Random vibration control is aimed at reproducing the power spectral density (PSD) at specified control points. The classical frequency-spectrum equalization algorithm needs to compute the average of the multiple fre...Random vibration control is aimed at reproducing the power spectral density (PSD) at specified control points. The classical frequency-spectrum equalization algorithm needs to compute the average of the multiple frequency response functions (FRFs), which lengthens the control loop time in the equalization process. Likewise, the feedback control algorithm has a very slow convergence rate due to the small value of the feedback gain parameter to ensure stability of the system. To overcome these limitations, an adaptive inverse control of random vibrations based on the filtered-X least mean-square (LMS) algorithm is proposed. Furthermore, according to the description and iteration characteristics of random vibration tests in the frequency domain, the frequency domain LMS algorithm is adopted to refine the inverse characteristics of the FRF instead of the traditional time domain LMS algorithm. This inverse characteristic, which is called the impedance function of the system under control, is used to update the drive PSD directly. The test results indicated that in addition to successfully avoiding the instability problem that occurs during the iteration process, the adaptive control strategy minimizes the amount of time needed to obtain a short control loop and achieve equalization.展开更多
A Matrix Inversion Normalized Least Mean Square (MI-NLMS) adaptive beamforming algorithm was developed for smart antenna application. The MI-NLMS which combined the individual good aspects of Sample Matrix Inversion (...A Matrix Inversion Normalized Least Mean Square (MI-NLMS) adaptive beamforming algorithm was developed for smart antenna application. The MI-NLMS which combined the individual good aspects of Sample Matrix Inversion (SMI) and the Normalized Least Mean Square (NLMS) algorithms is described. Simulation results showed that the less complexity MI-NLMS yields 15 dB improvements in interference suppression and 5 dB gain enhancement over LMS algorithm, converges from the initial iteration and achieves 24% BER improvements at cochannel interference equal to 5. For the case of 4-element uniform linear array antenna, MI-NLMS achieved 76% BER reduction over LMS algorithm.展开更多
The contradiction of variable step size least mean square(LMS)algorithm between fast convergence speed and small steady-state error has always existed.So,a new algorithm based on the combination of logarithmic and sym...The contradiction of variable step size least mean square(LMS)algorithm between fast convergence speed and small steady-state error has always existed.So,a new algorithm based on the combination of logarithmic and symbolic function and step size factor is proposed.It establishes a new updating method of step factor that is related to step factor and error signal.This work makes an analysis from 3 aspects:theoretical analysis,theoretical verification and specific experiments.The experimental results show that the proposed algorithm is superior to other variable step size algorithms in convergence speed and steady-state error.展开更多
Underwater acoustic channels are recognized for being one of the most difficult propagation media due to considerable difficulties such as: multipath, ambient noise, time-frequency selective fading. The exploitation ...Underwater acoustic channels are recognized for being one of the most difficult propagation media due to considerable difficulties such as: multipath, ambient noise, time-frequency selective fading. The exploitation of sparsity contained in underwater acoustic channels provides a potential solution to improve the performance of underwater acoustic channel estimation. Compared with the classic 10 and 11 norm constraint LMS algorithms, the p-norm-like (Ip) constraint LMS algorithm proposed in our previous investigation exhibits better sparsity exploitation performance at the presence of channel variations, as it enables the adaptability to the sparseness by tuning of p parameter. However, the decimal exponential calculation associated with the p-norm-like constraint LMS algorithm poses considerable limitations in practical application. In this paper, a simplified variant of the p-norm-like constraint LMS was proposed with the employment of Newton iteration m to approximate the decimal exponential calculation. Num simulations and the experimental results obtained in physical shallow water channels demonstrate the effectiveness of the proposed method compared to traditional norm constraint LMS algorithms.展开更多
The automatic detection of cardiac arrhythmias through remote monitoring is still a challenging task since electrocardiograms(ECGs)are easily contaminated by physiological artifacts and external noises,and these morph...The automatic detection of cardiac arrhythmias through remote monitoring is still a challenging task since electrocardiograms(ECGs)are easily contaminated by physiological artifacts and external noises,and these morphological characteristics show significant variations for different patients.A fast patient-specific arrhythmia diagnosis classifier scheme is proposed,in which a wavelet adaptive threshold denoising is combined with quantum genetic algorithm(QAG)based on least squares twin support vector machine(LSTSVM).The wavelet adaptive threshold denoising is employed for noise reduction,and then morphological features combined with the timing interval features are extracted to evaluate the classifier.For each patient,an individual and fast classifier will be trained by common and patient-specific training data.Following the recommendations of the Association for the Advancements of Medical Instrumentation(AAMI),experimental results over the MIT-BIH arrhythmia benchmark database demonstrated that our proposed method achieved the average detection accuracy of 98.22%,99.65%and 99.41%for the abnormal,ventricular ectopic beats(VEBs)and supra-VEBs(SVEBs),respectively.Besides the detection accuracy,sensitivity and specificity,our proposed method consumes the less CPU running time compared with the other representative state of the art methods.It can be ported to Android based embedded system,henceforth suitable for a wearable device.展开更多
The Least Squares Residual(LSR)algorithm,one of the classical Receiver Autonomous Integrity Monitoring(RAIM)algorithms for Global Navigation Satellite System(GNSS),presents a high Missed Detection Risk(MDR)for a large...The Least Squares Residual(LSR)algorithm,one of the classical Receiver Autonomous Integrity Monitoring(RAIM)algorithms for Global Navigation Satellite System(GNSS),presents a high Missed Detection Risk(MDR)for a large-slope faulty satellite and a high False Alarm Risk(FAR)for a small-slope faulty satellite.From the theoretical analysis of the high MDR and FAR cause,the optimal slope is determined,and thereby the optimal test statistic for fault detection is conceived,which can minimize the FAR with the MDR not exceeding its allowable value.To construct a test statistic approximate to the optimal one,the CorrelationWeighted LSR(CW-LSR)algorithm is proposed.The CW-LSR test statistic remains the sum of pseudorange residual squares,but the square for the most potentially faulty satellite,judged by correlation analysis between the pseudorange residual and observation error,is weighted with an optimal-slope-based factor.It does not obey the same distribution but has the same noncentral parameter with the optimal test statistic.The superior performance of the CW-LSR algorithm is verified via simulation,both reducing the FAR for a small-slope faulty satellite with the MDR not exceeding its allowable value and reducing the MDR for a large-slope faulty satellite at the expense of FAR addition.展开更多
This paper proposes a novel de-noising algorithm based on ensemble empirical mode decomposition(EEMD) and the variable step size least mean square(VS-LMS) adaptive filter.The noise of the high frequency part of spectr...This paper proposes a novel de-noising algorithm based on ensemble empirical mode decomposition(EEMD) and the variable step size least mean square(VS-LMS) adaptive filter.The noise of the high frequency part of spectrum will be removed through EEMD,and then the VS-LMS algorithm is utilized for overall de-noising.The EEMD combined with VS-LMS algorithm can not only preserve the detail and envelope of the effective signal,but also improve the system stability.When the method is used on pure R6G,the signal-to-noise ratio(SNR) of Raman spectrum is lower than 10dB.The de-noising superiority of the proposed method in Raman spectrum can be verified by three evaluation standards of SNR,root mean square error(RMSE) and the correlation coefficient ρ.展开更多
The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ...The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.展开更多
A quantitative structure-activity relationships (QSAR) study is suggested for the prediction of solubility of some thiazolidine-4- carboxylic acid derivatives in aqueous solution. Ab initio theory was used to calcul...A quantitative structure-activity relationships (QSAR) study is suggested for the prediction of solubility of some thiazolidine-4- carboxylic acid derivatives in aqueous solution. Ab initio theory was used to calculate some quantum chemical descriptors including electrostatic potentials and local charges at each atom, HOMO and LUMO energies, etc. Modeling of the solubility of thiazolidine- 4-carboxylic acid derivatives as a function of molecular structures was established by means of the partial least squares (PLS). The subset of descriptors, which resulted in the low prediction error, was selected by genetic algorithm. This model was applied for the prediction of the solubility of some thiazolidine-4-carboxylic acid derivatives, which were not in the modeling procedure. The relative errors of prediction lower that -4% was obtained by using GA-PLS method. The resulted model showed high prediction ability with RMSEP of 3.8836 and 2.9500 for PLS and GA-PLS models, respectively.展开更多
The least means squares (LMS) adaptive filter algorithm was used in active suspension system. By adjusting the weight of adaptive filter, the minimum quadratic performance index was obtained. For two-degree-of-freed...The least means squares (LMS) adaptive filter algorithm was used in active suspension system. By adjusting the weight of adaptive filter, the minimum quadratic performance index was obtained. For two-degree-of-freedom vehicle suspension model, LMS adaptive controller was designed. The acceleration of the sprung mass,the dynamic tyre load between wheels and road,and the dynamic deflection between sprung mass and unsprung mass were determined as the evaluation targets of suspension performance. For LMS adaptive control suspension, compared with passive suspension, acceleration power spectral density of sprung mass acceleration under the road input model decreased 8-10 times in high frequency resonance band or low frequency resonance band. The simulation results show that LMS adaptive control is simple and remarkably effective. It further proves that the active control suspension system can improve both the riding comfort and handling safety in various operation conditions, and the method is fit for the active control of the suspension system.展开更多
The Least Squares Residual(LSR)algorithm is commonly used in the Receiver Autonomous Integrity Monitoring(RAIM).However,LSR algorithm presents high Missed Detection Risk(MDR)caused by a large-slope faulty satellite an...The Least Squares Residual(LSR)algorithm is commonly used in the Receiver Autonomous Integrity Monitoring(RAIM).However,LSR algorithm presents high Missed Detection Risk(MDR)caused by a large-slope faulty satellite and high False Alert Risk(FAR)caused by a small-slope faulty satellite.In this paper,the LSR algorithm is improved to reduce the MDR for a large-slope faulty satellite and the FAR for a small-slope faulty satellite.Based on the analysis of the vertical critical slope,the optimal decentralized factor is defined and the optimal test statistic is conceived,which can minimize the FAR with the premise that the MDR does not exceed its allowable value of all three directions.To construct a new test statistic approximating to the optimal test statistic,the Optimal Decentralized Factor weighted LSR(ODF-LSR)algorithm is proposed.The new test statistic maintains the sum of pseudo-range residual squares,but the specific pseudo-range residual is weighted with a parameter related to the optimal decentralized factor.The new test statistic has the same decentralized parameter with the optimal test statistic when single faulty satellite exists,and the difference between the expectation of the new test statistic and the optimal test statistic is the minimum when no faulty satellite exists.The performance of the ODFLSR algorithm is demonstrated by simulation experiments.展开更多
In an orthogonal frequency division multiplexing(OFDM) system,a time and frequency domain least mean square algorithm(TF-LMS) was proposed to cancel the frequency offset(FO).TF-LMS algorithm is composed of two stages....In an orthogonal frequency division multiplexing(OFDM) system,a time and frequency domain least mean square algorithm(TF-LMS) was proposed to cancel the frequency offset(FO).TF-LMS algorithm is composed of two stages.Firstly,time domain least mean square(TD-LMS) scheme was selected to pre-cancel the frequency offset in the time domain,and then the interference induced by residual frequency offset was eliminated by the frequency domain mean square(FD-LMS) scheme in frequency domain.The results of bit error rate(BER) and quadrature phase shift keying(QPSK) constellation figures show that the performance of the proposed suppression algorithm is excellent.展开更多
Aeromagnetic interference could not be compensated effectively if the precision of parameters which are solved by the aircraft magnetic field model is low. In order to improve the compensation effect under this condit...Aeromagnetic interference could not be compensated effectively if the precision of parameters which are solved by the aircraft magnetic field model is low. In order to improve the compensation effect under this condition, a method based on small signal model and least mean square(LMS) algorithm is proposed. According to the method, the initial values of adaptive filter's weight vector are calculated with the solved model parameters through small signal model at first,then the small amount of direction cosine and its derivative are set as the input of the filter, and the small amount of the interference is set as the filter's expected vector. After that, the aircraft magnetic interference is compensated by LMS algorithm. Finally, the method is verified by simulation and experiment. The result shows that the compensation effect can be improved obviously by the LMS algorithm when original solved parameters have low precision. The method can further improve the compensation effect even if the solved parameters have high precision.展开更多
By analyzing algorithms available for variable step size least mean square(LMS)adaptive filter,a new modified LMS adaptive filtering algorithm with variable step size is proposed,along with performance analysis based ...By analyzing algorithms available for variable step size least mean square(LMS)adaptive filter,a new modified LMS adaptive filtering algorithm with variable step size is proposed,along with performance analysis based on different parameters.Compared with the existing algorithms through the simulation,the proposed algorithm has faster convergence speed and smaller steady state error.展开更多
With the power system harmonic pollution problems becoming more and more serious, how to distinguish the harmonic responsibility accurately and solve the grid harmonics simply and effectively has become the main devel...With the power system harmonic pollution problems becoming more and more serious, how to distinguish the harmonic responsibility accurately and solve the grid harmonics simply and effectively has become the main development direction in harmonic control subjects. This paper, based on linear regression analysis of basic equation and improvement equation, deduced the least squares estimation (LSE) iterative algorithm and obtained the real-time estimates of regression coefficients, and then calculated the level of the harmonic impedance and emission estimates in real time. This paper used power system simulation software Matlab/Simulink as analysis tool and analyzed the user side of the harmonic amplitude and phase fluctuations PCC (point of common coupling) at the harmonic emission level, thus the research has a certain theoretical significance. The development of this algorithm combined with the instrument can be used in practical engineering.展开更多
The recursive least square is widely used in parameter identification. But if is easy to bring about the phenomena of parameters burst-off. A convergence analysis of a more stable identification algorithm-recursive da...The recursive least square is widely used in parameter identification. But if is easy to bring about the phenomena of parameters burst-off. A convergence analysis of a more stable identification algorithm-recursive damped least square is proposed. This is done by normalizing the measurement vector entering into the identification algorithm. rt is shown that the parametric distance converges to a zero mean random variable. It is also shown that under persistent excitation condition, the condition number of the adaptation gain matrix is bounded, and the variance of the parametric distance is bounded.展开更多
In this paper,the inter-symbol interference and eliminating method are introduced.After analyzing the principle of adaptive equalization,we designed an adaptive equalizer using the LMS algorithm,and constructed a simu...In this paper,the inter-symbol interference and eliminating method are introduced.After analyzing the principle of adaptive equalization,we designed an adaptive equalizer using the LMS algorithm,and constructed a simulation system using MATLAB.Then we analyzed the convergence speed and mean square error characteristic of the adaptive equalizer by changing the step length factor to test the performance of the algorithm.展开更多
基金Program for New Century Excellent Talents in Universities Under Grant No.NCET-04-0325
文摘Random vibration control is aimed at reproducing the power spectral density (PSD) at specified control points. The classical frequency-spectrum equalization algorithm needs to compute the average of the multiple frequency response functions (FRFs), which lengthens the control loop time in the equalization process. Likewise, the feedback control algorithm has a very slow convergence rate due to the small value of the feedback gain parameter to ensure stability of the system. To overcome these limitations, an adaptive inverse control of random vibrations based on the filtered-X least mean-square (LMS) algorithm is proposed. Furthermore, according to the description and iteration characteristics of random vibration tests in the frequency domain, the frequency domain LMS algorithm is adopted to refine the inverse characteristics of the FRF instead of the traditional time domain LMS algorithm. This inverse characteristic, which is called the impedance function of the system under control, is used to update the drive PSD directly. The test results indicated that in addition to successfully avoiding the instability problem that occurs during the iteration process, the adaptive control strategy minimizes the amount of time needed to obtain a short control loop and achieve equalization.
基金Project supported by the IRPA Secretariat, Ministry of Science,Technology and Environment of Malaysia (No. 04-02-02-0029) andthe Zamalah Scheme
文摘A Matrix Inversion Normalized Least Mean Square (MI-NLMS) adaptive beamforming algorithm was developed for smart antenna application. The MI-NLMS which combined the individual good aspects of Sample Matrix Inversion (SMI) and the Normalized Least Mean Square (NLMS) algorithms is described. Simulation results showed that the less complexity MI-NLMS yields 15 dB improvements in interference suppression and 5 dB gain enhancement over LMS algorithm, converges from the initial iteration and achieves 24% BER improvements at cochannel interference equal to 5. For the case of 4-element uniform linear array antenna, MI-NLMS achieved 76% BER reduction over LMS algorithm.
基金the National Natural Science Foundation of China(No.51575328,61503232).
文摘The contradiction of variable step size least mean square(LMS)algorithm between fast convergence speed and small steady-state error has always existed.So,a new algorithm based on the combination of logarithmic and symbolic function and step size factor is proposed.It establishes a new updating method of step factor that is related to step factor and error signal.This work makes an analysis from 3 aspects:theoretical analysis,theoretical verification and specific experiments.The experimental results show that the proposed algorithm is superior to other variable step size algorithms in convergence speed and steady-state error.
基金Supported by the National Natural Science Foundation of China (No.11274259) and the Specialized Research Foundation for the Doctoral Program of Higher Education of China (No.20120121110030).
文摘Underwater acoustic channels are recognized for being one of the most difficult propagation media due to considerable difficulties such as: multipath, ambient noise, time-frequency selective fading. The exploitation of sparsity contained in underwater acoustic channels provides a potential solution to improve the performance of underwater acoustic channel estimation. Compared with the classic 10 and 11 norm constraint LMS algorithms, the p-norm-like (Ip) constraint LMS algorithm proposed in our previous investigation exhibits better sparsity exploitation performance at the presence of channel variations, as it enables the adaptability to the sparseness by tuning of p parameter. However, the decimal exponential calculation associated with the p-norm-like constraint LMS algorithm poses considerable limitations in practical application. In this paper, a simplified variant of the p-norm-like constraint LMS was proposed with the employment of Newton iteration m to approximate the decimal exponential calculation. Num simulations and the experimental results obtained in physical shallow water channels demonstrate the effectiveness of the proposed method compared to traditional norm constraint LMS algorithms.
基金Supported by the National Natural Science Foundation of China(61571063)Key Scientific Research Projects of Colleges and Universities in Henan Province(20A510014)Key Scientific and Technological Projects in Henan Province。
文摘The automatic detection of cardiac arrhythmias through remote monitoring is still a challenging task since electrocardiograms(ECGs)are easily contaminated by physiological artifacts and external noises,and these morphological characteristics show significant variations for different patients.A fast patient-specific arrhythmia diagnosis classifier scheme is proposed,in which a wavelet adaptive threshold denoising is combined with quantum genetic algorithm(QAG)based on least squares twin support vector machine(LSTSVM).The wavelet adaptive threshold denoising is employed for noise reduction,and then morphological features combined with the timing interval features are extracted to evaluate the classifier.For each patient,an individual and fast classifier will be trained by common and patient-specific training data.Following the recommendations of the Association for the Advancements of Medical Instrumentation(AAMI),experimental results over the MIT-BIH arrhythmia benchmark database demonstrated that our proposed method achieved the average detection accuracy of 98.22%,99.65%and 99.41%for the abnormal,ventricular ectopic beats(VEBs)and supra-VEBs(SVEBs),respectively.Besides the detection accuracy,sensitivity and specificity,our proposed method consumes the less CPU running time compared with the other representative state of the art methods.It can be ported to Android based embedded system,henceforth suitable for a wearable device.
基金co-supported by the National Natural Science Foundation of China (Nos. 41804024, 41804026)the Open Fund of Shaanxi Key Laboratory of Integrated and Intelligent Navigation of China (No. SKLIIN-20190205)
文摘The Least Squares Residual(LSR)algorithm,one of the classical Receiver Autonomous Integrity Monitoring(RAIM)algorithms for Global Navigation Satellite System(GNSS),presents a high Missed Detection Risk(MDR)for a large-slope faulty satellite and a high False Alarm Risk(FAR)for a small-slope faulty satellite.From the theoretical analysis of the high MDR and FAR cause,the optimal slope is determined,and thereby the optimal test statistic for fault detection is conceived,which can minimize the FAR with the MDR not exceeding its allowable value.To construct a test statistic approximate to the optimal one,the CorrelationWeighted LSR(CW-LSR)algorithm is proposed.The CW-LSR test statistic remains the sum of pseudorange residual squares,but the square for the most potentially faulty satellite,judged by correlation analysis between the pseudorange residual and observation error,is weighted with an optimal-slope-based factor.It does not obey the same distribution but has the same noncentral parameter with the optimal test statistic.The superior performance of the CW-LSR algorithm is verified via simulation,both reducing the FAR for a small-slope faulty satellite with the MDR not exceeding its allowable value and reducing the MDR for a large-slope faulty satellite at the expense of FAR addition.
基金supported by the National Natural Science Foundation of China(No.61308120)the Doctor Startup Project of Xinjiang University(No.BS120122)+1 种基金the Young Talents Project in Xinjiang Uygur Autonomous Region(No.2013731003)the Xinjiang Science and Technology Project(Nos.201412107 and 2014211B003)
文摘This paper proposes a novel de-noising algorithm based on ensemble empirical mode decomposition(EEMD) and the variable step size least mean square(VS-LMS) adaptive filter.The noise of the high frequency part of spectrum will be removed through EEMD,and then the VS-LMS algorithm is utilized for overall de-noising.The EEMD combined with VS-LMS algorithm can not only preserve the detail and envelope of the effective signal,but also improve the system stability.When the method is used on pure R6G,the signal-to-noise ratio(SNR) of Raman spectrum is lower than 10dB.The de-noising superiority of the proposed method in Raman spectrum can be verified by three evaluation standards of SNR,root mean square error(RMSE) and the correlation coefficient ρ.
基金supported by the 2021 Open Project Fund of Science and Technology on Electromechanical Dynamic Control Laboratory,grant number 212-C-J-F-QT-2022-0020China Postdoctoral Science Foundation,grant number 2021M701713+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province,grant number KYCX23_0511the Jiangsu Funding Program for Excellent Postdoctoral Talent,grant number 20220ZB245。
文摘The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.
文摘A quantitative structure-activity relationships (QSAR) study is suggested for the prediction of solubility of some thiazolidine-4- carboxylic acid derivatives in aqueous solution. Ab initio theory was used to calculate some quantum chemical descriptors including electrostatic potentials and local charges at each atom, HOMO and LUMO energies, etc. Modeling of the solubility of thiazolidine- 4-carboxylic acid derivatives as a function of molecular structures was established by means of the partial least squares (PLS). The subset of descriptors, which resulted in the low prediction error, was selected by genetic algorithm. This model was applied for the prediction of the solubility of some thiazolidine-4-carboxylic acid derivatives, which were not in the modeling procedure. The relative errors of prediction lower that -4% was obtained by using GA-PLS method. The resulted model showed high prediction ability with RMSEP of 3.8836 and 2.9500 for PLS and GA-PLS models, respectively.
文摘The least means squares (LMS) adaptive filter algorithm was used in active suspension system. By adjusting the weight of adaptive filter, the minimum quadratic performance index was obtained. For two-degree-of-freedom vehicle suspension model, LMS adaptive controller was designed. The acceleration of the sprung mass,the dynamic tyre load between wheels and road,and the dynamic deflection between sprung mass and unsprung mass were determined as the evaluation targets of suspension performance. For LMS adaptive control suspension, compared with passive suspension, acceleration power spectral density of sprung mass acceleration under the road input model decreased 8-10 times in high frequency resonance band or low frequency resonance band. The simulation results show that LMS adaptive control is simple and remarkably effective. It further proves that the active control suspension system can improve both the riding comfort and handling safety in various operation conditions, and the method is fit for the active control of the suspension system.
文摘The Least Squares Residual(LSR)algorithm is commonly used in the Receiver Autonomous Integrity Monitoring(RAIM).However,LSR algorithm presents high Missed Detection Risk(MDR)caused by a large-slope faulty satellite and high False Alert Risk(FAR)caused by a small-slope faulty satellite.In this paper,the LSR algorithm is improved to reduce the MDR for a large-slope faulty satellite and the FAR for a small-slope faulty satellite.Based on the analysis of the vertical critical slope,the optimal decentralized factor is defined and the optimal test statistic is conceived,which can minimize the FAR with the premise that the MDR does not exceed its allowable value of all three directions.To construct a new test statistic approximating to the optimal test statistic,the Optimal Decentralized Factor weighted LSR(ODF-LSR)algorithm is proposed.The new test statistic maintains the sum of pseudo-range residual squares,but the specific pseudo-range residual is weighted with a parameter related to the optimal decentralized factor.The new test statistic has the same decentralized parameter with the optimal test statistic when single faulty satellite exists,and the difference between the expectation of the new test statistic and the optimal test statistic is the minimum when no faulty satellite exists.The performance of the ODFLSR algorithm is demonstrated by simulation experiments.
基金Project(60532030) supported by the National Natural Science Foundation of China
文摘In an orthogonal frequency division multiplexing(OFDM) system,a time and frequency domain least mean square algorithm(TF-LMS) was proposed to cancel the frequency offset(FO).TF-LMS algorithm is composed of two stages.Firstly,time domain least mean square(TD-LMS) scheme was selected to pre-cancel the frequency offset in the time domain,and then the interference induced by residual frequency offset was eliminated by the frequency domain mean square(FD-LMS) scheme in frequency domain.The results of bit error rate(BER) and quadrature phase shift keying(QPSK) constellation figures show that the performance of the proposed suppression algorithm is excellent.
基金co-supported by the National Basic Research Program of China (No. 623125020103)
文摘Aeromagnetic interference could not be compensated effectively if the precision of parameters which are solved by the aircraft magnetic field model is low. In order to improve the compensation effect under this condition, a method based on small signal model and least mean square(LMS) algorithm is proposed. According to the method, the initial values of adaptive filter's weight vector are calculated with the solved model parameters through small signal model at first,then the small amount of direction cosine and its derivative are set as the input of the filter, and the small amount of the interference is set as the filter's expected vector. After that, the aircraft magnetic interference is compensated by LMS algorithm. Finally, the method is verified by simulation and experiment. The result shows that the compensation effect can be improved obviously by the LMS algorithm when original solved parameters have low precision. The method can further improve the compensation effect even if the solved parameters have high precision.
基金Natural Science Foundation of Shandong Province of China(No.ZR2012FM011)Shandong University of Science and Technology Research Fund(No.2010KYTD101)
文摘By analyzing algorithms available for variable step size least mean square(LMS)adaptive filter,a new modified LMS adaptive filtering algorithm with variable step size is proposed,along with performance analysis based on different parameters.Compared with the existing algorithms through the simulation,the proposed algorithm has faster convergence speed and smaller steady state error.
文摘With the power system harmonic pollution problems becoming more and more serious, how to distinguish the harmonic responsibility accurately and solve the grid harmonics simply and effectively has become the main development direction in harmonic control subjects. This paper, based on linear regression analysis of basic equation and improvement equation, deduced the least squares estimation (LSE) iterative algorithm and obtained the real-time estimates of regression coefficients, and then calculated the level of the harmonic impedance and emission estimates in real time. This paper used power system simulation software Matlab/Simulink as analysis tool and analyzed the user side of the harmonic amplitude and phase fluctuations PCC (point of common coupling) at the harmonic emission level, thus the research has a certain theoretical significance. The development of this algorithm combined with the instrument can be used in practical engineering.
文摘The recursive least square is widely used in parameter identification. But if is easy to bring about the phenomena of parameters burst-off. A convergence analysis of a more stable identification algorithm-recursive damped least square is proposed. This is done by normalizing the measurement vector entering into the identification algorithm. rt is shown that the parametric distance converges to a zero mean random variable. It is also shown that under persistent excitation condition, the condition number of the adaptation gain matrix is bounded, and the variance of the parametric distance is bounded.
文摘In this paper,the inter-symbol interference and eliminating method are introduced.After analyzing the principle of adaptive equalization,we designed an adaptive equalizer using the LMS algorithm,and constructed a simulation system using MATLAB.Then we analyzed the convergence speed and mean square error characteristic of the adaptive equalizer by changing the step length factor to test the performance of the algorithm.