰ)-Bi(Ⅲ) LFHDPs form smooth and uniform films ranging in thickness from 250 nm to 1 μm, with preferred orientations. Notably, the studies on the optical properties showed that the direct band gap value decreased from 2.17 e V to 1.91 e V for CAB-1 and from 2.05 e V to 1.86 e V for CAB-2 with increasing thickness. Accordingly, photo-current response using a xenon lamp revealed a significant difference of over 1000 n A between light and dark conditions for1 μm-thickness films, suggesting potential for light harvesting. Other than that, thicker films of CAB-1and CAB-2 exhibit high stability for 90 days in a relatively humid environment(RH of 55%), paving the way for promising optoelectronic applications. 展开更多
关键词 LEAD-FREE Double perovskites Film thickness Photocurrent response High stability
原文传递
Densification,microstructure,mechanical properties,and thermal stability of high-strength Ti-modified Al-Si-Mg-Zr aluminum alloy fabricated by laser-powder bed fusion 被引量:1
19
作者 Yaoxiang Geng Zhifa Shan +2 位作者 Jiaming Zhang Tianshuo Wei Zhijie Zhang 《International Journal of Minerals,Metallurgy and Materials》 2025年第10期2547-2559,共13页
Micrometer-sized,irregularly shaped Ti particles(0.5wt%and 1.0wt%)were mixed with an Al-Si-Mg-Zr matrix powder,and a novel Ti-modified Al-Si-Mg-Zr aluminum alloy was subsequently fabricated via laser-powder bed fusion... Micrometer-sized,irregularly shaped Ti particles(0.5wt%and 1.0wt%)were mixed with an Al-Si-Mg-Zr matrix powder,and a novel Ti-modified Al-Si-Mg-Zr aluminum alloy was subsequently fabricated via laser-powder bed fusion(L-PBF).The results demonstrated that the introduction of Ti particles promoted the formation of near-fully equiaxed grains in the alloy owing to the strong grain refinement of the primary(Al,Si)3(Ti,Zr)nanoparticles.Furthermore,the presence of(Al,Si)3(Ti,Zr)nanoparticles inhibited the decomposition of Si-rich cell boundaries and the precipitation of Si nanoparticles in theα-Al cells.The ultimate tensile strength(UTS),yield strength(YS),and elongation of the asbuilt 0.5wt%Ti(0.5Ti)alloy were(468±11),(350±1)MPa,and(10.0±1.4)%,respectively,which are comparable to those of the L-PBF Al-Si-Mg-Zr matrix alloy and significantly higher than those of traditional L-PBF Al-Si-Mg alloys.After direct aging treatment at 150°C,the precipitation of secondary nanoparticles notably enhanced the strength of the 0.5Ti alloy.Specifically,the 0.5Ti alloy achieved a maximum UTS of(479±11)MPa and YS of(376±10)MPa.At 250°C,the YS of the L-PBF Ti/Al-Si-Mg-Zr alloy was higher than that of the L-PBF Al-Si-Mg-Zr matrix alloy due to the retention of Si-rich cell boundaries,indicating a higher thermal stability.As the aging temperature was increased to 300°C,the dissolution of Si-rich cell boundaries,desolvation of solid-solution elements,and coarsening of nanoprecipitates led to a decrease in the UTS and YS of the alloy to below 300 and 200 MPa,respectively.However,the elongation increased significantly. 展开更多
关键词 laser-powder bed fusion Ti-modified Al-Si-Mg-Zr alloy MICROSTRUCTURE mechanical property thermal stability
在线阅读 下载PDF
Structure factors dictate the ionic conductivity and chemical stability for cubic garnet-based solid-state electrolyte 被引量:1
20
作者 Jingyu Shi Xiaofeng Wu +7 位作者 Yutong Chen Yi Zhang Xiangyan Hou Ruike Lv Junwei Liu Mengpei Jiang Keke Huang Shouhua Feng 《Chinese Chemical Letters》 2025年第5期198-210,共13页
Solid-state electrolytes(SSEs),as the core component within the next generation of key energy storage technologies-solid-state lithium batteries(SSLBs)-are significantly leading the development of future energy storag... Solid-state electrolytes(SSEs),as the core component within the next generation of key energy storage technologies-solid-state lithium batteries(SSLBs)-are significantly leading the development of future energy storage systems.Among the numerous types of SSEs,inorganic oxide garnet-structured superionic conductors Li7La3Zr2O12(LLZO)crystallized with the cubic Iaˉ3d space group have received considerable attention owing to their highly advantageous intrinsic properties encompassing reasonable lithium-ion conductivity,wide electrochemical voltage window,high shear modulus,and excellent chemical stability with electrodes.However,no SSEs possess all the properties necessary for SSLBs,thus both the ionic conductivity at room temperature and stability in ambient air regarding cubic garnet-based electrolytes are still subject to further improvement.Hence,this review comprehensively covers the nine key structural factors affecting the ion conductivity of garnet-based electrolytes comprising Li concentration,Li vacancy concentration,Li carrier concentration and mobility,Li occupancy at available sites,lattice constant,triangle bottleneck size,oxygen vacancy defects,and Li-O bonding interactions.Furthermore,the general illustration of structures and fundamental features being crucial to chemical stability is examined,including Li concentration,Li-site occupation behavior,and Li-O bonding interactions.Insights into the composition-structure-property relations among cubic garnet-based oxide ionic conductors from the perspective of their crystal structures,revealing the potential compatibility conflicts between ionic transportation and chemical stability resulting from Li-O bonding interactions.We believe that this review will lay the foundation for future reasonable structural design of oxide-based or even other types of superionic conductors,thus assisting in promoting the rapid development of alternative green and sustainable technologies. 展开更多
关键词 Garnet-structured solid-state electrolyte Structure factors Ionic conductivity Chemical stability Li-ion battery
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部