期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Dynamic mechanical behavior of ultra-high strength steel 30CrMnSiNi2A at high strain rates and elevated temperatures 被引量:10
1
作者 Qiu-lin Niu Wei-wei Ming +2 位作者 Ming Chen Si-wen Tang Peng-nan Li 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2017年第7期724-729,共6页
During high speed machining in the field of manufacture,chip formation is a severe plastic deformation process including large strain,high strain rate and high temperature.And the strain rate in high speed cutting pro... During high speed machining in the field of manufacture,chip formation is a severe plastic deformation process including large strain,high strain rate and high temperature.And the strain rate in high speed cutting process can be achieved to 105 s^(-1).30CrMnSiNi2Asteel is a kind of important high-strength low-alloy structural steel with wide application range.Obtaining the dynamic mechanical properties of30CrMnSiNi2Aunder the conditions of high strain rate and high temperature is necessary to construct the constitutive relation model for high speed machining.The dynamic compressive mechanical properties of30CrMnSiNi2Asteel were studied using split Hopkinson pressure bar(SHPB)tests at 30-700°C and3000-10000s^(-1).The stress-strain curves of 30CrMnSiNi2Asteel at different temperatures and strain rates were investigated,and the strain hardening effect and temperature effect were discussed.Experimental results show that 30CrMnSiNi2Ahas obvious temperature sensitivity at 300°C.Moreover,the flow stress decreased significantly with the increase of temperature.The strain hardening effect of the material at high strain rate is not significant with the increase of strain.The strain rate hardening effect is obvious with increasing the temperature.According to the experimental results,the established Johnson-Cook(J-C)constitutive model of 30CrMnSiNi2Asteel could be used at high strain rate and high temperature. 展开更多
关键词 30CrMnSiNi2A steel Dynamic mechanical behavior Split Hopkinson pressure bar High temperature High strain rate Ultra-high strength steel
原文传递
Satellite remote sensing of volcanic ash cloud in complicated meteorological conditions 被引量:2
2
作者 ZHU Lin LIU Jian +1 位作者 LIU Cheng WANG Meng 《Science China Earth Sciences》 SCIE EI CAS 2011年第11期1789-1795,共7页
Volcanic ash cloud has serious impacts on aviation.With volcanic ash dispersion,it also has a profound and long-term impact on climate and the environment.A new volcanic ash cloud detecting method (SWIR-TIR Volcanic A... Volcanic ash cloud has serious impacts on aviation.With volcanic ash dispersion,it also has a profound and long-term impact on climate and the environment.A new volcanic ash cloud detecting method (SWIR-TIR Volcanic Ash method,STVA) is presented that uses satellite images of Medium Resolution Spectral Imager (MERSI) and Visible and Infrared Radiometer (VIRR) on board the second generation Polar-Orbiting meteorological satellite of China (FY-3A).STVA is applied in detecting Iceland's Eyjafjallajokull volcano eruption.Compared with the traditional Split Window Temperature Difference method (SWTD),the results show that STVA is more sensitive to volcanic ash cloud than SWTD and can fairly extract volcanic ash information from the background of meteorological cloud and the ocean.Ash Radiance Index (ARI) and Absorbing Aerosol Index (AAI) derived from Metop-A satellite images are used to validate the performance of STVA.It is shown that STVA provides similar results with ARI and AAI.FY-3A/MERSI,VIRR and Terra /MODIS data are used to test STVA and SWTD.It is demonstrated that STVA derived from FY-3A satellite data is more effective in complicated meteorological conditions.This study shows great potential of using China's own new generation satellite data in future global volcanic ash cloud monitoring operation. 展开更多
关键词 FY-3A/MERSI FY-3A/VIRR volcanic ash cloud Split Window temperature Difference method SWIR-TIR VolcanicAsh method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部