The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ...The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.展开更多
随着先进工艺和技术的不断进步,要想保证数据在高速传输中的正确性,均衡器需要有更高的补偿和更低的功耗,才能实现高效通信。基于12 nm互补金属氧化物半导体工艺,设计了一种高增益、低功耗的自适应连续时间线性均衡器(continuous time l...随着先进工艺和技术的不断进步,要想保证数据在高速传输中的正确性,均衡器需要有更高的补偿和更低的功耗,才能实现高效通信。基于12 nm互补金属氧化物半导体工艺,设计了一种高增益、低功耗的自适应连续时间线性均衡器(continuous time linear equalizer,CTLE),该均衡器采用2级级联结构来补偿信道衰减,并提高接收信号的质量。此外,自适应模块通过采用符号-符号最小均方误差(sign-sign least mean square,SS-LMS)算法,使抽头系数加快了收敛速度。仿真结果表明,当传输速率为16 Gbit/s时,均衡器可以补偿-15.53 dB的半波特率通道衰减,均衡器系数在16×10^(4)个单元间隔数据内收敛,并且收敛之后接收误码率低于10^(-12)。展开更多
涡桨飞机座舱的主动噪声控制系统普遍采用传统的多通道滤波x最小均方(multichannel filtered-x least mean square,简称McFxLMS)算法,该算法的计算量随着通道数的增加而激增,严重影响控制效果。针对该问题,基于连续局部迭代-McFxLMS(seq...涡桨飞机座舱的主动噪声控制系统普遍采用传统的多通道滤波x最小均方(multichannel filtered-x least mean square,简称McFxLMS)算法,该算法的计算量随着通道数的增加而激增,严重影响控制效果。针对该问题,基于连续局部迭代-McFxLMS(sequential partial update-McFxLMS,简称SPU-McFxLMS)算法,开发了多通道主动噪声控制系统。SPU-McFxLMS算法通过更新部分滤波器权值,在保证收敛精度的同时能够显著降低计算复杂度。首先,对比分析了传统McFxLMS算法与SPU-McFxLMS算法的原理差异,通过理论推导证明其计算效率提升特性;其次,建立了算法仿真模型,通过仿真验证了理论分析结果;最后,基于SOM-TL6678核心板开发了16通道的主动噪声控制系统,并搭建飞机座舱地面模拟实验平台进行实验。结果表明,该系统在108 Hz和216 Hz双频噪声场景下,各位置的平均降噪量能够达到10 dB以上。展开更多
In order to improve the problem that the filtered-x least mean square(FxLMS)algorithm cannot take into account the convergence speed,steady-state error during active noise control.A piecewise variable step size FxLMS ...In order to improve the problem that the filtered-x least mean square(FxLMS)algorithm cannot take into account the convergence speed,steady-state error during active noise control.A piecewise variable step size FxLMS algorithm based on logarithmic function(PLFxLMS)is proposed,and the genetic algorithm are introduced to optimize the parameters of logarithmic variable step size FxLMS(LFxLMS),improved logarithmic variable step size Films(IFxLMS),and PLFxLMS algorithms.Bandlimited white noise is used as the input signal,FxLMS,LFxLMS,ILFxLMS,and PLFxLMS algorithms are used to conduct active noise control simulation,and the convergence speed and steady-state characteristic of four algorithms are comparatively analyzed.Compared with the other three algorithms,the PLFxLMS algorithm proposed in this paper has the fastest convergence speed,and small steady-state error.The PLFxLMS algorithm can effectively improve the convergence speed and steady-state error of the FxLMS algorithm that cannot be controlled at the same time,and achieve the optimal effect.展开更多
Nuclear mass is an important property in both nuclear and astrophysics.In this study,we explore an improved mass model that incorporates a higher-order term of symmetry energy using algorithms.The sequential least squ...Nuclear mass is an important property in both nuclear and astrophysics.In this study,we explore an improved mass model that incorporates a higher-order term of symmetry energy using algorithms.The sequential least squares programming(SLSQP)algorithm augments the precision of this multinomial mass model by reducing the error from 1.863 MeV to 1.631 MeV.These algorithms were further examined using 200 sample mass formulae derived from theδE term of the E_(isospin) mass model.The SLSQP method exhibited superior performance compared to the other algorithms in terms of errors and convergence speed.This algorithm is advantageous for handling large-scale multiparameter optimization tasks in nuclear physics.展开更多
The adaptive filtering algorithm with a fixed projection order is unable to adjust its performance in response to changes in the external environment of airborne radars.To overcome this limitation,a new approach is in...The adaptive filtering algorithm with a fixed projection order is unable to adjust its performance in response to changes in the external environment of airborne radars.To overcome this limitation,a new approach is introduced,which is the variable projection order Ekblom norm-promoted adaptive algorithm(VPO-EPAA).The method begins by examining the mean squared deviation(MSD)of the EPAA,deriving a formula for its MSD.Next,it compares the MSD of EPAA at two different projection orders and selects the one that minimizes the MSD as the parameter for the current iteration.Furthermore,the algorithm’s computational complexity is analyzed theoretically.Simulation results from system identification and self-interference cancellation show that the proposed algorithm performs exceptionally well in airborne radar signal self-interference cancellation,even under various noise intensities and types of interference.展开更多
We propose a theoretical framework,based on the two-component Gross-Pitaevskii equation(GPE),for the investigation of vortex solitons(VSs)in hybrid atomic-molecular Bose-Einstein condensates under the action of the st...We propose a theoretical framework,based on the two-component Gross-Pitaevskii equation(GPE),for the investigation of vortex solitons(VSs)in hybrid atomic-molecular Bose-Einstein condensates under the action of the stimulated Raman-induced photoassociation and square-optical-lattice potential.Stationary solutions of the coupled GPE system are obtained by means of the imaginary-time integration,while the temporal dynamics are simulated using the fourth-order Runge-Kutta algorithm.The analysis reveals stable rhombus-shaped VS shapes with topological charges m=1 and 2 of the atomic component.The stability domains and spatial structure of these VSs are governed by three key parameters:the parametric-coupling strength(χ),atomicmolecular interaction strength(g_(12)),and the optical-lattice potential depth(V_(0)).By varyingχand g_(12),we demonstrate a structural transition where four-core rhombus-shaped VSs evolve into eight-core square-shaped modes,highlighting the nontrivial nonlinear dynamics of the system.This work establishes a connection between interactions of cold atoms and topologically structured matter waves in hybrid quantum systems.展开更多
基金supported by the 2021 Open Project Fund of Science and Technology on Electromechanical Dynamic Control Laboratory,grant number 212-C-J-F-QT-2022-0020China Postdoctoral Science Foundation,grant number 2021M701713+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province,grant number KYCX23_0511the Jiangsu Funding Program for Excellent Postdoctoral Talent,grant number 20220ZB245。
文摘The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.
文摘随着先进工艺和技术的不断进步,要想保证数据在高速传输中的正确性,均衡器需要有更高的补偿和更低的功耗,才能实现高效通信。基于12 nm互补金属氧化物半导体工艺,设计了一种高增益、低功耗的自适应连续时间线性均衡器(continuous time linear equalizer,CTLE),该均衡器采用2级级联结构来补偿信道衰减,并提高接收信号的质量。此外,自适应模块通过采用符号-符号最小均方误差(sign-sign least mean square,SS-LMS)算法,使抽头系数加快了收敛速度。仿真结果表明,当传输速率为16 Gbit/s时,均衡器可以补偿-15.53 dB的半波特率通道衰减,均衡器系数在16×10^(4)个单元间隔数据内收敛,并且收敛之后接收误码率低于10^(-12)。
文摘涡桨飞机座舱的主动噪声控制系统普遍采用传统的多通道滤波x最小均方(multichannel filtered-x least mean square,简称McFxLMS)算法,该算法的计算量随着通道数的增加而激增,严重影响控制效果。针对该问题,基于连续局部迭代-McFxLMS(sequential partial update-McFxLMS,简称SPU-McFxLMS)算法,开发了多通道主动噪声控制系统。SPU-McFxLMS算法通过更新部分滤波器权值,在保证收敛精度的同时能够显著降低计算复杂度。首先,对比分析了传统McFxLMS算法与SPU-McFxLMS算法的原理差异,通过理论推导证明其计算效率提升特性;其次,建立了算法仿真模型,通过仿真验证了理论分析结果;最后,基于SOM-TL6678核心板开发了16通道的主动噪声控制系统,并搭建飞机座舱地面模拟实验平台进行实验。结果表明,该系统在108 Hz和216 Hz双频噪声场景下,各位置的平均降噪量能够达到10 dB以上。
文摘In order to improve the problem that the filtered-x least mean square(FxLMS)algorithm cannot take into account the convergence speed,steady-state error during active noise control.A piecewise variable step size FxLMS algorithm based on logarithmic function(PLFxLMS)is proposed,and the genetic algorithm are introduced to optimize the parameters of logarithmic variable step size FxLMS(LFxLMS),improved logarithmic variable step size Films(IFxLMS),and PLFxLMS algorithms.Bandlimited white noise is used as the input signal,FxLMS,LFxLMS,ILFxLMS,and PLFxLMS algorithms are used to conduct active noise control simulation,and the convergence speed and steady-state characteristic of four algorithms are comparatively analyzed.Compared with the other three algorithms,the PLFxLMS algorithm proposed in this paper has the fastest convergence speed,and small steady-state error.The PLFxLMS algorithm can effectively improve the convergence speed and steady-state error of the FxLMS algorithm that cannot be controlled at the same time,and achieve the optimal effect.
基金supported by the National Natural Science Foundation of China(Nos.U2267205 and 12475124)a ZSTU intramural grant(22062267-Y)Excellent Graduate Thesis Cultivation Fund(LW-YP2024011).
文摘Nuclear mass is an important property in both nuclear and astrophysics.In this study,we explore an improved mass model that incorporates a higher-order term of symmetry energy using algorithms.The sequential least squares programming(SLSQP)algorithm augments the precision of this multinomial mass model by reducing the error from 1.863 MeV to 1.631 MeV.These algorithms were further examined using 200 sample mass formulae derived from theδE term of the E_(isospin) mass model.The SLSQP method exhibited superior performance compared to the other algorithms in terms of errors and convergence speed.This algorithm is advantageous for handling large-scale multiparameter optimization tasks in nuclear physics.
基金supported by the Shan⁃dong Provincial Natural Science Foundation(No.ZR2022MF314).
文摘The adaptive filtering algorithm with a fixed projection order is unable to adjust its performance in response to changes in the external environment of airborne radars.To overcome this limitation,a new approach is introduced,which is the variable projection order Ekblom norm-promoted adaptive algorithm(VPO-EPAA).The method begins by examining the mean squared deviation(MSD)of the EPAA,deriving a formula for its MSD.Next,it compares the MSD of EPAA at two different projection orders and selects the one that minimizes the MSD as the parameter for the current iteration.Furthermore,the algorithm’s computational complexity is analyzed theoretically.Simulation results from system identification and self-interference cancellation show that the proposed algorithm performs exceptionally well in airborne radar signal self-interference cancellation,even under various noise intensities and types of interference.
基金supported by the National Natural Science Foundation of China(Grant No.62275075)the Natural Science Foundation of Hubei Soliton Research Association(Grant No.2025HBSRA09)+1 种基金joint supported by Hubei Provincial Natural Science Foundation and Xianning of China(Grant Nos.2025AFD401 and 2025AFD405)Israel Science Foundation(Grant No.1695/22).
文摘We propose a theoretical framework,based on the two-component Gross-Pitaevskii equation(GPE),for the investigation of vortex solitons(VSs)in hybrid atomic-molecular Bose-Einstein condensates under the action of the stimulated Raman-induced photoassociation and square-optical-lattice potential.Stationary solutions of the coupled GPE system are obtained by means of the imaginary-time integration,while the temporal dynamics are simulated using the fourth-order Runge-Kutta algorithm.The analysis reveals stable rhombus-shaped VS shapes with topological charges m=1 and 2 of the atomic component.The stability domains and spatial structure of these VSs are governed by three key parameters:the parametric-coupling strength(χ),atomicmolecular interaction strength(g_(12)),and the optical-lattice potential depth(V_(0)).By varyingχand g_(12),we demonstrate a structural transition where four-core rhombus-shaped VSs evolve into eight-core square-shaped modes,highlighting the nontrivial nonlinear dynamics of the system.This work establishes a connection between interactions of cold atoms and topologically structured matter waves in hybrid quantum systems.