Due to the small size,variety,and high degree of mixing of herbaceous vegetation,remote sensing-based identification of grassland types primarily focuses on extracting major grassland categories,lacking detailed depic...Due to the small size,variety,and high degree of mixing of herbaceous vegetation,remote sensing-based identification of grassland types primarily focuses on extracting major grassland categories,lacking detailed depiction.This limitation significantly hampers the development of effective evaluation and fine supervision for the rational utilization of grassland resources.To address this issue,this study concentrates on the representative grassland of Zhenglan Banner in Inner Mongolia as the study area.It integrates the strengths of Sentinel-1 and Sentinel-2 active-passive synergistic observations and introduces innovative object-oriented techniques for grassland type classification,thereby enhancing the accuracy and refinement of grassland classification.The results demonstrate the following:(1)To meet the supervision requirements of grassland resources,we propose a grassland type classification system based on remote sensing and the vegetation-habitat classification method,specifically applicable to natural grasslands in northern China.(2)By utilizing the high-spatial-resolution Normalized Difference Vegetation Index(NDVI)synthesized through the Spatial and Temporal Non-Local Filter-based Fusion Model(STNLFFM),we are able to capture the NDVI time profiles of grassland types,accurately extract vegetation phenological information within the year,and further enhance the temporal resolution.(3)The integration of multi-seasonal spectral,polarization,and phenological characteristics significantly improves the classification accuracy of grassland types.The overall accuracy reaches 82.61%,with a kappa coefficient of 0.79.Compared to using only multi-seasonal spectral features,the accuracy and kappa coefficient have improved by 15.94%and 0.19,respectively.Notably,the accuracy improvement of the gently sloping steppe is the highest,exceeding 38%.(4)Sandy grassland is the most widespread in the study area,and the growth season of grassland vegetation mainly occurs from May to September.The sandy meadow exhibits a longer growing season compared with typical grassland and meadow,and the distinct differences in phenological characteristics contribute to the accurate identification of various grassland types.展开更多
Incorporation of explainability features in the decision-making web-based systems is considered a primary concern to enhance accountability,transparency,and trust in the community.Multi-domain Sentiment Analysis is a ...Incorporation of explainability features in the decision-making web-based systems is considered a primary concern to enhance accountability,transparency,and trust in the community.Multi-domain Sentiment Analysis is a significant web-based system where the explainability feature is essential for achieving user satisfaction.Conventional design methodologies such as object-oriented design methodology(OODM)have been proposed for web-based application development,which facilitates code reuse,quantification,and security at the design level.However,OODM did not provide the feature of explainability in web-based decision-making systems.X-OODM modifies the OODM with added explainable models to introduce the explainability feature for such systems.This research introduces an explainable model leveraging X-OODM for designing transparent applications for multidomain sentiment analysis.The proposed design is evaluated using the design quality metrics defined for the evaluation of the X-OODM explainable model under user context.The design quality metrics,transferability,simulatability,informativeness,and decomposability were introduced one after another over time to the evaluation of the X-OODM user context.Auxiliary metrics of accessibility and algorithmic transparency were added to increase the degree of explainability for the design.The study results reveal that introducing such explainability parameters with X-OODM appropriately increases system transparency,trustworthiness,and user understanding.The experimental results validate the enhancement of decision-making for multi-domain sentiment analysis with integration at the design level of explainability.Future work can be built in this direction by extending this work to apply the proposed X-OODM framework over different datasets and sentiment analysis applications to further scrutinize its effectiveness in real-world scenarios.展开更多
As one of the main geographical elements in urban areas,buildings are closely related to the development of the city.Therefore,how to quickly and accurately extract building information from remote sensing images is o...As one of the main geographical elements in urban areas,buildings are closely related to the development of the city.Therefore,how to quickly and accurately extract building information from remote sensing images is of great significance for urban map updating,urban planning and construction,etc.Extracting building information around power facilities,especially obtaining this information from high-resolution images,has become one of the current hot topics in remote sensing technology research.This study made full use of the characteristics of GF-2 satellite remote sensing images,adopted an object-oriented classification method,combined with multi-scale segmentation technology and CART classification algorithm,and successfully extracted the buildings in the study area.The research results showed that the overall classification accuracy reached 89.5%and the Kappa coefficient was 0.86.Using the object-oriented CART classification algorithm for building extraction could be closer to actual ground objects and had higher accuracy.The extraction of buildings in the city contributed to urban development planning and provided decision support for management.展开更多
This paper uses three size metrics,which are collectable during the design phase,to analyze the potentially confounding effect of class size on the associations between object-oriented(OO)metrics and maintainability...This paper uses three size metrics,which are collectable during the design phase,to analyze the potentially confounding effect of class size on the associations between object-oriented(OO)metrics and maintainability.To draw as many general conclusions as possible,the confounding effect of class size is analyzed on 127 C++ systems and 113 Java systems.For each OO metric,the indirect effect that represents the distortion of the association caused by class size and its variance for individual systems is first computed.Then,a statistical meta-analysis technique is used to compute the average indirect effect over all the systems and to determine if it is significantly different from zero.The experimental results show that the confounding effects of class size on the associations between OO metrics and maintainability generally exist,regardless of whatever size metric is used.Therefore,empirical studies validating OO metrics on maintainability should consider class size as a confounding variable.展开更多
With the wide use of high-resolution remotely sensed imagery, the object-oriented remotely sensed informa- tion classification pattern has been intensively studied. Starting with the definition of object-oriented remo...With the wide use of high-resolution remotely sensed imagery, the object-oriented remotely sensed informa- tion classification pattern has been intensively studied. Starting with the definition of object-oriented remotely sensed information classification pattern and a literature review of related research progress, this paper sums up 4 developing phases of object-oriented classification pattern during the past 20 years. Then, we discuss the three aspects of method- ology in detail, namely remotely sensed imagery segmentation, feature analysis and feature selection, and classification rule generation, through comparing them with remotely sensed information classification method based on per-pixel. At last, this paper presents several points that need to be paid attention to in the future studies on object-oriented RS in- formation classification pattern: 1) developing robust and highly effective image segmentation algorithm for multi-spectral RS imagery; 2) improving the feature-set including edge, spatial-adjacent and temporal characteristics; 3) discussing the classification rule generation classifier based on the decision tree; 4) presenting evaluation methods for classification result by object-oriented classification pattern.展开更多
Pine wilt disease(PWD)is currently one of the main causes of large-scale forest destruction.To control the spread of PWD,it is essential to detect affected pine trees quickly.This study investigated the feasibility of...Pine wilt disease(PWD)is currently one of the main causes of large-scale forest destruction.To control the spread of PWD,it is essential to detect affected pine trees quickly.This study investigated the feasibility of using the object-oriented multi-scale segmentation algorithm to identify trees discolored by PWD.We used an unmanned aerial vehicle(UAV)platform equipped with an RGB digital camera to obtain high spatial resolution images,and multiscale segmentation was applied to delineate the tree crown,coupling the use of object-oriented classification to classify trees discolored by PWD.Then,the optimal segmentation scale was implemented using the estimation of scale parameter(ESP2)plug-in.The feature space of the segmentation results was optimized,and appropriate features were selected for classification.The results showed that the optimal scale,shape,and compactness values of the tree crown segmentation algorithm were 56,0.5,and 0.8,respectively.The producer’s accuracy(PA),user’s accuracy(UA),and F1 score were 0.722,0.605,and 0.658,respectively.There were no significant classification errors in the final classification results,and the low accuracy was attributed to the low number of objects count caused by incorrect segmentation.The multi-scale segmentation and object-oriented classification method could accurately identify trees discolored by PWD with a straightforward and rapid processing.This study provides a technical method for monitoring the occurrence of PWD and identifying the discolored trees of disease using UAV-based high-resolution images.展开更多
As a consumed and influential natural plant beverage,tea is widely planted in subtropical and tropical areas all over the world.Affected by(sub)tropical climate characteristics,the underlying surface of the tea distri...As a consumed and influential natural plant beverage,tea is widely planted in subtropical and tropical areas all over the world.Affected by(sub)tropical climate characteristics,the underlying surface of the tea distribution area is extremely complex,with a variety of vegetation types.In addition,tea distribution is scattered and fragmentized in most of China.Therefore,it is difficult to obtain accurate tea information based on coarse resolution remote sensing data and existing feature extraction methods.This study proposed a boundary-enhanced,object-oriented random forest method on the basis of high-resolution GF-2 and multi-temporal Sentinel-2 data.This method uses multispectral indexes,textures,vegetable indices,and variation characteristics of time-series NDVI from the multi-temporal Sentinel-2 imageries to obtain abundant features related to the growth of tea plantations.To reduce feature redundancy and computation time,the feature elimination algorithm based on Mean Decrease Accuracy(MDA)was used to generate the optimal feature set.Considering the serious boundary inconsistency problem caused by the complex and fragmented land cover types,high resolution GF-2 image was segmented based on the MultiResolution Segmentation(MRS)algorithm to assist the segmentation of Sentinel-2,which contributes to delineating meaningful objects and enhancing the reliability of the boundary for tea plantations.Finally,the object-oriented random forest method was utilized to extract the tea information based on the optimal feature combination in the Jingmai Mountain,Yunnan Province.The resulting tea plantation map had high accuracy,with a 95.38%overall accuracy and 0.91 kappa coefficient.We conclude that the proposed method is effective for mapping tea plantations in high heterogeneity mountainous areas and has the potential for mapping tea plantations in large areas.展开更多
This paper proposed to use double polarization synthetic aperture radar (SAR) image to classify surface feature, based on DEM. It takes fully use of the polarization information and external information. This pa-per u...This paper proposed to use double polarization synthetic aperture radar (SAR) image to classify surface feature, based on DEM. It takes fully use of the polarization information and external information. This pa-per utilizes ENVISAT ASAR APP double-polarization data of Poyang lake area in Jiangxi Province. Com-pared with traditional pixel-based classification, this paper fully uses object features (color, shape, hierarchy) and accessorial DEM information. The classification accuracy improves from the original 73.7% to 91.84%. The result shows that object-oriented classification technology is suitable for double polarization SAR’s high precision classification.展开更多
A novel kernel learning method for object-oriented (00) software fault prediction is proposed in this paper. With this method, each set of classes that has inheritance relation named class hierarchy, is treated as a...A novel kernel learning method for object-oriented (00) software fault prediction is proposed in this paper. With this method, each set of classes that has inheritance relation named class hierarchy, is treated as an elemental software model. A layered kernel is introduced to handle the tree data structure corresponding to the class hierarchy models. This method was vali- dated using both an artificial dataset and a case of industrial software from the optical communication field. Preliminary experi- ments showed that our approach is very effective in learning structured data and outperforms the traditional support vector learning methods in accurately and correctly predicting the fault-prone class hierarchy model in real-life OO software.展开更多
With the development of remote sensing technology,the spatial resolution,spectral resolution and time resolution of remote sensing data are greatly improved.How to efficiently process and interpret the massive high re...With the development of remote sensing technology,the spatial resolution,spectral resolution and time resolution of remote sensing data are greatly improved.How to efficiently process and interpret the massive high resolution remote sensing image data for ground objects,which are of spatial geometry and texture information,has become the focus and key issue in the field of remote sensing research.A new method of the classification(OCRC(object-oriented and class rule classification))of remote sensing,which is of object-oriented and rule,has been presented in this paper,that is,through the discovery and mining the knowledge of spectrum and spatial characteristics of high-resolution remote sensing image,establish a multi-level network image object segmentation and classification structure of remote sensing image to achieve classification and accuracy assessment accurately and quickly for ground targets.Selected the worldview-2 image data in the Zangnan area as a study object,using the OCRC to verify the experiment which was a combination of the mean variance method,the maximum area method and the accuracy comparison to analysis selected three kinds of optimal segmentation scale and established a multi-level image object network hierarchy for image classification experiments.The results show that the OCRC can enable the high resolution image classification results similar to the visual interpretation of the results,and has higher classification accuracy.The overall accuracy and Kappa coefficient of the object-oriented rule classification method are 97.38%,0.9673;compared with object-oriented SVM method,respectively higher than 6.23%,0.078;compared with object-oriented KNN method,respectively more than 7.96%,0.0996.The extraction precision and user accuracy of the buildings compared with object-oriented SVM method,respectively higher than 18.39%,3.98%,respectively better than the object-oriented KNN(K-Nearest Neighbor)method 21.27%,14.97%.展开更多
UAV remote sensing images have the advantages of high spatial resolution,fast speed,strong real-time performance,and convenient operation,etc.,and have become a recently developed,vital means of acquiring surface info...UAV remote sensing images have the advantages of high spatial resolution,fast speed,strong real-time performance,and convenient operation,etc.,and have become a recently developed,vital means of acquiring surface information.It is an important research task for precision agriculture to make full use of the spectrum,texture,color and other characteristic information of crops,especially the spatial arrangement and structure information of features,to explore effective methods for the classification of multiple varieties of crops.In order to explore the applicability of the object-oriented method to achieve accurate classification of UAV high-resolution images,the paper used the object-oriented classification method in ENVI to classify the UAV high-resolution remote sensing image obtained from the orderly structured 28 species of crops in the test field,which mainly includes image segmentation and object classification.The results showed that the plots obtained after classification were continuous and complete,basically in line with the actual situation,and the overall accuracy of crop classification was 91.73%,with Kappa coefficient of 0.87.Compared with the crop planting area based on remote sensing interpretation and field survey,the area error of 17 species of crops in this study was controlled within 15%,which provides a basis for object-oriented crop classification of UAV remote sensing images.展开更多
随着先进工艺和技术的不断进步,要想保证数据在高速传输中的正确性,均衡器需要有更高的补偿和更低的功耗,才能实现高效通信。基于12 nm互补金属氧化物半导体工艺,设计了一种高增益、低功耗的自适应连续时间线性均衡器(continuous time l...随着先进工艺和技术的不断进步,要想保证数据在高速传输中的正确性,均衡器需要有更高的补偿和更低的功耗,才能实现高效通信。基于12 nm互补金属氧化物半导体工艺,设计了一种高增益、低功耗的自适应连续时间线性均衡器(continuous time linear equalizer,CTLE),该均衡器采用2级级联结构来补偿信道衰减,并提高接收信号的质量。此外,自适应模块通过采用符号-符号最小均方误差(sign-sign least mean square,SS-LMS)算法,使抽头系数加快了收敛速度。仿真结果表明,当传输速率为16 Gbit/s时,均衡器可以补偿-15.53 dB的半波特率通道衰减,均衡器系数在16×10^(4)个单元间隔数据内收敛,并且收敛之后接收误码率低于10^(-12)。展开更多
基金supported by the National Natural Science Foundation of China[grant number 42001386,42271407]within the ESA-MOST China Dragon 5 Cooperation(ID:59313).
文摘Due to the small size,variety,and high degree of mixing of herbaceous vegetation,remote sensing-based identification of grassland types primarily focuses on extracting major grassland categories,lacking detailed depiction.This limitation significantly hampers the development of effective evaluation and fine supervision for the rational utilization of grassland resources.To address this issue,this study concentrates on the representative grassland of Zhenglan Banner in Inner Mongolia as the study area.It integrates the strengths of Sentinel-1 and Sentinel-2 active-passive synergistic observations and introduces innovative object-oriented techniques for grassland type classification,thereby enhancing the accuracy and refinement of grassland classification.The results demonstrate the following:(1)To meet the supervision requirements of grassland resources,we propose a grassland type classification system based on remote sensing and the vegetation-habitat classification method,specifically applicable to natural grasslands in northern China.(2)By utilizing the high-spatial-resolution Normalized Difference Vegetation Index(NDVI)synthesized through the Spatial and Temporal Non-Local Filter-based Fusion Model(STNLFFM),we are able to capture the NDVI time profiles of grassland types,accurately extract vegetation phenological information within the year,and further enhance the temporal resolution.(3)The integration of multi-seasonal spectral,polarization,and phenological characteristics significantly improves the classification accuracy of grassland types.The overall accuracy reaches 82.61%,with a kappa coefficient of 0.79.Compared to using only multi-seasonal spectral features,the accuracy and kappa coefficient have improved by 15.94%and 0.19,respectively.Notably,the accuracy improvement of the gently sloping steppe is the highest,exceeding 38%.(4)Sandy grassland is the most widespread in the study area,and the growth season of grassland vegetation mainly occurs from May to September.The sandy meadow exhibits a longer growing season compared with typical grassland and meadow,and the distinct differences in phenological characteristics contribute to the accurate identification of various grassland types.
基金support of the Deanship of Research and Graduate Studies at Ajman University under Projects 2024-IRG-ENiT-36 and 2024-IRG-ENIT-29.
文摘Incorporation of explainability features in the decision-making web-based systems is considered a primary concern to enhance accountability,transparency,and trust in the community.Multi-domain Sentiment Analysis is a significant web-based system where the explainability feature is essential for achieving user satisfaction.Conventional design methodologies such as object-oriented design methodology(OODM)have been proposed for web-based application development,which facilitates code reuse,quantification,and security at the design level.However,OODM did not provide the feature of explainability in web-based decision-making systems.X-OODM modifies the OODM with added explainable models to introduce the explainability feature for such systems.This research introduces an explainable model leveraging X-OODM for designing transparent applications for multidomain sentiment analysis.The proposed design is evaluated using the design quality metrics defined for the evaluation of the X-OODM explainable model under user context.The design quality metrics,transferability,simulatability,informativeness,and decomposability were introduced one after another over time to the evaluation of the X-OODM user context.Auxiliary metrics of accessibility and algorithmic transparency were added to increase the degree of explainability for the design.The study results reveal that introducing such explainability parameters with X-OODM appropriately increases system transparency,trustworthiness,and user understanding.The experimental results validate the enhancement of decision-making for multi-domain sentiment analysis with integration at the design level of explainability.Future work can be built in this direction by extending this work to apply the proposed X-OODM framework over different datasets and sentiment analysis applications to further scrutinize its effectiveness in real-world scenarios.
基金Research on Algorithm Model for Monitoring and Evaluating Typical Disaster Situations of Electric Power Equipment Based on Remote Sensing Imaging Technology of Heaven and Earth,South Grid Guangxi Power Grid Company Science and Technology Project(GXKJXM20222160).
文摘As one of the main geographical elements in urban areas,buildings are closely related to the development of the city.Therefore,how to quickly and accurately extract building information from remote sensing images is of great significance for urban map updating,urban planning and construction,etc.Extracting building information around power facilities,especially obtaining this information from high-resolution images,has become one of the current hot topics in remote sensing technology research.This study made full use of the characteristics of GF-2 satellite remote sensing images,adopted an object-oriented classification method,combined with multi-scale segmentation technology and CART classification algorithm,and successfully extracted the buildings in the study area.The research results showed that the overall classification accuracy reached 89.5%and the Kappa coefficient was 0.86.Using the object-oriented CART classification algorithm for building extraction could be closer to actual ground objects and had higher accuracy.The extraction of buildings in the city contributed to urban development planning and provided decision support for management.
基金The National Natural Science Foundation of China(No.60425206,60633010)
文摘This paper uses three size metrics,which are collectable during the design phase,to analyze the potentially confounding effect of class size on the associations between object-oriented(OO)metrics and maintainability.To draw as many general conclusions as possible,the confounding effect of class size is analyzed on 127 C++ systems and 113 Java systems.For each OO metric,the indirect effect that represents the distortion of the association caused by class size and its variance for individual systems is first computed.Then,a statistical meta-analysis technique is used to compute the average indirect effect over all the systems and to determine if it is significantly different from zero.The experimental results show that the confounding effects of class size on the associations between OO metrics and maintainability generally exist,regardless of whatever size metric is used.Therefore,empirical studies validating OO metrics on maintainability should consider class size as a confounding variable.
基金Under the auspices of the National Natural Science Foundation of China (No. 40301038), Talents Recruitment Foun-dation of Nanjing University
文摘With the wide use of high-resolution remotely sensed imagery, the object-oriented remotely sensed informa- tion classification pattern has been intensively studied. Starting with the definition of object-oriented remotely sensed information classification pattern and a literature review of related research progress, this paper sums up 4 developing phases of object-oriented classification pattern during the past 20 years. Then, we discuss the three aspects of method- ology in detail, namely remotely sensed imagery segmentation, feature analysis and feature selection, and classification rule generation, through comparing them with remotely sensed information classification method based on per-pixel. At last, this paper presents several points that need to be paid attention to in the future studies on object-oriented RS in- formation classification pattern: 1) developing robust and highly effective image segmentation algorithm for multi-spectral RS imagery; 2) improving the feature-set including edge, spatial-adjacent and temporal characteristics; 3) discussing the classification rule generation classifier based on the decision tree; 4) presenting evaluation methods for classification result by object-oriented classification pattern.
基金supported by the National Natural Science Foundation of China(No.31870620)the National Technology Extension Fund of Forestry([2019]06)the Fundamental Research Funds for the Central Universities(No.PTYX202107)。
文摘Pine wilt disease(PWD)is currently one of the main causes of large-scale forest destruction.To control the spread of PWD,it is essential to detect affected pine trees quickly.This study investigated the feasibility of using the object-oriented multi-scale segmentation algorithm to identify trees discolored by PWD.We used an unmanned aerial vehicle(UAV)platform equipped with an RGB digital camera to obtain high spatial resolution images,and multiscale segmentation was applied to delineate the tree crown,coupling the use of object-oriented classification to classify trees discolored by PWD.Then,the optimal segmentation scale was implemented using the estimation of scale parameter(ESP2)plug-in.The feature space of the segmentation results was optimized,and appropriate features were selected for classification.The results showed that the optimal scale,shape,and compactness values of the tree crown segmentation algorithm were 56,0.5,and 0.8,respectively.The producer’s accuracy(PA),user’s accuracy(UA),and F1 score were 0.722,0.605,and 0.658,respectively.There were no significant classification errors in the final classification results,and the low accuracy was attributed to the low number of objects count caused by incorrect segmentation.The multi-scale segmentation and object-oriented classification method could accurately identify trees discolored by PWD with a straightforward and rapid processing.This study provides a technical method for monitoring the occurrence of PWD and identifying the discolored trees of disease using UAV-based high-resolution images.
基金National Natural Science Foundation of China(No.41830110)National Key Research Development Program of China(No.2018YFC1503603)+2 种基金Key Laboratory of Land Satellite Remote Sensing Application,Ministry of Natural Resources of the People’s Republic of China(No.KLSMNR-202106)Water Conservancy Science and Technology Project of Jiangsu Province,China(No.2020061)Natural Science Foundation of Jiangsu Province,China(No.20180779)。
文摘As a consumed and influential natural plant beverage,tea is widely planted in subtropical and tropical areas all over the world.Affected by(sub)tropical climate characteristics,the underlying surface of the tea distribution area is extremely complex,with a variety of vegetation types.In addition,tea distribution is scattered and fragmentized in most of China.Therefore,it is difficult to obtain accurate tea information based on coarse resolution remote sensing data and existing feature extraction methods.This study proposed a boundary-enhanced,object-oriented random forest method on the basis of high-resolution GF-2 and multi-temporal Sentinel-2 data.This method uses multispectral indexes,textures,vegetable indices,and variation characteristics of time-series NDVI from the multi-temporal Sentinel-2 imageries to obtain abundant features related to the growth of tea plantations.To reduce feature redundancy and computation time,the feature elimination algorithm based on Mean Decrease Accuracy(MDA)was used to generate the optimal feature set.Considering the serious boundary inconsistency problem caused by the complex and fragmented land cover types,high resolution GF-2 image was segmented based on the MultiResolution Segmentation(MRS)algorithm to assist the segmentation of Sentinel-2,which contributes to delineating meaningful objects and enhancing the reliability of the boundary for tea plantations.Finally,the object-oriented random forest method was utilized to extract the tea information based on the optimal feature combination in the Jingmai Mountain,Yunnan Province.The resulting tea plantation map had high accuracy,with a 95.38%overall accuracy and 0.91 kappa coefficient.We conclude that the proposed method is effective for mapping tea plantations in high heterogeneity mountainous areas and has the potential for mapping tea plantations in large areas.
文摘This paper proposed to use double polarization synthetic aperture radar (SAR) image to classify surface feature, based on DEM. It takes fully use of the polarization information and external information. This pa-per utilizes ENVISAT ASAR APP double-polarization data of Poyang lake area in Jiangxi Province. Com-pared with traditional pixel-based classification, this paper fully uses object features (color, shape, hierarchy) and accessorial DEM information. The classification accuracy improves from the original 73.7% to 91.84%. The result shows that object-oriented classification technology is suitable for double polarization SAR’s high precision classification.
文摘A novel kernel learning method for object-oriented (00) software fault prediction is proposed in this paper. With this method, each set of classes that has inheritance relation named class hierarchy, is treated as an elemental software model. A layered kernel is introduced to handle the tree data structure corresponding to the class hierarchy models. This method was vali- dated using both an artificial dataset and a case of industrial software from the optical communication field. Preliminary experi- ments showed that our approach is very effective in learning structured data and outperforms the traditional support vector learning methods in accurately and correctly predicting the fault-prone class hierarchy model in real-life OO software.
基金This paper is funded jointly by projects of the National Natural Science Foundation of China(41571374),the key research project of Hunan Education Ministry(No.16A070),Nature Science Joint Funding of Hunan province and Xiangtan Local(No.2017JJ4037).
文摘With the development of remote sensing technology,the spatial resolution,spectral resolution and time resolution of remote sensing data are greatly improved.How to efficiently process and interpret the massive high resolution remote sensing image data for ground objects,which are of spatial geometry and texture information,has become the focus and key issue in the field of remote sensing research.A new method of the classification(OCRC(object-oriented and class rule classification))of remote sensing,which is of object-oriented and rule,has been presented in this paper,that is,through the discovery and mining the knowledge of spectrum and spatial characteristics of high-resolution remote sensing image,establish a multi-level network image object segmentation and classification structure of remote sensing image to achieve classification and accuracy assessment accurately and quickly for ground targets.Selected the worldview-2 image data in the Zangnan area as a study object,using the OCRC to verify the experiment which was a combination of the mean variance method,the maximum area method and the accuracy comparison to analysis selected three kinds of optimal segmentation scale and established a multi-level image object network hierarchy for image classification experiments.The results show that the OCRC can enable the high resolution image classification results similar to the visual interpretation of the results,and has higher classification accuracy.The overall accuracy and Kappa coefficient of the object-oriented rule classification method are 97.38%,0.9673;compared with object-oriented SVM method,respectively higher than 6.23%,0.078;compared with object-oriented KNN method,respectively more than 7.96%,0.0996.The extraction precision and user accuracy of the buildings compared with object-oriented SVM method,respectively higher than 18.39%,3.98%,respectively better than the object-oriented KNN(K-Nearest Neighbor)method 21.27%,14.97%.
基金Supported by College Students Innovation and Entrepreneurship Training Program of Jilin University(No.202010183695)。
文摘UAV remote sensing images have the advantages of high spatial resolution,fast speed,strong real-time performance,and convenient operation,etc.,and have become a recently developed,vital means of acquiring surface information.It is an important research task for precision agriculture to make full use of the spectrum,texture,color and other characteristic information of crops,especially the spatial arrangement and structure information of features,to explore effective methods for the classification of multiple varieties of crops.In order to explore the applicability of the object-oriented method to achieve accurate classification of UAV high-resolution images,the paper used the object-oriented classification method in ENVI to classify the UAV high-resolution remote sensing image obtained from the orderly structured 28 species of crops in the test field,which mainly includes image segmentation and object classification.The results showed that the plots obtained after classification were continuous and complete,basically in line with the actual situation,and the overall accuracy of crop classification was 91.73%,with Kappa coefficient of 0.87.Compared with the crop planting area based on remote sensing interpretation and field survey,the area error of 17 species of crops in this study was controlled within 15%,which provides a basis for object-oriented crop classification of UAV remote sensing images.
文摘随着先进工艺和技术的不断进步,要想保证数据在高速传输中的正确性,均衡器需要有更高的补偿和更低的功耗,才能实现高效通信。基于12 nm互补金属氧化物半导体工艺,设计了一种高增益、低功耗的自适应连续时间线性均衡器(continuous time linear equalizer,CTLE),该均衡器采用2级级联结构来补偿信道衰减,并提高接收信号的质量。此外,自适应模块通过采用符号-符号最小均方误差(sign-sign least mean square,SS-LMS)算法,使抽头系数加快了收敛速度。仿真结果表明,当传输速率为16 Gbit/s时,均衡器可以补偿-15.53 dB的半波特率通道衰减,均衡器系数在16×10^(4)个单元间隔数据内收敛,并且收敛之后接收误码率低于10^(-12)。