In order to study an isolation system of rolling friction with springs, computer programs were compiled to evaluate the seismic performance based on its movement characteristics. Through the programs, the influences o...In order to study an isolation system of rolling friction with springs, computer programs were compiled to evaluate the seismic performance based on its movement characteristics. Through the programs, the influences of various seismic performance factors, e.g., rolling friction coefficient, spring constant, were systematically investigated. Results show that by increasing the rolling friction coefficient, the structural relative displacement due to seismic load effectively decreases, while the structural response magnitude varies mainly depending on the correlations between the following factors: the spring constant, the earthquake intensity, and the rolling friction coefficient. Furthermore, increasing the spring constant can decrease the structural relative displacement, as well as residual displacement, however, it increases the structural response magnitude. Finally, based on the analyses of various seismic performance factors subjected to the scenario earthquakes, optimized theoretical seismic performance can be achieved by reasonably combining the spring constant and the rolling friction coefficient.展开更多
The objective of this work was to study the vibration transmissibility characteristics of the undamped and damped smart spring systems. The frequency response characteristics of them were analyzed by using the equival...The objective of this work was to study the vibration transmissibility characteristics of the undamped and damped smart spring systems. The frequency response characteristics of them were analyzed by using the equivalent linearization technique, and the possible types of the system motion were distinguished by using the starting and ending frequencies. The influences of system parameters on the vibration transmissibility characteristics were discussed. The following conclusions may be drawn from the analysis results. The undamped smart spring system may simultaneously have one starting frequency and one ending frequency or only have one starting frequency, and the damped system may simultaneously have two starting frequencies and one ending frequency. There is an optimal control parameter to make the peak value of the vibration transmissibility curve of the system be minimum. When the mass ratio is far away from the stiffness ratio, the vibration transmissibility is small. The effect of the damping ratio on the system vibration transmissibility is significant while the control parameter is less than its optimal value. But the influence of the relative damping ratio on the vibration transmissibility is small.展开更多
A passive heave compensator is designed to enhance the operation safety of a 4.5 km remotely operated vehicle (ROV).This paper proposes a novel idea of designing a compensator with relatively low natural period to opt...A passive heave compensator is designed to enhance the operation safety of a 4.5 km remotely operated vehicle (ROV).This paper proposes a novel idea of designing a compensator with relatively low natural period to optimize gas volume and while adding a special device to remove the problem of ineffectiveness and resonance in long seas.Numerical simulations are done based on serious dynamic model of the whole system,including the compensator,the umbilical tether and the vehicle,solved by the fourth-order Runge-Kutta scheme.The compensator provides great attenuation of motion and tension in most sea states.As the working depth increases,the system natural period decreases,resulting in the occurrence of risk of resonance.By regulating the system damping,the compensator can be effective in these situations.展开更多
基金Project(51308549)supported by the National Natural Science Foundation,China
文摘In order to study an isolation system of rolling friction with springs, computer programs were compiled to evaluate the seismic performance based on its movement characteristics. Through the programs, the influences of various seismic performance factors, e.g., rolling friction coefficient, spring constant, were systematically investigated. Results show that by increasing the rolling friction coefficient, the structural relative displacement due to seismic load effectively decreases, while the structural response magnitude varies mainly depending on the correlations between the following factors: the spring constant, the earthquake intensity, and the rolling friction coefficient. Furthermore, increasing the spring constant can decrease the structural relative displacement, as well as residual displacement, however, it increases the structural response magnitude. Finally, based on the analyses of various seismic performance factors subjected to the scenario earthquakes, optimized theoretical seismic performance can be achieved by reasonably combining the spring constant and the rolling friction coefficient.
基金Project(51375226)supported by the National Natural Science Foundation of ChinaProject(20113218110017)supported by the Doctoral Program Foundation of Institutions of Higher Education of China+2 种基金Project(PAPD)supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,ChinaProject(CXZZ11_0199)supported by the Funding of Jiangsu Innovation Program for Graduate Education,ChinaProject(2014)supported by the the Fundamental Research Funds for the Central Universities,China
文摘The objective of this work was to study the vibration transmissibility characteristics of the undamped and damped smart spring systems. The frequency response characteristics of them were analyzed by using the equivalent linearization technique, and the possible types of the system motion were distinguished by using the starting and ending frequencies. The influences of system parameters on the vibration transmissibility characteristics were discussed. The following conclusions may be drawn from the analysis results. The undamped smart spring system may simultaneously have one starting frequency and one ending frequency or only have one starting frequency, and the damped system may simultaneously have two starting frequencies and one ending frequency. There is an optimal control parameter to make the peak value of the vibration transmissibility curve of the system be minimum. When the mass ratio is far away from the stiffness ratio, the vibration transmissibility is small. The effect of the damping ratio on the system vibration transmissibility is significant while the control parameter is less than its optimal value. But the influence of the relative damping ratio on the vibration transmissibility is small.
基金the National High Technology Research and Development Program (863) of China(No. 2008AA092301-1)the National Natural Science Foundation of China(No. 50909061)the PH. D. Programs Foundation of Ministry of Education of China(No. 20070248103)
文摘A passive heave compensator is designed to enhance the operation safety of a 4.5 km remotely operated vehicle (ROV).This paper proposes a novel idea of designing a compensator with relatively low natural period to optimize gas volume and while adding a special device to remove the problem of ineffectiveness and resonance in long seas.Numerical simulations are done based on serious dynamic model of the whole system,including the compensator,the umbilical tether and the vehicle,solved by the fourth-order Runge-Kutta scheme.The compensator provides great attenuation of motion and tension in most sea states.As the working depth increases,the system natural period decreases,resulting in the occurrence of risk of resonance.By regulating the system damping,the compensator can be effective in these situations.