随着自然语言处理、人工智能和多域数据库应用的发展,对智能数据库查询系统的需求迅速增长,尤其是在中文语境中,实现准确的查询生成已成为金融、医疗保健和客户服务等行业的必需要素。现有的SQL生成方法难以解决中文语义解析、多域适应...随着自然语言处理、人工智能和多域数据库应用的发展,对智能数据库查询系统的需求迅速增长,尤其是在中文语境中,实现准确的查询生成已成为金融、医疗保健和客户服务等行业的必需要素。现有的SQL生成方法难以解决中文语义解析、多域适应性及人机交互中语义一致性的问题,限制复杂查询的跨域处理。针对上述挑战,提出一种面向中文的多域人机交互式SQL生成算法MH-CSQL(multi-domain human-computer interaction for Chinese SQL generation algorithm),结合历史信息和课程学习技术以增强自然语言理解,支持多域数据库处理各种查询任务。实验结果表明,MH-CSQL在准确性和适应性方面均优于传统方法。此外,将人机交互模型的结果可视图进行展示,验证了MH-CSQL在智能问答等领域的应用前景。展开更多
在智慧城市发展进程中,交通系统的精细化管理和智能化服务面临海量异构数据处理的挑战。传统交通信息查询系统存在数据源异构性强、自然语言交互能力不足、长尾查询场景覆盖有限等问题。文章基于ChatGLM3大语言模型,创新性地构建了融合N...在智慧城市发展进程中,交通系统的精细化管理和智能化服务面临海量异构数据处理的挑战。传统交通信息查询系统存在数据源异构性强、自然语言交互能力不足、长尾查询场景覆盖有限等问题。文章基于ChatGLM3大语言模型,创新性地构建了融合NL2SQL(Natural Language to Structured Query Language)技术的智能问数系统,通过动态Schema对齐、LoRA微调优化及多维度提示工程技术,实现了交通领域复杂自然语言查询到精准SQL指令的智能转换。实验结果表明,经过微调的模型在交通信息查询任务中准确率达到78.9%,较基线模型提升15.8个百分点。本研究为交通管理智能化转型提供了创新技术路径,并对大模型在垂直领域的深度适配进行了系统性探索。展开更多
文摘随着自然语言处理、人工智能和多域数据库应用的发展,对智能数据库查询系统的需求迅速增长,尤其是在中文语境中,实现准确的查询生成已成为金融、医疗保健和客户服务等行业的必需要素。现有的SQL生成方法难以解决中文语义解析、多域适应性及人机交互中语义一致性的问题,限制复杂查询的跨域处理。针对上述挑战,提出一种面向中文的多域人机交互式SQL生成算法MH-CSQL(multi-domain human-computer interaction for Chinese SQL generation algorithm),结合历史信息和课程学习技术以增强自然语言理解,支持多域数据库处理各种查询任务。实验结果表明,MH-CSQL在准确性和适应性方面均优于传统方法。此外,将人机交互模型的结果可视图进行展示,验证了MH-CSQL在智能问答等领域的应用前景。
文摘在智慧城市发展进程中,交通系统的精细化管理和智能化服务面临海量异构数据处理的挑战。传统交通信息查询系统存在数据源异构性强、自然语言交互能力不足、长尾查询场景覆盖有限等问题。文章基于ChatGLM3大语言模型,创新性地构建了融合NL2SQL(Natural Language to Structured Query Language)技术的智能问数系统,通过动态Schema对齐、LoRA微调优化及多维度提示工程技术,实现了交通领域复杂自然语言查询到精准SQL指令的智能转换。实验结果表明,经过微调的模型在交通信息查询任务中准确率达到78.9%,较基线模型提升15.8个百分点。本研究为交通管理智能化转型提供了创新技术路径,并对大模型在垂直领域的深度适配进行了系统性探索。