Diatomic metasurfaces designed for interferometric mechanisms possess significant potential for the multidimensional manipulation of electromagnetic waves,including control over amplitude,phase,frequency,and polarizat...Diatomic metasurfaces designed for interferometric mechanisms possess significant potential for the multidimensional manipulation of electromagnetic waves,including control over amplitude,phase,frequency,and polarization.Geometric phase profiles with spin-selective properties are commonly associated with wavefront modulation,allowing the implementation of conjugate strategies within orthogonal circularly polarized channels.Simultaneous control of these characteristics in a single-layered diatomic metasurface will be an apparent technological extension.Here,spin-selective modulation of terahertz(THz)beams is realized by assembling a pair of meta-atoms with birefringent effects.The distinct modulation functions arise from geometric phase profiles characterized by multiple rotational properties,which introduce independent parametric factors that elucidate their physical significance.By arranging the key parameters,the proposed design strategy can be employed to realize independent amplitude and phase manipulation.A series of THz metasurface samples with specific modulation functions are characterized,experimentally demonstrating the accuracy of on-demand manipulation.This research paves the way for all-silicon meta-optics that may have great potential in imaging,sensing and detection.展开更多
Owing to their charge-free property,magnons are highly promising for achieving dissipationless transport without Joule heating,and are thus potentially applicable to energy-efficient devices.Here,we investigate valley...Owing to their charge-free property,magnons are highly promising for achieving dissipationless transport without Joule heating,and are thus potentially applicable to energy-efficient devices.Here,we investigate valley magnons and associated valley modulations in a kagome ferromagnetic lattice with staggered exchange interaction and Dzyaloshinskii-Moriya interaction.The staggered exchange interaction breaks the spatial inversion symmetry,leading to a valley magnon Hall effect.With nonzero Dzyaloshinskii-Moriya interaction in a staggered kagome lattice,the magnon Hall effect can be observed from only one valley.Moreover,reversing the Dzyaloshinskii-Moriya interaction(D→-D)and exchanging J_(1)and J_(2)(J_(1)■J_(2))can also regulate the position of the unequal valleys.With increasing Dzyaloshinskii-Moriya interaction,a series of topological phase transitions appear when two bands come to touch and split at the valleys.The valley Hall effect and topological phase transitions observed in kagome magnon lattices can be realized in thin films of insulating ferromagnets such as Lu_(2)V_(2)O_(7),and will extend the basis for magnonics applications in the future.展开更多
A four-level quantum dot (QD) nanostructure interacting with four fields (two weak near-infrared (NIR) pulses and two control fields) forms the well-known double-cascade configuration.We investigate the cross-phase mo...A four-level quantum dot (QD) nanostructure interacting with four fields (two weak near-infrared (NIR) pulses and two control fields) forms the well-known double-cascade configuration.We investigate the cross-phase modulation (XPM) between the two NIR pulses.The results show,in such a closed-loop scheme,that the XPM can be greatly enhanced,while the linear absorption and two-photon absorption (gain) can be efficiently depressed by tuning the relative phase among the applied fields.This protocol may have potential applications in NIR all-optical switch design and quantum information processing with the solid-state materials.展开更多
This paper investigates the effects of walk-off among optical pulses on cross-phase modulation induced modulation instability in the normal dispersion region of an optical fibre with high-order dispersion. The results...This paper investigates the effects of walk-off among optical pulses on cross-phase modulation induced modulation instability in the normal dispersion region of an optical fibre with high-order dispersion. The results indicate that, in the case of high-order dispersion, the walk-off effect takes on new characteristics and will influence considerably the shape, position and especially the number of the spectral regions of the gain spectra of modulation instability. Not only the group-velocity mismatch, but also the difference of the third-order dispersion of two optical waves will alter the gain spectra of modulation instability but in different ways. Depending on the values of the walk-off parameters, the number of the spectral regions may increase from two to at most four, and the spectral shape and position may change too.展开更多
For distributed fiber Raman amplifiers(DFRAs), stimulated Brillouin scattering(SBS) can deplete the pump once occurring and consequently generate gain saturation. On the basis of such a theory, theoretical gain sa...For distributed fiber Raman amplifiers(DFRAs), stimulated Brillouin scattering(SBS) can deplete the pump once occurring and consequently generate gain saturation. On the basis of such a theory, theoretical gain saturation powers in DFRAs with various pump schemes are obtained by calculating SBS thresholds in them, and the experimental results show that they are in excellent agreement with the calculation results. The saturation power of the DFRA with a 300 m W forward pump is as low as 0 d Bm, which needs to be enhanced by phase modulation, and the effect is quantitatively studied. A simple model taking both modulation frequency and index into consideration is presented by introducing a correction factor to evaluate the effect of phase modulation on the enhancement of saturation power. Experimentally, it is shown that such a correction factor decreases as the modulation frequency increases and approaches zero when the modulation frequency becomes high enough. In particular, a phase modulation with a modulation frequency of 100 MHz and a modulation index of 1.380 can enhance the saturation power by 4.44 d B, and the correction factor is 0.25 d B, in which the modulation frequency is high enough. Additionally, the factor is 1.767 d B for the modulation frequency of 25 MHz. On this basis,phase modulations with various indexes and a fixed frequency of 25 MHz are adopted to verify the modified model, and the results are positive. To obtain the highest gain saturation power, the model is referable. The research results provide a guide for the design of practical DFRAs.展开更多
We develop a hybrid scheme of cross phase modulation based on electromagnetically induced transparency(EIT)and active Raman gain(ARG)in a multi-level atomic medium.The cross phase modulation,with low loss and without ...We develop a hybrid scheme of cross phase modulation based on electromagnetically induced transparency(EIT)and active Raman gain(ARG)in a multi-level atomic medium.The cross phase modulation,with low loss and without noise,is demonstrated in a room-temperature ^(85)Rb vapor.We show that a p radian nonlinear Kerr phase shift of the signal light relative to a reference light is observed when the signal light is modulated by the phase control field with the low light intensity.We also show that the linear and the third-order absorption can be eliminated via the Raman gain,and the phase noise of the signal light can be ignored when the phase control light is applied in this hybrid scheme.展开更多
Maintaining the s-polarization state of laser beams is important to achieve high modulation depth in a laser-interference-based super-resolution structured illumination microscope(SR-SIM).However,the imperfect optical...Maintaining the s-polarization state of laser beams is important to achieve high modulation depth in a laser-interference-based super-resolution structured illumination microscope(SR-SIM).However,the imperfect optical components can depolarize the laser beams hence degenerating the modulation depth.Here,we first presented a direct measurement method designed to estimate the modulation depth more precisely by shifting illumination patterns with equal phase steps.This measurement method greatly reduces the dependence of modulation depths on the samples,and then developed a polarization optimization method to achieve high modulation depth at all orientations by actively and quantitatively compensating for the additional phase difference using a combination of waveplate and a liquid crystal variable retarder(LCVR).Experimental results demonstrate that our method can achieve illumination patterns with modulation depth higher than 0.94 at three orientations with only one LCVR voltage,which enables isotropic resolution improvement.展开更多
Designing novel two-dimensional structures and precisely modulating their second harmonic generation(SHG)attributes are key to advancing nonlinear photonic technologies.In this work,through first-principles calculatio...Designing novel two-dimensional structures and precisely modulating their second harmonic generation(SHG)attributes are key to advancing nonlinear photonic technologies.In this work,through first-principles calculations,we propose a novel tetrahedral phase of transition metal dichalcogenides(TMDs)and validate its structural feasibility in a family of compounds,i.e.,ZX_(2)(Z=Ti,Zr,Hf;X=S,Se,Te).Cohesive energy and phonon dispersion calculations further demonstrate that eight of nine possible ZX_(2)monolayers are dynamically stable.All the ZX_(2)monolayers exhibit pronounced out-of-plane SHG with nonlinear susceptibility components reaching the order of 10^(2)pm/V.Strain engineering imposes a profound influence on the SHG response of ZX_(2)monolayers by reducing symmetry and modifying nonlinear susceptibility components.The redshift and significant enhancement of the prominent peak in SHG spectra are also revealed due to strain-induced charge redistribution and band gap reduction.Intriguingly,strain-driven nonlinear optical switching effects are realized in the ZX_(2)monolayers,with a reversible switching of SHG component ordering under tensile and compressive strain.In such a case,the anisotropic SHG pattern transforms from fourfold to twofold symmetry under the strain.Our work demonstrates the efficacy of strain engineering in precisely enhancing SHG,paving the way for the integration of novel TMD structures into tunable and flexible nonlinear optical devices.展开更多
This paper uses an innovative improved artificial bee colony(IABC)algorithm to aid in the fabrication of a highly responsive phasemodulation surface plasmon resonance(SPR)biosensor.In this biosensor’s sensing structu...This paper uses an innovative improved artificial bee colony(IABC)algorithm to aid in the fabrication of a highly responsive phasemodulation surface plasmon resonance(SPR)biosensor.In this biosensor’s sensing structure,a double-layer Ag-Au metal film is combined with a blue phosphorene/transition metal dichalcogenide(BlueP/TMDC)hybrid structure and graphene.In the optimization function of the IABC method,the reflectivity at resonance angle is incorporated as a constraint to achieve high phase sensitivity.The performance of the Ag-Au-BlueP/TMDC-graphene heterostructure as optimized by the IABC method is compared with that of a similar structure optimized using the traditional ABC algorithm.The results indicate that optimization using the IABC method gives significantly more phase sensitivity,together with lower reflectivity,than can be achieved with the traditional ABC method.The highest phase sensitivity of 3.662×10^(6) °/RIU is achieved with a bilayer of BlueP/WS2 and three layers of graphene.Moreover,analysis of the electric field distribution demonstrates that the optimal arrangement can be utilized for enhanced detection of small biomolecules.Thus,given the exceptional sensitivity achieved,the proposed method based on the IABC algorithm has great promise for use in the design of high-performance SPR biosensors with a variety of multilayer structures.展开更多
Exploring efficient transition-metal-based electrocatalysts is critical for the wide application of electrochemical hydrogen generation technology.Although the phase displays prominent influence on their performance,i...Exploring efficient transition-metal-based electrocatalysts is critical for the wide application of electrochemical hydrogen generation technology.Although the phase displays prominent influence on their performance,it remains a major challenge to achieve phase regulation in the same synthesis method and elucidate the intrinsic relationship between the phase and activity.Herein,we developed a sulfur induced electrodeposition strategy to achieve the precise phase regulation of nickel-based materials from Ni(OH)_(2)to Ni and Ni_(3)S_(2).S atoms can be introduced into Ni and Ni(OH)_(2)due to sulfur inducement,and the S proportion is finely controlled via changing the deposition parameters.Importantly,the obtained S-Ni catalyst displays enhanced hydrogen evolution activity with an ultralow overpotential of 27 mV at 10 mA cm^(-2),which is superior to the S-Ni(OH)_(2),Ni_(3)S_(2),and even Pt/C.Density functional theory(DFT)calculations disclose the S-Ni catalyst exhibits optimal charge state and local coordination,remarkably optimizing the water adsorption and Ni-H^(*)binding energy.This work provides new insights into phase regulation in electrodeposition and an understanding of the intrinsic relationship between phase and activity.展开更多
The approximate analytical frequency chirps and the critical distances for cross-phase modulation induced optical wave breaking(OWB) of the initial hyperbolic-secant optical pulses propagating in optical fibers with q...The approximate analytical frequency chirps and the critical distances for cross-phase modulation induced optical wave breaking(OWB) of the initial hyperbolic-secant optical pulses propagating in optical fibers with quintic nonlinearity(QN) are presented. The pulse evolutions in terms of the frequency chirps, shapes and spectra are numerically calculated in the normal dispersion regime. The results reveal that, depending on different QN parameters, the traditional OWB or soliton or soliton pulse trains may occur. The approximate analytical critical distances are found to be in good agreement with the numerical ones only for the traditional OWB whereas the approximate analytical frequency chirps accords well with the numerical ones at the initial evolution stages of the pulses.展开更多
The rapid development in the aerospace industry requires the service performance of high-strength and heat-resistant bearing steel,especially in terms of strength and ductility synergy.A modified CSS-42L steel was obt...The rapid development in the aerospace industry requires the service performance of high-strength and heat-resistant bearing steel,especially in terms of strength and ductility synergy.A modified CSS-42L steel was obtained by multicomponent modulation,and an exceptional strength and ductility synergy of the alloy was attained through the adjusted tempering treatment.The tensile strength of 1986 MPa,the yield strength of 1622 MPa,and the uniform elongation of more than 17% were attained in the specimen tempered at 540℃,being superior to the mechanical properties of many previously reported alloys.Such superior performance originates from the generation of the high-density intermetallic compound Laves-Fe2Mo,the reduction of the larger M6C phase,and the formation of film-like reverse austenite.As a result,the strong interaction between the high-density dislocations of the matrix and the nanoprecipitates dominates the deformation microstructures of the specimen,strengthening the alloy.Meanwhile,the reverse austenite effectively inhibits premature crack initiation and localized stresses,increasing the uniform elongation.展开更多
Fractional-N phase-locked loops(PLLs)are widely deployed in high-speed communication systems to generate local oscillator(LO)or clock signals with precise frequency.To support sophisticated modulations for increasing ...Fractional-N phase-locked loops(PLLs)are widely deployed in high-speed communication systems to generate local oscillator(LO)or clock signals with precise frequency.To support sophisticated modulations for increasing the data rate,the PLL needs to generate low-jitter output[1].展开更多
Utilizing the linear-stability analysis, this paper analytically investigates and calculates the condition and gain spectra of cross-phase modulation instability in optical fibres in the ease of exponential saturable ...Utilizing the linear-stability analysis, this paper analytically investigates and calculates the condition and gain spectra of cross-phase modulation instability in optical fibres in the ease of exponential saturable nonlinearity and high-order dispersion. The results show that, the modulation instability characteristics here are similar to those of conventional saturable nonlinearity and Kerr nonlinearity. That is to say, when the fourth-order dispersion has the same sign as that of the second-order one, a new gain spectral region called the second one which is far away from the zero point may appear. The existence of the exponential saturable nonlinearity will make the spectral width as well as the peak gain of every spectral region increase with the input powers before decrease. Namely, for every spectral regime, this may lead to a unique value of peak gain and spectral width for two different input powers. In comparison with the case of conventional saturable nonlinearity, however, when the other parameters are the same, the variations of the spectral width and the peak gain with the input powers will be faster in case of exponential saturable nonlinearity.展开更多
A nonparametric Bayesian method is presented to classify the MPSK (M-ary phase shift keying) signals. The MPSK signals with unknown signal noise ratios (SNRs) are modeled as a Gaussian mixture model with unknown m...A nonparametric Bayesian method is presented to classify the MPSK (M-ary phase shift keying) signals. The MPSK signals with unknown signal noise ratios (SNRs) are modeled as a Gaussian mixture model with unknown means and covariances in the constellation plane, and a clustering method is proposed to estimate the probability density of the MPSK signals. The method is based on the nonparametric Bayesian inference, which introduces the Dirichlet process as the prior probability of the mixture coefficient, and applies a normal inverse Wishart (NIW) distribution as the prior probability of the unknown mean and covariance. Then, according to the received signals, the parameters are adjusted by the Monte Carlo Markov chain (MCMC) random sampling algorithm. By iterations, the density estimation of the MPSK signals can be estimated. Simulation results show that the correct recognition ratio of 2/4/8PSK is greater than 95% under the condition that SNR 〉5 dB and 1 600 symbols are used in this method.展开更多
In this paper, we investigated phase modulation-based computational ghost imaging. According to the results of numerical simulations, we found that the range of the random phase affects the quality of the reconstructe...In this paper, we investigated phase modulation-based computational ghost imaging. According to the results of numerical simulations, we found that the range of the random phase affects the quality of the reconstructed image. Besides,compared with those amplitude modulation-based computational ghost imaging schemes, introducing random phase modulation into the computational ghost imaging scheme could significantly improve the spatial resolution of the reconstructed image, and also extend the field of view.展开更多
High-entropy alloys (HEAs) usually contain more than five alloying elements. The ductility of a body-centered cubic (bcc)- type HEA typically is lower than that of their face-centered cubic (fcc) counterpart. An...High-entropy alloys (HEAs) usually contain more than five alloying elements. The ductility of a body-centered cubic (bcc)- type HEA typically is lower than that of their face-centered cubic (fcc) counterpart. And low ductility restricts engineering applications of the bcc-structured HEAs. In engineering materials, improvement in ductility usually results in deduction of mechanical strength. A method to improve both mechanical strength and ductility in a bcc-structured HEA was proposed by adding interstitial carbon. Experimental results showed that replacement of 5 at.% Cr with 5 at.% C in a bcc-structured Fe35Mn25Al15Cr10Ni15 HEA resulted in an increase in fcc phase from 0.3 to 93.7 vol.%. Strength and ductility increased at the same time. The transition of bcc-structure to fcc-structure along with a remaining small amount of bcc phase improved mechanical properties. This work indicates that interstitial carbon can be employed to modulate the fraction of constituent phases in a bcc-structured HEA to enhance engineering mechanical properties.展开更多
The electrochemical CO_(2) reduction(ECR)into value-added products presents an appealing approach to mitigate CO_(2) emission caused by excess consumption of fossil fuels.To obtain high catalytic activity and selectiv...The electrochemical CO_(2) reduction(ECR)into value-added products presents an appealing approach to mitigate CO_(2) emission caused by excess consumption of fossil fuels.To obtain high catalytic activity and selectivity toward target product in ECR,designing and developing a stable and efficient electrocatalyst is of significant importance.To date,metal nanomaterials have been widely applied as electrocatalysts for ECR due to their unique physicochemical properties.The structural modulation of metal nanomaterials is an attractive strategy to improve the catalytic performance.In this review,the recent progress of structural modulation,including size,facet,grain boundary,composition,interface,ligand modification,and crystal phase,is systematically summarized from both theoretical and experimental aspects.Finally,the opportunities and perspectives of structural modulation of metal nanomaterials for ECR are proposed.展开更多
Recently,a Rydberg atom-based mixer was developed to measure the phase of a radio frequency(RF)field.The phase of the signal RF(SIG RF)field is down-converted directly to the phase of a beat signal created by the pres...Recently,a Rydberg atom-based mixer was developed to measure the phase of a radio frequency(RF)field.The phase of the signal RF(SIG RF)field is down-converted directly to the phase of a beat signal created by the presence of a local RF(LO RF)field.In this study,we propose that the Rydberg atom-based mixer can be converted to an all-optical phase detector by amplitude modulation(AM)of the LO RF field;that is,the phase of the SIG RF field is related to both the amplitude and phase of the beat signal.When the AM frequency of the LO RF field is the same as the frequency of the beat signal,the beat signal will further interfere with the AM of the LO RF field inside the atom,and then the amplitude of the beat signal is related to the phase of the SIG RF field.The amplitude of the beat signal and the phase of the SIG RF field show a linear relationship within the range of 0 toπ/2 when the phase of the AM is set with a differenceπ/4 from the phase of the LO RF field.The minimum phase resolution can be as small as 0.6°by optimizing the experimental conditions according to a simple theoretical model.This study will expand and contribute to the development of RF measurement devices based on Rydberg atoms.展开更多
基金supports from National Key Research and Development Program of China(2021YFB2800703)Sichuan Province Science and Technology Support Program(25QNJJ2419)+1 种基金National Natural Science Foundation of China(U22A2008,12404484)Laoshan Laboratory Science and Technology Innovation Project(LSKJ202200801).
文摘Diatomic metasurfaces designed for interferometric mechanisms possess significant potential for the multidimensional manipulation of electromagnetic waves,including control over amplitude,phase,frequency,and polarization.Geometric phase profiles with spin-selective properties are commonly associated with wavefront modulation,allowing the implementation of conjugate strategies within orthogonal circularly polarized channels.Simultaneous control of these characteristics in a single-layered diatomic metasurface will be an apparent technological extension.Here,spin-selective modulation of terahertz(THz)beams is realized by assembling a pair of meta-atoms with birefringent effects.The distinct modulation functions arise from geometric phase profiles characterized by multiple rotational properties,which introduce independent parametric factors that elucidate their physical significance.By arranging the key parameters,the proposed design strategy can be employed to realize independent amplitude and phase manipulation.A series of THz metasurface samples with specific modulation functions are characterized,experimentally demonstrating the accuracy of on-demand manipulation.This research paves the way for all-silicon meta-optics that may have great potential in imaging,sensing and detection.
基金support from the Funding for School-level Research Projects of Yancheng Institute of Technology(Grant Nos.xjr2020038,xjr2022039,and xjr2022040)。
文摘Owing to their charge-free property,magnons are highly promising for achieving dissipationless transport without Joule heating,and are thus potentially applicable to energy-efficient devices.Here,we investigate valley magnons and associated valley modulations in a kagome ferromagnetic lattice with staggered exchange interaction and Dzyaloshinskii-Moriya interaction.The staggered exchange interaction breaks the spatial inversion symmetry,leading to a valley magnon Hall effect.With nonzero Dzyaloshinskii-Moriya interaction in a staggered kagome lattice,the magnon Hall effect can be observed from only one valley.Moreover,reversing the Dzyaloshinskii-Moriya interaction(D→-D)and exchanging J_(1)and J_(2)(J_(1)■J_(2))can also regulate the position of the unequal valleys.With increasing Dzyaloshinskii-Moriya interaction,a series of topological phase transitions appear when two bands come to touch and split at the valleys.The valley Hall effect and topological phase transitions observed in kagome magnon lattices can be realized in thin films of insulating ferromagnets such as Lu_(2)V_(2)O_(7),and will extend the basis for magnonics applications in the future.
基金Supported in part by the National Natural Science Foundation of China Grant Nos.10975054,60925021,11104210,and 61108016the Department of Education of China Grant No.200804870051
文摘A four-level quantum dot (QD) nanostructure interacting with four fields (two weak near-infrared (NIR) pulses and two control fields) forms the well-known double-cascade configuration.We investigate the cross-phase modulation (XPM) between the two NIR pulses.The results show,in such a closed-loop scheme,that the XPM can be greatly enhanced,while the linear absorption and two-photon absorption (gain) can be efficiently depressed by tuning the relative phase among the applied fields.This protocol may have potential applications in NIR all-optical switch design and quantum information processing with the solid-state materials.
基金Project supported by the Fundamental Application Research Project of the Department of Science & Technology of Sichuan Province (Grant Nos 05JY029-084 and 04JY029-103), the Key Program of Natural Science Foundation of Educational Commission of Sichuan Province (Grant No 2006A124), and the Foundation of Science & Technology Development of Chengdu University of Information Technology (Grant No KYTZ20060604).
文摘This paper investigates the effects of walk-off among optical pulses on cross-phase modulation induced modulation instability in the normal dispersion region of an optical fibre with high-order dispersion. The results indicate that, in the case of high-order dispersion, the walk-off effect takes on new characteristics and will influence considerably the shape, position and especially the number of the spectral regions of the gain spectra of modulation instability. Not only the group-velocity mismatch, but also the difference of the third-order dispersion of two optical waves will alter the gain spectra of modulation instability but in different ways. Depending on the values of the walk-off parameters, the number of the spectral regions may increase from two to at most four, and the spectral shape and position may change too.
基金Project supported by the National Natural Science Foundation of China(Grant No.61177073)the Major Application Basic Research Project of National University of Defense Technology,China(Grant No.ZDYYJCYJ20140701)
文摘For distributed fiber Raman amplifiers(DFRAs), stimulated Brillouin scattering(SBS) can deplete the pump once occurring and consequently generate gain saturation. On the basis of such a theory, theoretical gain saturation powers in DFRAs with various pump schemes are obtained by calculating SBS thresholds in them, and the experimental results show that they are in excellent agreement with the calculation results. The saturation power of the DFRA with a 300 m W forward pump is as low as 0 d Bm, which needs to be enhanced by phase modulation, and the effect is quantitatively studied. A simple model taking both modulation frequency and index into consideration is presented by introducing a correction factor to evaluate the effect of phase modulation on the enhancement of saturation power. Experimentally, it is shown that such a correction factor decreases as the modulation frequency increases and approaches zero when the modulation frequency becomes high enough. In particular, a phase modulation with a modulation frequency of 100 MHz and a modulation index of 1.380 can enhance the saturation power by 4.44 d B, and the correction factor is 0.25 d B, in which the modulation frequency is high enough. Additionally, the factor is 1.767 d B for the modulation frequency of 25 MHz. On this basis,phase modulations with various indexes and a fixed frequency of 25 MHz are adopted to verify the modified model, and the results are positive. To obtain the highest gain saturation power, the model is referable. The research results provide a guide for the design of practical DFRAs.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11774262 and 61975154).
文摘We develop a hybrid scheme of cross phase modulation based on electromagnetically induced transparency(EIT)and active Raman gain(ARG)in a multi-level atomic medium.The cross phase modulation,with low loss and without noise,is demonstrated in a room-temperature ^(85)Rb vapor.We show that a p radian nonlinear Kerr phase shift of the signal light relative to a reference light is observed when the signal light is modulated by the phase control field with the low light intensity.We also show that the linear and the third-order absorption can be eliminated via the Raman gain,and the phase noise of the signal light can be ignored when the phase control light is applied in this hybrid scheme.
基金supported by the National Natural Science Foundation of China[Grant Nos.62205367 and 62141506]the Suzhou Basic Research Pilot Project[Grant Nos.SSD2023006 and SJC2021013]the National Key Research and Development Program of China[Grant No.2023YFF1205700].
文摘Maintaining the s-polarization state of laser beams is important to achieve high modulation depth in a laser-interference-based super-resolution structured illumination microscope(SR-SIM).However,the imperfect optical components can depolarize the laser beams hence degenerating the modulation depth.Here,we first presented a direct measurement method designed to estimate the modulation depth more precisely by shifting illumination patterns with equal phase steps.This measurement method greatly reduces the dependence of modulation depths on the samples,and then developed a polarization optimization method to achieve high modulation depth at all orientations by actively and quantitatively compensating for the additional phase difference using a combination of waveplate and a liquid crystal variable retarder(LCVR).Experimental results demonstrate that our method can achieve illumination patterns with modulation depth higher than 0.94 at three orientations with only one LCVR voltage,which enables isotropic resolution improvement.
基金supported by the National Natural Science Foundation of China(Grant Nos.12304220,12174157,12074150,and 12374174)the Natural Science Foundation of Jiangsu Province(Grant No.BK20230518)+2 种基金the China Postdoctoral Science Foundation(Grant No.2023M731383)the College Student Innovation Project(Grant No.202410299946X)the Scientific Research Project of Jiangsu University(Grant No.22A397).
文摘Designing novel two-dimensional structures and precisely modulating their second harmonic generation(SHG)attributes are key to advancing nonlinear photonic technologies.In this work,through first-principles calculations,we propose a novel tetrahedral phase of transition metal dichalcogenides(TMDs)and validate its structural feasibility in a family of compounds,i.e.,ZX_(2)(Z=Ti,Zr,Hf;X=S,Se,Te).Cohesive energy and phonon dispersion calculations further demonstrate that eight of nine possible ZX_(2)monolayers are dynamically stable.All the ZX_(2)monolayers exhibit pronounced out-of-plane SHG with nonlinear susceptibility components reaching the order of 10^(2)pm/V.Strain engineering imposes a profound influence on the SHG response of ZX_(2)monolayers by reducing symmetry and modifying nonlinear susceptibility components.The redshift and significant enhancement of the prominent peak in SHG spectra are also revealed due to strain-induced charge redistribution and band gap reduction.Intriguingly,strain-driven nonlinear optical switching effects are realized in the ZX_(2)monolayers,with a reversible switching of SHG component ordering under tensile and compressive strain.In such a case,the anisotropic SHG pattern transforms from fourfold to twofold symmetry under the strain.Our work demonstrates the efficacy of strain engineering in precisely enhancing SHG,paving the way for the integration of novel TMD structures into tunable and flexible nonlinear optical devices.
基金funded by the National Natural Science Foundation of China(Grant No.52375547)the Natural Science Foundation of Chongqing,China(Grant Nos.CSTB2022NSCQ-BHX0736 and CSTB2022NSCQ-MSX1523)the Chongqing Scientific Institution Incentive Performance Guiding Special Projects(Grant No.CSTB2024JXJL-YFX0034).
文摘This paper uses an innovative improved artificial bee colony(IABC)algorithm to aid in the fabrication of a highly responsive phasemodulation surface plasmon resonance(SPR)biosensor.In this biosensor’s sensing structure,a double-layer Ag-Au metal film is combined with a blue phosphorene/transition metal dichalcogenide(BlueP/TMDC)hybrid structure and graphene.In the optimization function of the IABC method,the reflectivity at resonance angle is incorporated as a constraint to achieve high phase sensitivity.The performance of the Ag-Au-BlueP/TMDC-graphene heterostructure as optimized by the IABC method is compared with that of a similar structure optimized using the traditional ABC algorithm.The results indicate that optimization using the IABC method gives significantly more phase sensitivity,together with lower reflectivity,than can be achieved with the traditional ABC method.The highest phase sensitivity of 3.662×10^(6) °/RIU is achieved with a bilayer of BlueP/WS2 and three layers of graphene.Moreover,analysis of the electric field distribution demonstrates that the optimal arrangement can be utilized for enhanced detection of small biomolecules.Thus,given the exceptional sensitivity achieved,the proposed method based on the IABC algorithm has great promise for use in the design of high-performance SPR biosensors with a variety of multilayer structures.
基金supported by the National Natural Science Foundation of China(52271210,22179032,52171176)。
文摘Exploring efficient transition-metal-based electrocatalysts is critical for the wide application of electrochemical hydrogen generation technology.Although the phase displays prominent influence on their performance,it remains a major challenge to achieve phase regulation in the same synthesis method and elucidate the intrinsic relationship between the phase and activity.Herein,we developed a sulfur induced electrodeposition strategy to achieve the precise phase regulation of nickel-based materials from Ni(OH)_(2)to Ni and Ni_(3)S_(2).S atoms can be introduced into Ni and Ni(OH)_(2)due to sulfur inducement,and the S proportion is finely controlled via changing the deposition parameters.Importantly,the obtained S-Ni catalyst displays enhanced hydrogen evolution activity with an ultralow overpotential of 27 mV at 10 mA cm^(-2),which is superior to the S-Ni(OH)_(2),Ni_(3)S_(2),and even Pt/C.Density functional theory(DFT)calculations disclose the S-Ni catalyst exhibits optimal charge state and local coordination,remarkably optimizing the water adsorption and Ni-H^(*)binding energy.This work provides new insights into phase regulation in electrodeposition and an understanding of the intrinsic relationship between phase and activity.
基金Supported by the Postdoctoral Fund of China under Grant No.2011M501402the Key Project of Chinese Ministry of Education under Grant No.210186+2 种基金the Major Project of Natural Science Supported by the Educational Department of Sichuan Province under Grant No.13ZA0081the Key Project of National Natural Science Foundation of China under Grant No 61435010the National Natural Science Foundation of China under Grant No.61275039
文摘The approximate analytical frequency chirps and the critical distances for cross-phase modulation induced optical wave breaking(OWB) of the initial hyperbolic-secant optical pulses propagating in optical fibers with quintic nonlinearity(QN) are presented. The pulse evolutions in terms of the frequency chirps, shapes and spectra are numerically calculated in the normal dispersion regime. The results reveal that, depending on different QN parameters, the traditional OWB or soliton or soliton pulse trains may occur. The approximate analytical critical distances are found to be in good agreement with the numerical ones only for the traditional OWB whereas the approximate analytical frequency chirps accords well with the numerical ones at the initial evolution stages of the pulses.
基金financial support from the funding of National Science and Technology Major Project,China(No.J2019-VI-0019-0134).
文摘The rapid development in the aerospace industry requires the service performance of high-strength and heat-resistant bearing steel,especially in terms of strength and ductility synergy.A modified CSS-42L steel was obtained by multicomponent modulation,and an exceptional strength and ductility synergy of the alloy was attained through the adjusted tempering treatment.The tensile strength of 1986 MPa,the yield strength of 1622 MPa,and the uniform elongation of more than 17% were attained in the specimen tempered at 540℃,being superior to the mechanical properties of many previously reported alloys.Such superior performance originates from the generation of the high-density intermetallic compound Laves-Fe2Mo,the reduction of the larger M6C phase,and the formation of film-like reverse austenite.As a result,the strong interaction between the high-density dislocations of the matrix and the nanoprecipitates dominates the deformation microstructures of the specimen,strengthening the alloy.Meanwhile,the reverse austenite effectively inhibits premature crack initiation and localized stresses,increasing the uniform elongation.
基金supported by the University of Macao Research Fund under Grant MYRG-GRG2024-00298-IMEby the Macao Science and Technology Development Fund(FDCT)under Grant 0103/2022/AFJ.
文摘Fractional-N phase-locked loops(PLLs)are widely deployed in high-speed communication systems to generate local oscillator(LO)or clock signals with precise frequency.To support sophisticated modulations for increasing the data rate,the PLL needs to generate low-jitter output[1].
基金Project supported by the Key Program of the Natural Science Foundation of Sichuan Provincial Education Department (Grant No. 2006A124)the Fundamental Application Research Project of the Department of Science & Technology of Sichuan Province (Grant No. 05JY029-084)
文摘Utilizing the linear-stability analysis, this paper analytically investigates and calculates the condition and gain spectra of cross-phase modulation instability in optical fibres in the ease of exponential saturable nonlinearity and high-order dispersion. The results show that, the modulation instability characteristics here are similar to those of conventional saturable nonlinearity and Kerr nonlinearity. That is to say, when the fourth-order dispersion has the same sign as that of the second-order one, a new gain spectral region called the second one which is far away from the zero point may appear. The existence of the exponential saturable nonlinearity will make the spectral width as well as the peak gain of every spectral region increase with the input powers before decrease. Namely, for every spectral regime, this may lead to a unique value of peak gain and spectral width for two different input powers. In comparison with the case of conventional saturable nonlinearity, however, when the other parameters are the same, the variations of the spectral width and the peak gain with the input powers will be faster in case of exponential saturable nonlinearity.
基金Cultivation Fund of the Key Scientific and Technical Innovation Project of Ministry of Education of China(No.3104001014)
文摘A nonparametric Bayesian method is presented to classify the MPSK (M-ary phase shift keying) signals. The MPSK signals with unknown signal noise ratios (SNRs) are modeled as a Gaussian mixture model with unknown means and covariances in the constellation plane, and a clustering method is proposed to estimate the probability density of the MPSK signals. The method is based on the nonparametric Bayesian inference, which introduces the Dirichlet process as the prior probability of the mixture coefficient, and applies a normal inverse Wishart (NIW) distribution as the prior probability of the unknown mean and covariance. Then, according to the received signals, the parameters are adjusted by the Monte Carlo Markov chain (MCMC) random sampling algorithm. By iterations, the density estimation of the MPSK signals can be estimated. Simulation results show that the correct recognition ratio of 2/4/8PSK is greater than 95% under the condition that SNR 〉5 dB and 1 600 symbols are used in this method.
基金Project supported by the National Natural Science Foundation of China(Grant No.11305020)the Science and Technology Research Projects of the Education Department of Jilin Province,China(Grant No.2016-354)the Science and Technology Development Project of Jilin Province,China(Grant No.20180520165JH)
文摘In this paper, we investigated phase modulation-based computational ghost imaging. According to the results of numerical simulations, we found that the range of the random phase affects the quality of the reconstructed image. Besides,compared with those amplitude modulation-based computational ghost imaging schemes, introducing random phase modulation into the computational ghost imaging scheme could significantly improve the spatial resolution of the reconstructed image, and also extend the field of view.
基金Acknowledgements This work was financially supported by the Joint Fund of Iron and Steel Research (No.U1660103) and National Natural Science Foundation of China (No. 51574162). XRD, SEM and EBSD tests were conducted in the Instrumental Analysis & Research Center at Shanghai University. The authors would like to express sincere thanks to the staff support at the Center. We thank Dr. Tyler for editing. Part of the work was undertaken in the US National High Magnetic Field Laboratory, which is supported by NSF DMR- 1157490, the State of Florida, and DOE.
文摘High-entropy alloys (HEAs) usually contain more than five alloying elements. The ductility of a body-centered cubic (bcc)- type HEA typically is lower than that of their face-centered cubic (fcc) counterpart. And low ductility restricts engineering applications of the bcc-structured HEAs. In engineering materials, improvement in ductility usually results in deduction of mechanical strength. A method to improve both mechanical strength and ductility in a bcc-structured HEA was proposed by adding interstitial carbon. Experimental results showed that replacement of 5 at.% Cr with 5 at.% C in a bcc-structured Fe35Mn25Al15Cr10Ni15 HEA resulted in an increase in fcc phase from 0.3 to 93.7 vol.%. Strength and ductility increased at the same time. The transition of bcc-structure to fcc-structure along with a remaining small amount of bcc phase improved mechanical properties. This work indicates that interstitial carbon can be employed to modulate the fraction of constituent phases in a bcc-structured HEA to enhance engineering mechanical properties.
基金financially supported by the National Key R&D Program(N os.2017 YF A0204503 and 2016YFB0401100)the National Natural Science Foundation of China(Nos.91833306,21875158,51633006 and 51703159)。
文摘The electrochemical CO_(2) reduction(ECR)into value-added products presents an appealing approach to mitigate CO_(2) emission caused by excess consumption of fossil fuels.To obtain high catalytic activity and selectivity toward target product in ECR,designing and developing a stable and efficient electrocatalyst is of significant importance.To date,metal nanomaterials have been widely applied as electrocatalysts for ECR due to their unique physicochemical properties.The structural modulation of metal nanomaterials is an attractive strategy to improve the catalytic performance.In this review,the recent progress of structural modulation,including size,facet,grain boundary,composition,interface,ligand modification,and crystal phase,is systematically summarized from both theoretical and experimental aspects.Finally,the opportunities and perspectives of structural modulation of metal nanomaterials for ECR are proposed.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2017YFA0304900 and 2017YFA0402300)the Beijing Natural Science Foundation(Grant No.1212014)+3 种基金the National Natural Science Foundation of China(Grant Nos.11604334,11604177,and U2031125)the Key Research Program of the Chinese Academy of Sciences(Grant No.XDPB08-3)the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics(Grant No.KF201807)the Fundamental Research Funds for the Central Universities,and Youth Innovation Promotion Association CAS.
文摘Recently,a Rydberg atom-based mixer was developed to measure the phase of a radio frequency(RF)field.The phase of the signal RF(SIG RF)field is down-converted directly to the phase of a beat signal created by the presence of a local RF(LO RF)field.In this study,we propose that the Rydberg atom-based mixer can be converted to an all-optical phase detector by amplitude modulation(AM)of the LO RF field;that is,the phase of the SIG RF field is related to both the amplitude and phase of the beat signal.When the AM frequency of the LO RF field is the same as the frequency of the beat signal,the beat signal will further interfere with the AM of the LO RF field inside the atom,and then the amplitude of the beat signal is related to the phase of the SIG RF field.The amplitude of the beat signal and the phase of the SIG RF field show a linear relationship within the range of 0 toπ/2 when the phase of the AM is set with a differenceπ/4 from the phase of the LO RF field.The minimum phase resolution can be as small as 0.6°by optimizing the experimental conditions according to a simple theoretical model.This study will expand and contribute to the development of RF measurement devices based on Rydberg atoms.