A new method of predicting chaotic time series is presented based on a local Lyapunov exponent, by quantitatively measuring the exponential rate of separation or attraction of two infinitely close trajectories in stat...A new method of predicting chaotic time series is presented based on a local Lyapunov exponent, by quantitatively measuring the exponential rate of separation or attraction of two infinitely close trajectories in state space. After recon- structing state space from one-dimensional chaotic time series, neighboring multiple-state vectors of the predicting point are selected to deduce the prediction formula by using the definition of the locaI Lyapunov exponent. Numerical simulations are carded out to test its effectiveness and verify its higher precision over two older methods. The effects of the number of referential state vectors and added noise on forecasting accuracy are also studied numerically.展开更多
The block-diagonal least squares method, which theoretically has specific requirements for the observation data and the spatial distribution of its precision, plays an important role in ultra-high degree gravity field...The block-diagonal least squares method, which theoretically has specific requirements for the observation data and the spatial distribution of its precision, plays an important role in ultra-high degree gravity field determination. On the basis of block-diagonal least squares method, three data processing strategies are employed to determine the gravity field models using three kinds of simulated global grid data with different noise spatial distri- bution in this paper. The numerical results show that when we employed the weight matrix corresponding to the noise of the observation data, the model computed by the least squares using the full normal matrix has much higher precision than the one estimated only using the block part of the normal matrix. The model computed by the block-diagonal least squares method without the weight matrix has slightly lower precision than the model computed using the rigorous least squares with the weight matrix. The result offers valuable reference to the using of block-diagonal least squares method in ultra-high gravity model determination.展开更多
Purpose–The purpose of this paper is to consider the concept of Fuzzy Radial Basis Function Neural Networks with Information Granulation(IG-FRBFNN)and their optimization realized by means of the Multiobjective Partic...Purpose–The purpose of this paper is to consider the concept of Fuzzy Radial Basis Function Neural Networks with Information Granulation(IG-FRBFNN)and their optimization realized by means of the Multiobjective Particle Swarm Optimization(MOPSO).Design/methodology/approach–In fuzzy modeling,complexity,interpretability(or simplicity)as well as accuracy of the obtained model are essential design criteria.Since the performance of the IG-RBFNN model is directly affected by some parameters,such as the fuzzification coefficient used in the FCM,the number of rules and the orders of the polynomials in the consequent parts of the rules,the authors carry out both structural as well as parametric optimization of the network.A multi-objective Particle Swarm Optimization using Crowding Distance(MOPSO-CD)as well as O/WLS learning-based optimization are exploited to carry out the structural and parametric optimization of the model,respectively,while the optimization is of multiobjective character as it is aimed at the simultaneous minimization of complexity and maximization of accuracy.Findings–The performance of the proposed model is illustrated with the aid of three examples.The proposed optimization method leads to an accurate and highly interpretable fuzzy model.Originality/value–A MOPSO-CD as well as O/WLS learning-based optimization are exploited,respectively,to carry out the structural and parametric optimization of the model.As a result,the proposed methodology is interesting for designing an accurate and highly interpretable fuzzy model.展开更多
T-wave alternans (TWA) in surface electrocardiograph (ECG) signal is considered a marker of abnormal ventricular function which may be associated with ventricular tachy- cardia. Several methods have been developed...T-wave alternans (TWA) in surface electrocardiograph (ECG) signal is considered a marker of abnormal ventricular function which may be associated with ventricular tachy- cardia. Several methods have been developed in recent years to evaluate the important feature. One such method is known as modified moving average (MMA) analysis, which performs well for different levels of TWA, but it is sensitive to the noise in T-waves. In this paper we propose an improved MMA algorithm, which adds a stage of T-wave curve fitting for the MMA method before intermediate averaging. The curve fitting is performed by means of least square method technique. Our assessment study demon- strates the improved performance.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 61201452)
文摘A new method of predicting chaotic time series is presented based on a local Lyapunov exponent, by quantitatively measuring the exponential rate of separation or attraction of two infinitely close trajectories in state space. After recon- structing state space from one-dimensional chaotic time series, neighboring multiple-state vectors of the predicting point are selected to deduce the prediction formula by using the definition of the locaI Lyapunov exponent. Numerical simulations are carded out to test its effectiveness and verify its higher precision over two older methods. The effects of the number of referential state vectors and added noise on forecasting accuracy are also studied numerically.
基金supported by the National Natural Science Foundation of China for Distinguished Young Scholars (41404028)
文摘The block-diagonal least squares method, which theoretically has specific requirements for the observation data and the spatial distribution of its precision, plays an important role in ultra-high degree gravity field determination. On the basis of block-diagonal least squares method, three data processing strategies are employed to determine the gravity field models using three kinds of simulated global grid data with different noise spatial distri- bution in this paper. The numerical results show that when we employed the weight matrix corresponding to the noise of the observation data, the model computed by the least squares using the full normal matrix has much higher precision than the one estimated only using the block part of the normal matrix. The model computed by the block-diagonal least squares method without the weight matrix has slightly lower precision than the model computed using the rigorous least squares with the weight matrix. The result offers valuable reference to the using of block-diagonal least squares method in ultra-high gravity model determination.
基金This work was supported by National Research Foundation of Korea Grant funded by the Korean Government(NRF-2010-D00065)the Grant of the Korean Ministry of Education,Science and Technology(The Regional Core Research Program/Center of Healthcare Technology Development)the GRRC program of Gyeonggi province[GRRC SUWON 2011-B2,Center for U-city Security&Surveillance Technology].
文摘Purpose–The purpose of this paper is to consider the concept of Fuzzy Radial Basis Function Neural Networks with Information Granulation(IG-FRBFNN)and their optimization realized by means of the Multiobjective Particle Swarm Optimization(MOPSO).Design/methodology/approach–In fuzzy modeling,complexity,interpretability(or simplicity)as well as accuracy of the obtained model are essential design criteria.Since the performance of the IG-RBFNN model is directly affected by some parameters,such as the fuzzification coefficient used in the FCM,the number of rules and the orders of the polynomials in the consequent parts of the rules,the authors carry out both structural as well as parametric optimization of the network.A multi-objective Particle Swarm Optimization using Crowding Distance(MOPSO-CD)as well as O/WLS learning-based optimization are exploited to carry out the structural and parametric optimization of the model,respectively,while the optimization is of multiobjective character as it is aimed at the simultaneous minimization of complexity and maximization of accuracy.Findings–The performance of the proposed model is illustrated with the aid of three examples.The proposed optimization method leads to an accurate and highly interpretable fuzzy model.Originality/value–A MOPSO-CD as well as O/WLS learning-based optimization are exploited,respectively,to carry out the structural and parametric optimization of the model.As a result,the proposed methodology is interesting for designing an accurate and highly interpretable fuzzy model.
文摘T-wave alternans (TWA) in surface electrocardiograph (ECG) signal is considered a marker of abnormal ventricular function which may be associated with ventricular tachy- cardia. Several methods have been developed in recent years to evaluate the important feature. One such method is known as modified moving average (MMA) analysis, which performs well for different levels of TWA, but it is sensitive to the noise in T-waves. In this paper we propose an improved MMA algorithm, which adds a stage of T-wave curve fitting for the MMA method before intermediate averaging. The curve fitting is performed by means of least square method technique. Our assessment study demon- strates the improved performance.