On 19 May 2022, an outbreak of 105 red sprites that occurred over South Asia was fortuitously recorded by two amateurs from a site in the southern Tibetan Plateau(TP), marking the highest number captured over a single...On 19 May 2022, an outbreak of 105 red sprites that occurred over South Asia was fortuitously recorded by two amateurs from a site in the southern Tibetan Plateau(TP), marking the highest number captured over a single thunderstorm in South Asia. Nearly half of these events involved dancing sprites, with an additional 16 uncommon secondary jets and at least four extremely rare green emissions called “ghosts” observed following the associated sprites. Due to the absence of the precise timing needed to identify parent lightning, a method based on satellite motion trajectories and star fields is proposed to infer video frame timestamps within an error of less than one second. After verifying 95 sprites from two videos, our method identified the parent lightning for 66 sprites(~70%). The sprite-producing strokes, mainly of positive polarity with peak currents exceeding +50 k A, occurred in the stratiform region of a mesoscale convective complex(MCC)that spanned the Ganges Plain to the southern TP, with a cloud area over 200 000 km2 and a minimum cloud-top black body temperature near 180 K. This observation confirms that thunderstorms in South Asia, akin to mesoscale convective systems(MCSs) in the Great Plains of the United States or coastal thunderstorms in Europe, can produce numerous sprites,including complex species. Our analysis bears important implications for characterizing thunderstorms above the southern TP and examining their physical and chemical effects on the adjacent regions, as well as the nature of the coupling between the troposphere and middle-upper atmosphere in this region.展开更多
In this paper, we report the location results for the parent lightning strokes of more than 30 red sprites observed over an asymmetric mesoscale convective system(MCS) on 30 July 2015 in Shandong Province, China, with...In this paper, we report the location results for the parent lightning strokes of more than 30 red sprites observed over an asymmetric mesoscale convective system(MCS) on 30 July 2015 in Shandong Province, China, with a long-baseline lightning location network of very-low-frequency/low-frequency magnetic field sensors. The results show that almost all of these cloud-to-ground(CG) strokes are produced during the mature stage of the MCS, and are predominantly located in the trailing stratiform region, which is similar to analyses of sprite-productive MCSs in North America and Europe. Comparison between the location results for the sprite-producing CG strokes and those provided by the World Wide Lightning Location Network(WWLLN) indicates that the location accuracy of WWLLN for intense CG strokes in Shandong Province is typically within 10 km, which is consistent with the result based on analysis of 2838 sprite-producing CG strokes in the continental United States. Also, we analyze two cases where some minor lightning discharges in the parent flash of sprites can also be located, providing an approach to confine the thundercloud region tapped by the sprite-producing CG strokes.展开更多
Electric and magnetic fields in time and frequency domain due to return stroke-lateral corona (RS-LC) system and re- cently discovered red sprites have been calculated. It has been found that the electric and magnetic...Electric and magnetic fields in time and frequency domain due to return stroke-lateral corona (RS-LC) system and re- cently discovered red sprites have been calculated. It has been found that the electric and magnetic fields due to return stroke and lateral corona system radiate in the very low frequency (VLF) region while due to sprites radiate in the ex- tremely low frequency (ELF) range. A comparison has been made between the radiations emitted due to RS-LC system and sprites in ELF (0 - 200 Hz) region. It has been found that the electric field i.e. radiation power generated due to sprites dominates in the ELF range and thus it is concluded that the red sprites as compared to the RS-LC system are the prominent source for the excitation of Schumann resonances in the earth-ionosphere waveguide.展开更多
An upper atmospheric phenomenon i.e., sprites can be thought to be mainly caused by the propagation of positive corona streamers. This research presents the formulation for the calculation of radiation power received ...An upper atmospheric phenomenon i.e., sprites can be thought to be mainly caused by the propagation of positive corona streamers. This research presents the formulation for the calculation of radiation power received from the propagating corona streamers responsible for the origination of the sprites. The produced magnetic field variation using the calculated electromagnetic radiation power is found to be similar with the previous observation-based research work.展开更多
Over the past three decades,research of high-altitude atmospheric discharges has received a lot of attention.This paper presents the results of experimental modeling of red sprites during a discharge in low-pressure a...Over the past three decades,research of high-altitude atmospheric discharges has received a lot of attention.This paper presents the results of experimental modeling of red sprites during a discharge in low-pressure air.To initiate ionization waves in a quartz tube,an electrodeless pulse-periodic discharge fed by microsecond voltage pulses with an amplitude of a few kilovolts and a repetition rate of tens of kHz were formed.In this case ionization waves(streamers)have a length of tens of centimeters.The main plasma parameters were measured at various distances along the tube.The measurements confirm the fact that ionization waves propagate in opposite directions from the zone of the main electrodeless discharge,just as it happens during the formation of red sprites.展开更多
The triangulation of red sprites was obtained, based on concurrent observations over a mesoscale convective system(MCS) in North China from two stations separated by about 450 km. In addition, broadband sferics from t...The triangulation of red sprites was obtained, based on concurrent observations over a mesoscale convective system(MCS) in North China from two stations separated by about 450 km. In addition, broadband sferics from the sprite-producing lightning were measured at five ground stations, making it possible to locate and identify the individual causative lightning discharges for different elements in this dancing sprite event. The results of our analyses indicate that the sprites were produced above the trailing stratiform region of the MCS, and their parent strokes were located mainly in the peripheral area of the stratiform. The lateral offset between sprites and causative strokes ranges from a few km to more than 50 km. In a particularly bright sprite, with a distinct halo feature and streamers descending down to an altitude of approximately 48 km, the sprite current signal identified in the electric sferic, measured at a range of about 1,110 km, peaked at approximately 1 ms after the return stroke.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.42394122)CAS Project of Stable Support for Youth Team in Basic Research Field (YSRR-018)+1 种基金the National Key R&D Program of China (2023YFC3007703)the Chinese Meridian Project, and the International Partnership Program of Chinese Academy of Sciences (183311KYSB20200003)。
文摘On 19 May 2022, an outbreak of 105 red sprites that occurred over South Asia was fortuitously recorded by two amateurs from a site in the southern Tibetan Plateau(TP), marking the highest number captured over a single thunderstorm in South Asia. Nearly half of these events involved dancing sprites, with an additional 16 uncommon secondary jets and at least four extremely rare green emissions called “ghosts” observed following the associated sprites. Due to the absence of the precise timing needed to identify parent lightning, a method based on satellite motion trajectories and star fields is proposed to infer video frame timestamps within an error of less than one second. After verifying 95 sprites from two videos, our method identified the parent lightning for 66 sprites(~70%). The sprite-producing strokes, mainly of positive polarity with peak currents exceeding +50 k A, occurred in the stratiform region of a mesoscale convective complex(MCC)that spanned the Ganges Plain to the southern TP, with a cloud area over 200 000 km2 and a minimum cloud-top black body temperature near 180 K. This observation confirms that thunderstorms in South Asia, akin to mesoscale convective systems(MCSs) in the Great Plains of the United States or coastal thunderstorms in Europe, can produce numerous sprites,including complex species. Our analysis bears important implications for characterizing thunderstorms above the southern TP and examining their physical and chemical effects on the adjacent regions, as well as the nature of the coupling between the troposphere and middle-upper atmosphere in this region.
基金supported by the National Key Basic Research and Development (973) Program of China (Grant No. 2014CB441405)the Open Research Program of the Key Laboratory of Meteorological Disaster (Nanjing University of Information Science and Technology) of the Ministry of Education (Grant No. KLME1414)+2 种基金the National Natural Science Foundation of China (Grant No. 41574179)the Natural Science Foundation of Excellent Youth Program of China (Grant No. 41622501)“The Hundred Talents Program” of the Chinese Academy of Sciences (Grant No. 2013068)
文摘In this paper, we report the location results for the parent lightning strokes of more than 30 red sprites observed over an asymmetric mesoscale convective system(MCS) on 30 July 2015 in Shandong Province, China, with a long-baseline lightning location network of very-low-frequency/low-frequency magnetic field sensors. The results show that almost all of these cloud-to-ground(CG) strokes are produced during the mature stage of the MCS, and are predominantly located in the trailing stratiform region, which is similar to analyses of sprite-productive MCSs in North America and Europe. Comparison between the location results for the sprite-producing CG strokes and those provided by the World Wide Lightning Location Network(WWLLN) indicates that the location accuracy of WWLLN for intense CG strokes in Shandong Province is typically within 10 km, which is consistent with the result based on analysis of 2838 sprite-producing CG strokes in the continental United States. Also, we analyze two cases where some minor lightning discharges in the parent flash of sprites can also be located, providing an approach to confine the thundercloud region tapped by the sprite-producing CG strokes.
文摘Electric and magnetic fields in time and frequency domain due to return stroke-lateral corona (RS-LC) system and re- cently discovered red sprites have been calculated. It has been found that the electric and magnetic fields due to return stroke and lateral corona system radiate in the very low frequency (VLF) region while due to sprites radiate in the ex- tremely low frequency (ELF) range. A comparison has been made between the radiations emitted due to RS-LC system and sprites in ELF (0 - 200 Hz) region. It has been found that the electric field i.e. radiation power generated due to sprites dominates in the ELF range and thus it is concluded that the red sprites as compared to the RS-LC system are the prominent source for the excitation of Schumann resonances in the earth-ionosphere waveguide.
文摘An upper atmospheric phenomenon i.e., sprites can be thought to be mainly caused by the propagation of positive corona streamers. This research presents the formulation for the calculation of radiation power received from the propagating corona streamers responsible for the origination of the sprites. The produced magnetic field variation using the calculated electromagnetic radiation power is found to be similar with the previous observation-based research work.
基金funded by the Ministry of Science and Higher Education of the Russian Federation within Agreement no.075-15-2021-1026 of November 15,2021.
文摘Over the past three decades,research of high-altitude atmospheric discharges has received a lot of attention.This paper presents the results of experimental modeling of red sprites during a discharge in low-pressure air.To initiate ionization waves in a quartz tube,an electrodeless pulse-periodic discharge fed by microsecond voltage pulses with an amplitude of a few kilovolts and a repetition rate of tens of kHz were formed.In this case ionization waves(streamers)have a length of tens of centimeters.The main plasma parameters were measured at various distances along the tube.The measurements confirm the fact that ionization waves propagate in opposite directions from the zone of the main electrodeless discharge,just as it happens during the formation of red sprites.
基金supported by the National Key Basic Research and Development Program (2017YFC1501501)National Natural Science Foundation of China (41574179, 41875006)+4 种基金National Natural Science Foundation for Excellent Youth of China (41622501)"The Hundred Talents Program" of Chinese Academy of Sciences (2013068)supported by funding from the NOAA Office of Global Programs for the Global Precipitation Climatology Project (GPCP)by NASA via the Tropical Rainfall Measuring Mission (TRMM)supported by NASA's HQ Earth S cience Data Systems (ESDS) Program
文摘The triangulation of red sprites was obtained, based on concurrent observations over a mesoscale convective system(MCS) in North China from two stations separated by about 450 km. In addition, broadband sferics from the sprite-producing lightning were measured at five ground stations, making it possible to locate and identify the individual causative lightning discharges for different elements in this dancing sprite event. The results of our analyses indicate that the sprites were produced above the trailing stratiform region of the MCS, and their parent strokes were located mainly in the peripheral area of the stratiform. The lateral offset between sprites and causative strokes ranges from a few km to more than 50 km. In a particularly bright sprite, with a distinct halo feature and streamers descending down to an altitude of approximately 48 km, the sprite current signal identified in the electric sferic, measured at a range of about 1,110 km, peaked at approximately 1 ms after the return stroke.