Nuclear mass is an important property in both nuclear and astrophysics.In this study,we explore an improved mass model that incorporates a higher-order term of symmetry energy using algorithms.The sequential least squ...Nuclear mass is an important property in both nuclear and astrophysics.In this study,we explore an improved mass model that incorporates a higher-order term of symmetry energy using algorithms.The sequential least squares programming(SLSQP)algorithm augments the precision of this multinomial mass model by reducing the error from 1.863 MeV to 1.631 MeV.These algorithms were further examined using 200 sample mass formulae derived from theδE term of the E_(isospin) mass model.The SLSQP method exhibited superior performance compared to the other algorithms in terms of errors and convergence speed.This algorithm is advantageous for handling large-scale multiparameter optimization tasks in nuclear physics.展开更多
In the variance component estimation(VCE)of geodetic data,the problem of negative VCE is likely to occur.In the ordinary additive error model,there have been related studies to solve the problem of negative variance c...In the variance component estimation(VCE)of geodetic data,the problem of negative VCE is likely to occur.In the ordinary additive error model,there have been related studies to solve the problem of negative variance components.However,there is still no related research in the mixed additive and multiplicative random error model(MAMREM).Based on the MAMREM,this paper applies the nonnegative least squares variance component estimation(NNLS-VCE)algorithm to this model.The correlation formula and iterative algorithm of NNLS-VCE for MAMREM are derived.The problem of negative variance in VCE for MAMREM is solved.This paper uses the digital simulation example and the Digital Terrain Mode(DTM)to prove the proposed algorithm's validity.The experimental results demonstrated that the proposed algorithm can effectively correct the VCE in MAMREM when there is a negative VCE.展开更多
Weighted total least squares(WTLS)have been regarded as the standard tool for the errors-in-variables(EIV)model in which all the elements in the observation vector and the coefficient matrix are contaminated with rand...Weighted total least squares(WTLS)have been regarded as the standard tool for the errors-in-variables(EIV)model in which all the elements in the observation vector and the coefficient matrix are contaminated with random errors.However,in many geodetic applications,some elements are error-free and some random observations appear repeatedly in different positions in the augmented coefficient matrix.It is called the linear structured EIV(LSEIV)model.Two kinds of methods are proposed for the LSEIV model from functional and stochastic modifications.On the one hand,the functional part of the LSEIV model is modified into the errors-in-observations(EIO)model.On the other hand,the stochastic model is modified by applying the Moore-Penrose inverse of the cofactor matrix.The algorithms are derived through the Lagrange multipliers method and linear approximation.The estimation principles and iterative formula of the parameters are proven to be consistent.The first-order approximate variance-covariance matrix(VCM)of the parameters is also derived.A numerical example is given to compare the performances of our proposed three algorithms with the STLS approach.Afterwards,the least squares(LS),total least squares(TLS)and linear structured weighted total least squares(LSWTLS)solutions are compared and the accuracy evaluation formula is proven to be feasible and effective.Finally,the LSWTLS is applied to the field of deformation analysis,which yields a better result than the traditional LS and TLS estimations.展开更多
The selection of hyperparameters in regularized least squares plays an important role in large-scale system identification. The traditional methods for selecting hyperparameters are based on experience or marginal lik...The selection of hyperparameters in regularized least squares plays an important role in large-scale system identification. The traditional methods for selecting hyperparameters are based on experience or marginal likelihood maximization method, which are inaccurate or computationally expensive. In this paper, two posterior methods are proposed to select hyperparameters based on different prior knowledge (constraints), which can obtain the optimal hyperparameters using the optimization theory. Moreover, we also give the theoretical optimal constraints, and verify its effectiveness. Numerical simulation shows that the hyperparameters and parameter vector estimate obtained by the proposed methods are the optimal ones.展开更多
In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering comp...In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production.展开更多
One-class classification problem has become a popular problem in many fields, with a wide range of applications in anomaly detection, fault diagnosis, and face recognition. We investigate the one-class classification ...One-class classification problem has become a popular problem in many fields, with a wide range of applications in anomaly detection, fault diagnosis, and face recognition. We investigate the one-class classification problem for second-order tensor data. Traditional vector-based one-class classification methods such as one-class support vector machine (OCSVM) and least squares one-class support vector machine (LSOCSVM) have limitations when tensor is used as input data, so we propose a new tensor one-class classification method, LSOCSTM, which directly uses tensor as input data. On one hand, using tensor as input data not only enables to classify tensor data, but also for vector data, classifying it after high dimensionalizing it into tensor still improves the classification accuracy and overcomes the over-fitting problem. On the other hand, different from one-class support tensor machine (OCSTM), we use squared loss instead of the original loss function so that we solve a series of linear equations instead of quadratic programming problems. Therefore, we use the distance to the hyperplane as a metric for classification, and the proposed method is more accurate and faster compared to existing methods. The experimental results show the high efficiency of the proposed method compared with several state-of-the-art methods.展开更多
This article explores the comparison between the probability method and the least squares method in the design of linear predictive models. It points out that these two approaches have distinct theoretical foundations...This article explores the comparison between the probability method and the least squares method in the design of linear predictive models. It points out that these two approaches have distinct theoretical foundations and can lead to varied or similar results in terms of precision and performance under certain assumptions. The article underlines the importance of comparing these two approaches to choose the one best suited to the context, available data and modeling objectives.展开更多
In order to deal with the issue of huge computational cost very well in direct numerical simulation, the traditional response surface method (RSM) as a classical regression algorithm is used to approximate a functiona...In order to deal with the issue of huge computational cost very well in direct numerical simulation, the traditional response surface method (RSM) as a classical regression algorithm is used to approximate a functional relationship between the state variable and basic variables in reliability design. The algorithm has treated successfully some problems of implicit performance function in reliability analysis. However, its theoretical basis of empirical risk minimization narrows its range of applications for...展开更多
Regressive formulae to calculate the quantity of plant leaf area for 13 species of ornamental plants were set up based on investigation data of 30 species on 3 major public squares (Dongfeng square, Shengli square and...Regressive formulae to calculate the quantity of plant leaf area for 13 species of ornamental plants were set up based on investigation data of 30 species on 3 major public squares (Dongfeng square, Shengli square and Guandu square) in Kun-ming City, China, which were applied to calculate quantities of plant leaf area of these 13 species. The quantities of plant leaf area for the other 17 ornamental plant species on these squares were directly measured, and the total quantity of plant leaf area of each studied square was obtained individually. The results showed that the quantity of plant leaf area on Shengli square with ornamental plants structure composed of arbor tree species, shrub tree species and turf grass was highest among the three squares. It is believed that the design model of multi-storied vertical structure and proper tending of plant community could not only increase the quantity of plant leaf area, but also play an important role in generating ecological and landscaping benefits. Some corresponding suggestions were put forward on the basis of comprehensive analyses on the plant leaf area quantity of the three representative squares in Kunming urban area.展开更多
A simple and effective mechanism is proposed to realize the parsimoniousness of the online least squares support vector regression (LS-SVR), and the approach is called the OPLS-SVR for short. Hence, the response tim...A simple and effective mechanism is proposed to realize the parsimoniousness of the online least squares support vector regression (LS-SVR), and the approach is called the OPLS-SVR for short. Hence, the response time is curtailed. Besides, an OPLS-SVR based analytical redundancy technique is presented to cope with the sensor failure and drift problems to guarantee that the provided signals for the aeroengine controller are correct and acceptable. Experiments on the sensor failure and drift show the effectiveness and the validity of the proposed analytical redundancy.展开更多
A thrust estimator with high precision and excellent real-time performance is needed to mitigate perfor- mance deterioration for future aero-engines. A weight least squares support vector regression is proposed using ...A thrust estimator with high precision and excellent real-time performance is needed to mitigate perfor- mance deterioration for future aero-engines. A weight least squares support vector regression is proposed using a novel weighting strategy. Then a thrust estimator based on the proposed regression is designed for the perfor- mance deterioration. Compared with the existing weighting strategy, the novel one not only satisfies the require- ment of precision but also enhances the real-time performance. Finally, numerical experiments demonstrate the effectiveness and feasibility of the proposed weighted least squares support vector regression for thrust estimator. Key words : intelligent engine control; least squares ; support vector machine ; performance deterioration展开更多
A polynomial model, time origin shifting model(TOSM, is used to describe the trajectory of a moving target .Based on TOSM, a recursive laeast squares(RLS) algorithm with varied forgetting factor is derived for tracki...A polynomial model, time origin shifting model(TOSM, is used to describe the trajectory of a moving target .Based on TOSM, a recursive laeast squares(RLS) algorithm with varied forgetting factor is derived for tracking of a non-maneuvering target. In order to apply this algorithm to maneuvering targets tracking ,a tracking signal is performed on-line to determine what kind of TOSm will be in effect to track a target with different dynamics. An effective multiple model least squares filtering and forecasting method dadpted to real tracking of a maneuvering target is formulated. The algorithm is computationally more effcient than Kalman filter and the percentage improvement from simulations show both of them are considerably alike to some extent.展开更多
In order to realize direct thrust control instead of conventional sensors-based control for aero-engine, a thrust estimator with high accuracy is designed by using the boosting technique to improve the performance of ...In order to realize direct thrust control instead of conventional sensors-based control for aero-engine, a thrust estimator with high accuracy is designed by using the boosting technique to improve the performance of least squares support vector regression (LSSVR). There exist two distinct features compared with the conven- tional boosting technique: (1) Sampling without replacement is used to avoid numerical instability for modeling LSSVR. (2) To realize the sparseness of LSSVR and reduce the computational complexity, only a subset of the training samples is used to construct LSSVR. Thus, this boosting method for LSSVR is called the boosting sparse LSSVR (BSLSSVR). Finally, simulation results show that BSLSSVR-based thrust estimator can satisfy the requirement of direct thrust control, i.e. , maximum absolute value of relative error of thrust estimation is not more than 5‰.展开更多
At the early stages of deep-water oil exploration and development, fewer and further apart wells are drilled than in onshore oilfields. Supervised least squares support vector machine algorithms are used to predict th...At the early stages of deep-water oil exploration and development, fewer and further apart wells are drilled than in onshore oilfields. Supervised least squares support vector machine algorithms are used to predict the reservoir parameters but the prediction accuracy is low. We combined the least squares support vector machine (LSSVM) algorithm with semi-supervised learning and established a semi-supervised regression model, which we call the semi-supervised least squares support vector machine (SLSSVM) model. The iterative matrix inversion is also introduced to improve the training ability and training time of the model. We use the UCI data to test the generalization of a semi-supervised and a supervised LSSVM models. The test results suggest that the generalization performance of the LSSVM model greatly improves and with decreasing training samples the generalization performance is better. Moreover, for small-sample models, the SLSSVM method has higher precision than the semi-supervised K-nearest neighbor (SKNN) method. The new semi- supervised LSSVM algorithm was used to predict the distribution of porosity and sandstone in the Jingzhou study area.展开更多
Modern urban square landscapes have been evolved to be with more regional and cultural features, yet the phenomenon of duplication is serious in urban square landscapes in China. In this study, the connotation of indi...Modern urban square landscapes have been evolved to be with more regional and cultural features, yet the phenomenon of duplication is serious in urban square landscapes in China. In this study, the connotation of indigenous landscape is analyzed from the perspectives of local culture, integration of Chinese and western cultures, folk cultures and modern marketing, the causes of duplicated urban square landscapes are thoroughly elaborated. In view of the deficiencies of modern urban square landscapes, it is proposed that local plants, local ornamental materials and patterns should be fully applied in square designs, and the expression of detail landscapes should be attached sufficient importance, to completely demonstrate regional features of landscapes and better apply indigenous landscapes into the design of modern urban squares.展开更多
Urban squares are significant nodes of urban spaces, which should be able to improve urban ecological environment and provide residents with outdoor activity spaces. The authors studied some excellent square designs i...Urban squares are significant nodes of urban spaces, which should be able to improve urban ecological environment and provide residents with outdoor activity spaces. The authors studied some excellent square designs in Inner Mongolia, China and even overseas countries, summarized the standards of "best urban squares" in vision, culture, craft, human-concerned design, science and technology, and then applied such standards in the landscape design of Central Plaza in Zhungeer Banner. Through analyzing surrounding environment and constructions, design schemes with regional and cultural features were created to provide references for designing better green square landscapes which can demonstrate local cultural context and regional cultures, are moderate in size, diversified in spatial form and closely integrated with the social life of citizens.展开更多
Considering chaotic time series multi-step prediction, multi-step direct prediction model based on partial least squares (PLS) is proposed in this article, where PLS, the method for predicting a set of dependent var...Considering chaotic time series multi-step prediction, multi-step direct prediction model based on partial least squares (PLS) is proposed in this article, where PLS, the method for predicting a set of dependent variables forming a large set of predictors, is used to model the dynamic evolution between the space points and the corresponding future points. The model can eliminate error accumulation with the common single-step local model algorithm~ and refrain from the high multi-collinearity problem in the reconstructed state space with the increase of embedding dimension. Simulation predictions are done on the Mackey-Glass chaotic time series with the model. The satisfying prediction accuracy is obtained and the model efficiency verified. In the experiments, the number of extracted components in PLS is set with cross-validation procedure.展开更多
To better understand the migration behavior of plastic fragments in the environment,development of rapid non-destructive methods for in-situ identification and characterization of plastic fragments is necessary.Howeve...To better understand the migration behavior of plastic fragments in the environment,development of rapid non-destructive methods for in-situ identification and characterization of plastic fragments is necessary.However,most of the studies had focused only on colored plastic fragments,ignoring colorless plastic fragments and the effects of different environmental media(backgrounds),thus underestimating their abundance.To address this issue,the present study used near-infrared spectroscopy to compare the identification of colored and colorless plastic fragments based on partial least squares-discriminant analysis(PLS-DA),extreme gradient boost,support vector machine and random forest classifier.The effects of polymer color,type,thickness,and background on the plastic fragments classification were evaluated.PLS-DA presented the best and most stable outcome,with higher robustness and lower misclassification rate.All models frequently misinterpreted colorless plastic fragments and its background when the fragment thickness was less than 0.1mm.A two-stage modeling method,which first distinguishes the plastic types and then identifies colorless plastic fragments that had been misclassified as background,was proposed.The method presented an accuracy higher than 99%in different backgrounds.In summary,this study developed a novel method for rapid and synchronous identification of colored and colorless plastic fragments under complex environmental backgrounds.展开更多
基金supported by the National Natural Science Foundation of China(Nos.U2267205 and 12475124)a ZSTU intramural grant(22062267-Y)Excellent Graduate Thesis Cultivation Fund(LW-YP2024011).
文摘Nuclear mass is an important property in both nuclear and astrophysics.In this study,we explore an improved mass model that incorporates a higher-order term of symmetry energy using algorithms.The sequential least squares programming(SLSQP)algorithm augments the precision of this multinomial mass model by reducing the error from 1.863 MeV to 1.631 MeV.These algorithms were further examined using 200 sample mass formulae derived from theδE term of the E_(isospin) mass model.The SLSQP method exhibited superior performance compared to the other algorithms in terms of errors and convergence speed.This algorithm is advantageous for handling large-scale multiparameter optimization tasks in nuclear physics.
基金supported by the National Natural Science Foundation of China(No.42174011)。
文摘In the variance component estimation(VCE)of geodetic data,the problem of negative VCE is likely to occur.In the ordinary additive error model,there have been related studies to solve the problem of negative variance components.However,there is still no related research in the mixed additive and multiplicative random error model(MAMREM).Based on the MAMREM,this paper applies the nonnegative least squares variance component estimation(NNLS-VCE)algorithm to this model.The correlation formula and iterative algorithm of NNLS-VCE for MAMREM are derived.The problem of negative variance in VCE for MAMREM is solved.This paper uses the digital simulation example and the Digital Terrain Mode(DTM)to prove the proposed algorithm's validity.The experimental results demonstrated that the proposed algorithm can effectively correct the VCE in MAMREM when there is a negative VCE.
基金the financial support of the National Natural Science Foundation of China(Grant No.42074016,42104025,42274057and 41704007)Hunan Provincial Natural Science Foundation of China(Grant No.2021JJ30244)Scientific Research Fund of Hunan Provincial Education Department(Grant No.22B0496)。
文摘Weighted total least squares(WTLS)have been regarded as the standard tool for the errors-in-variables(EIV)model in which all the elements in the observation vector and the coefficient matrix are contaminated with random errors.However,in many geodetic applications,some elements are error-free and some random observations appear repeatedly in different positions in the augmented coefficient matrix.It is called the linear structured EIV(LSEIV)model.Two kinds of methods are proposed for the LSEIV model from functional and stochastic modifications.On the one hand,the functional part of the LSEIV model is modified into the errors-in-observations(EIO)model.On the other hand,the stochastic model is modified by applying the Moore-Penrose inverse of the cofactor matrix.The algorithms are derived through the Lagrange multipliers method and linear approximation.The estimation principles and iterative formula of the parameters are proven to be consistent.The first-order approximate variance-covariance matrix(VCM)of the parameters is also derived.A numerical example is given to compare the performances of our proposed three algorithms with the STLS approach.Afterwards,the least squares(LS),total least squares(TLS)and linear structured weighted total least squares(LSWTLS)solutions are compared and the accuracy evaluation formula is proven to be feasible and effective.Finally,the LSWTLS is applied to the field of deformation analysis,which yields a better result than the traditional LS and TLS estimations.
文摘The selection of hyperparameters in regularized least squares plays an important role in large-scale system identification. The traditional methods for selecting hyperparameters are based on experience or marginal likelihood maximization method, which are inaccurate or computationally expensive. In this paper, two posterior methods are proposed to select hyperparameters based on different prior knowledge (constraints), which can obtain the optimal hyperparameters using the optimization theory. Moreover, we also give the theoretical optimal constraints, and verify its effectiveness. Numerical simulation shows that the hyperparameters and parameter vector estimate obtained by the proposed methods are the optimal ones.
文摘In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production.
文摘One-class classification problem has become a popular problem in many fields, with a wide range of applications in anomaly detection, fault diagnosis, and face recognition. We investigate the one-class classification problem for second-order tensor data. Traditional vector-based one-class classification methods such as one-class support vector machine (OCSVM) and least squares one-class support vector machine (LSOCSVM) have limitations when tensor is used as input data, so we propose a new tensor one-class classification method, LSOCSTM, which directly uses tensor as input data. On one hand, using tensor as input data not only enables to classify tensor data, but also for vector data, classifying it after high dimensionalizing it into tensor still improves the classification accuracy and overcomes the over-fitting problem. On the other hand, different from one-class support tensor machine (OCSTM), we use squared loss instead of the original loss function so that we solve a series of linear equations instead of quadratic programming problems. Therefore, we use the distance to the hyperplane as a metric for classification, and the proposed method is more accurate and faster compared to existing methods. The experimental results show the high efficiency of the proposed method compared with several state-of-the-art methods.
文摘This article explores the comparison between the probability method and the least squares method in the design of linear predictive models. It points out that these two approaches have distinct theoretical foundations and can lead to varied or similar results in terms of precision and performance under certain assumptions. The article underlines the importance of comparing these two approaches to choose the one best suited to the context, available data and modeling objectives.
基金National High-tech Research and Development Pro-gram (2006AA04Z405)
文摘In order to deal with the issue of huge computational cost very well in direct numerical simulation, the traditional response surface method (RSM) as a classical regression algorithm is used to approximate a functional relationship between the state variable and basic variables in reliability design. The algorithm has treated successfully some problems of implicit performance function in reliability analysis. However, its theoretical basis of empirical risk minimization narrows its range of applications for...
基金This research was sponsored by Educational Department of Yunnan Province (No. 03Z583B).
文摘Regressive formulae to calculate the quantity of plant leaf area for 13 species of ornamental plants were set up based on investigation data of 30 species on 3 major public squares (Dongfeng square, Shengli square and Guandu square) in Kun-ming City, China, which were applied to calculate quantities of plant leaf area of these 13 species. The quantities of plant leaf area for the other 17 ornamental plant species on these squares were directly measured, and the total quantity of plant leaf area of each studied square was obtained individually. The results showed that the quantity of plant leaf area on Shengli square with ornamental plants structure composed of arbor tree species, shrub tree species and turf grass was highest among the three squares. It is believed that the design model of multi-storied vertical structure and proper tending of plant community could not only increase the quantity of plant leaf area, but also play an important role in generating ecological and landscaping benefits. Some corresponding suggestions were put forward on the basis of comprehensive analyses on the plant leaf area quantity of the three representative squares in Kunming urban area.
基金Supported by the National Natural Science Foundation of China(50576033)the Aeronautical ScienceFoundation of China(04C52019)~~
文摘A simple and effective mechanism is proposed to realize the parsimoniousness of the online least squares support vector regression (LS-SVR), and the approach is called the OPLS-SVR for short. Hence, the response time is curtailed. Besides, an OPLS-SVR based analytical redundancy technique is presented to cope with the sensor failure and drift problems to guarantee that the provided signals for the aeroengine controller are correct and acceptable. Experiments on the sensor failure and drift show the effectiveness and the validity of the proposed analytical redundancy.
基金Supported by the National Natural Science Foundation of China(51006052)the Nanjing University of Science and Technology Outstanding Scholar Supporting Program~~
文摘A thrust estimator with high precision and excellent real-time performance is needed to mitigate perfor- mance deterioration for future aero-engines. A weight least squares support vector regression is proposed using a novel weighting strategy. Then a thrust estimator based on the proposed regression is designed for the perfor- mance deterioration. Compared with the existing weighting strategy, the novel one not only satisfies the require- ment of precision but also enhances the real-time performance. Finally, numerical experiments demonstrate the effectiveness and feasibility of the proposed weighted least squares support vector regression for thrust estimator. Key words : intelligent engine control; least squares ; support vector machine ; performance deterioration
文摘A polynomial model, time origin shifting model(TOSM, is used to describe the trajectory of a moving target .Based on TOSM, a recursive laeast squares(RLS) algorithm with varied forgetting factor is derived for tracking of a non-maneuvering target. In order to apply this algorithm to maneuvering targets tracking ,a tracking signal is performed on-line to determine what kind of TOSm will be in effect to track a target with different dynamics. An effective multiple model least squares filtering and forecasting method dadpted to real tracking of a maneuvering target is formulated. The algorithm is computationally more effcient than Kalman filter and the percentage improvement from simulations show both of them are considerably alike to some extent.
基金Supported by the National Natural Science Foundation of China(50576033)the Aeronautical Science Foundation of China(04C52019)~~
文摘In order to realize direct thrust control instead of conventional sensors-based control for aero-engine, a thrust estimator with high accuracy is designed by using the boosting technique to improve the performance of least squares support vector regression (LSSVR). There exist two distinct features compared with the conven- tional boosting technique: (1) Sampling without replacement is used to avoid numerical instability for modeling LSSVR. (2) To realize the sparseness of LSSVR and reduce the computational complexity, only a subset of the training samples is used to construct LSSVR. Thus, this boosting method for LSSVR is called the boosting sparse LSSVR (BSLSSVR). Finally, simulation results show that BSLSSVR-based thrust estimator can satisfy the requirement of direct thrust control, i.e. , maximum absolute value of relative error of thrust estimation is not more than 5‰.
基金supported by the "12th Five Year Plan" National Science and Technology Major Special Subject:Well Logging Data and Seismic Data Fusion Technology Research(No.2011ZX05023-005-006)
文摘At the early stages of deep-water oil exploration and development, fewer and further apart wells are drilled than in onshore oilfields. Supervised least squares support vector machine algorithms are used to predict the reservoir parameters but the prediction accuracy is low. We combined the least squares support vector machine (LSSVM) algorithm with semi-supervised learning and established a semi-supervised regression model, which we call the semi-supervised least squares support vector machine (SLSSVM) model. The iterative matrix inversion is also introduced to improve the training ability and training time of the model. We use the UCI data to test the generalization of a semi-supervised and a supervised LSSVM models. The test results suggest that the generalization performance of the LSSVM model greatly improves and with decreasing training samples the generalization performance is better. Moreover, for small-sample models, the SLSSVM method has higher precision than the semi-supervised K-nearest neighbor (SKNN) method. The new semi- supervised LSSVM algorithm was used to predict the distribution of porosity and sandstone in the Jingzhou study area.
文摘Modern urban square landscapes have been evolved to be with more regional and cultural features, yet the phenomenon of duplication is serious in urban square landscapes in China. In this study, the connotation of indigenous landscape is analyzed from the perspectives of local culture, integration of Chinese and western cultures, folk cultures and modern marketing, the causes of duplicated urban square landscapes are thoroughly elaborated. In view of the deficiencies of modern urban square landscapes, it is proposed that local plants, local ornamental materials and patterns should be fully applied in square designs, and the expression of detail landscapes should be attached sufficient importance, to completely demonstrate regional features of landscapes and better apply indigenous landscapes into the design of modern urban squares.
基金Supported by Tianjin Municipal Artistic and Scientific Planning Foundation (C08054)~~
文摘Urban squares are significant nodes of urban spaces, which should be able to improve urban ecological environment and provide residents with outdoor activity spaces. The authors studied some excellent square designs in Inner Mongolia, China and even overseas countries, summarized the standards of "best urban squares" in vision, culture, craft, human-concerned design, science and technology, and then applied such standards in the landscape design of Central Plaza in Zhungeer Banner. Through analyzing surrounding environment and constructions, design schemes with regional and cultural features were created to provide references for designing better green square landscapes which can demonstrate local cultural context and regional cultures, are moderate in size, diversified in spatial form and closely integrated with the social life of citizens.
文摘Considering chaotic time series multi-step prediction, multi-step direct prediction model based on partial least squares (PLS) is proposed in this article, where PLS, the method for predicting a set of dependent variables forming a large set of predictors, is used to model the dynamic evolution between the space points and the corresponding future points. The model can eliminate error accumulation with the common single-step local model algorithm~ and refrain from the high multi-collinearity problem in the reconstructed state space with the increase of embedding dimension. Simulation predictions are done on the Mackey-Glass chaotic time series with the model. The satisfying prediction accuracy is obtained and the model efficiency verified. In the experiments, the number of extracted components in PLS is set with cross-validation procedure.
基金supported by the National Natural Science Foundation of China(No.22276139)the Shanghai’s Municipal State-owned Assets Supervision and Administration Commission(No.2022028).
文摘To better understand the migration behavior of plastic fragments in the environment,development of rapid non-destructive methods for in-situ identification and characterization of plastic fragments is necessary.However,most of the studies had focused only on colored plastic fragments,ignoring colorless plastic fragments and the effects of different environmental media(backgrounds),thus underestimating their abundance.To address this issue,the present study used near-infrared spectroscopy to compare the identification of colored and colorless plastic fragments based on partial least squares-discriminant analysis(PLS-DA),extreme gradient boost,support vector machine and random forest classifier.The effects of polymer color,type,thickness,and background on the plastic fragments classification were evaluated.PLS-DA presented the best and most stable outcome,with higher robustness and lower misclassification rate.All models frequently misinterpreted colorless plastic fragments and its background when the fragment thickness was less than 0.1mm.A two-stage modeling method,which first distinguishes the plastic types and then identifies colorless plastic fragments that had been misclassified as background,was proposed.The method presented an accuracy higher than 99%in different backgrounds.In summary,this study developed a novel method for rapid and synchronous identification of colored and colorless plastic fragments under complex environmental backgrounds.