期刊文献+
共找到72篇文章
< 1 2 4 >
每页显示 20 50 100
Split short Hopkinson pressure bar(SSHPB)for the dynamic compression of sandstone under different strain rates
1
作者 Qihao Yang Lifeng Fan Xiuli Du 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第12期7665-7675,共11页
This paper proposed the split short Hopkinson pressure bar(SSHPB)with short incident and transmission bars to investigate the dynamic compression characteristics of sandstone under different strain rates.The SSHPB was... This paper proposed the split short Hopkinson pressure bar(SSHPB)with short incident and transmission bars to investigate the dynamic compression characteristics of sandstone under different strain rates.The SSHPB was constructed to carry out impact tests to obtain superimposed stress waves in short bars.The separated stress waves(incident,reflected and transmitted waves)were determined by the proposed wave separation method and further used to determine the stress-strain relationship of sandstone.The SSHPB was validated by comparing the dynamic properties of sandstone determined by the SSHPB with those determined by the traditional split Hopkinson pressure bar(SHPB).The effect of the strain rate on the accuracy of the SSHPB was discussed.The results show that the stress-strain relationship of sandstone determined by the SSHPB agrees well with that determined by the traditional SHPB.The variation in the dynamic properties of sandstone with strain rate determined by the SSHPB is similar to that determined by the traditional SHPB.Under different strain rates,the relative error between the dynamic properties of sandstone determined by the SSHPB and traditional SHPB is less than 5%.Compared with the traditional SHPB,the SSHPB can reduce the length of the incident and transmission bars by 50%,which is an alternative to the traditional SHPB. 展开更多
关键词 Split Hopkinson pressure bar(SHPB) Wave separation Dynamic properties Strain rate SANDSTONE
在线阅读 下载PDF
Static and dynamic tensile failure characteristics of rock based on splitting test of circular ring 被引量:15
2
作者 李地元 王涛 +1 位作者 成腾蛟 孙小磊 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第7期1912-1918,共7页
Static and dynamic splitting tests were conducted on ring marble specimens with different internal diameters to study the tensile strength and failure modes with the change of the ratio of internal radius to external ... Static and dynamic splitting tests were conducted on ring marble specimens with different internal diameters to study the tensile strength and failure modes with the change of the ratio of internal radius to external radius (ρ) under different loading rates. The results show that the dynamic tensile strength of disc rock specimen is approximately five times its static tensile strength. The failure modes of ring specimens are related to the dimension of the internal hole and loading rate. Under static loading tests, when the ratio of internal radius to external radius of the rock ring is small enough (ρ〈0.3), specimens mostly split along the diametral loading line. With the increase of the ratio, the secondary cracks are formed in the direction perpendicular to the loading line. Under dynamic loading tests, specimens usually break up into four pieces. When the ratio ρreaches 0.5, the secondary cracks are formed near the input bar. The tensile strength calculated by Hobbs’ formula is greater than the Brazilian splitting strength. The peak load and the radius ratio show a negative exponential relationship under static test. Using ring specimen to determine tensile strength of rock material is more like a test indicator rather than the material properties. 展开更多
关键词 ROCK circular ring Brazilian splitting test tensile strength split Hopkinson pressure bar failure pattern
在线阅读 下载PDF
Combined effects of temperature and axial pressure on dynamic mechanical properties of granite 被引量:10
3
作者 Tu-bing YIN Rong-hua SHU +2 位作者 Xi-bing LI Pin WANG Long-jun DONG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第8期2209-2219,共11页
In order to get the dynamic mechanical properties of deep rock mass suffered both high temperature and high pressure,impact loading experiments on granite subjected to temperature and axial pressure were carried out. ... In order to get the dynamic mechanical properties of deep rock mass suffered both high temperature and high pressure,impact loading experiments on granite subjected to temperature and axial pressure were carried out. Furthermore, the internalstructure characteristics of granite under different temperatures were observed by scanning electron microscopy (SEM). The results show that the longitudinal wave velocity assumes a downward trend which shows a rapid drop before falling slowly as the temperature increases. The uniaxial compressive strength of the specimen decreases significantly at temperatures of 25?100 °C compared to that at temperatures of 100?300 °C. The peak strain rises rapidly before the dividing point of 100 °C, but increases slowly after the dividing point. The internal structure of the rock changes substantially as the temperature increases, such as the extension and transfixion of primary and newborn cracks. In addition, the thermal damage under axial pressure is greater than that described by the longitudinal wave velocity and the phenomenon shows obviously when the temperature increases. 展开更多
关键词 rock dynamics split Hopkincon pressure bar temperature pressure coupling dynamic mechanical properties
在线阅读 下载PDF
High strain rate compressive strength behavior of cemented paste backfill using split Hopkinson pressure bar 被引量:9
4
作者 Xin Chen Xiuzhi Shi +3 位作者 Jian Zhou Enming Li Peiyong Qiu Yonggang Gou 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第3期387-399,共13页
The stability of cemented paste backfill(CPB)is threatened by dynamic disturbance,but the conventional low strain rate laboratory pressure test has difficulty achieving this research purpose.Therefore,a split Hopkinso... The stability of cemented paste backfill(CPB)is threatened by dynamic disturbance,but the conventional low strain rate laboratory pressure test has difficulty achieving this research purpose.Therefore,a split Hopkinson pressure bar(SHPB)was utilized to investigate the high strain rate compressive behavior of CPB with dynamic loads of 0.4,0.8,and 1.2 MPa.And the failure modes were determined by macro and micro analysis.CPB with different cement-to-tailings ratios,solid mass concentrations,and curing ages was prepared to conduct the SHPB test.The results showed that increasing the cement content,tailings content,and curing age can improve the dynamic compressive strength and elastic modulus.Under an impact load,a higher strain rate can lead to larger increasing times of the dynamic compressive strength when compared with static loading.And the dynamic compressive strength of CPB has an exponential correlation with the strain rate.The macroscopic failure modes indicated that CPB is more seriously damaged under dynamic loading.The local damage was enhanced,and fine cracks were formed in the interior of the CPB.This is because the CPB cannot dissipate the energy of the high strain rate stress wave in a short loading period. 展开更多
关键词 High strain rate Compressive strength behavior Cemented paste backfill Split Hopkinson pressure bar TAILINGS
在线阅读 下载PDF
Water‑immersion softening mechanism of coal rock mass based on split Hopkinson pressure bar experiment 被引量:3
5
作者 Zhiyuan Liu Gang Wang +4 位作者 Jinzhou Li Huaixing Li Haifeng Zhao Hongwei Shi Jianli Lan 《International Journal of Coal Science & Technology》 EI CAS CSCD 2022年第4期122-134,共13页
The coal mining process is afected by various water sources such as groundwater and coal seam water injection.Understanding the dynamic mechanical parameters of water-immersed coal is helpful for coalmine safe product... The coal mining process is afected by various water sources such as groundwater and coal seam water injection.Understanding the dynamic mechanical parameters of water-immersed coal is helpful for coalmine safe production.The impact compression tests were performed on coal with diferent moisture contents by using theϕ50 mm Split Hopkinson Pressure Bar(SHPB)experimental system,and the dynamic characteristics and energy loss laws of water-immersed coal with diferent compositions and water contents were analyzed.Through analysis and discussion,it is found that:(1)When the moisture content of the coal sample is 0%,30%,60%,the stress,strain rate and energy frst increase and then decrease with time.(2)When the moisture content of the coal sample increases from 30%to 60%,the stress“plateau”of the coal sample becomes more obvious,resulting in an increase in the compressive stress stage and a decrease in the expansion stress stage.(3)The increase of moisture content of the coal sample will afect its impact deformation and failure mode.When the moisture content is 60%,the incident rod end and the transmission rod end of the coal sample will have obvious compression failure,and the middle part of the coal sample will also experience expansion and deformation.(4)The coal composition ratio suitable for the coal immersion softening impact experiment is optimized. 展开更多
关键词 Coal immersion softening Dynamic compressive response Split Hopkinson pressure bar Softening mechanism model
在线阅读 下载PDF
Dynamic Mechanical Properties and Energy Dissipation Characteristics of Frozen Soil Under Passive Confined Pressure 被引量:2
6
作者 Jinxuan Jia Huaiping Tang Huijian Chen 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2021年第2期184-203,共20页
Impact compression tests on frozen soil samples with different freezing temperatures and subjected to passive confined pressure were performed using a split Hopkinson pressure bar at different loading strain rates.The... Impact compression tests on frozen soil samples with different freezing temperatures and subjected to passive confined pressure were performed using a split Hopkinson pressure bar at different loading strain rates.The three-dimensional stress-strain curves of the frozen soil samples under the corresponding conditions were obtained.The experimental results showed that,when the frozen soil was loaded to its elastic limit,shear failure occurred,the bearing capacity of pore ice was lost,and the thawed soil functioned as the main stress-bearing body.Nevertheless,the capacity of frozen soil to withstand hydrostatic pressure continued to increase.The dynamic mechanical properties of the frozen soil under passive confined pressure were observed to be strongly related to the loading strain rate and freezing temperature.As the loading strain rate increased,the secant modulus,elastic modulus,and strength(including the shear strength)of the frozen soil increased,whereas its Poisson^ratio and coefficient of lateral pressure decreased.As the freezing temperature decreased,the secant modulus,elastic modulus,and shear strength of the frozen soil increased;however,its Poisson5s ratio and coefficient of lateral pressure decreased.When the frozen soil was subjected to impact loading under passive confined pressure,energy dissipation occurred due to plastic deformation,mesoscopic damage evolution,and ice-water phase transition.When shear failure occurred,the absorption energy per unit volume of frozen soil increased as the freezing temperature decreased and the loading strain rate increased. 展开更多
关键词 Frozen soil Split Hopkinson pressure bar Passive confined pressure Dynamic mechanical properties Energy dissipation
原文传递
Calibration of split Hopkinson pressure bar system with special shape striker 被引量:1
7
作者 周子龙 洪亮 +1 位作者 李启月 刘志祥 《Journal of Central South University》 SCIE EI CAS 2011年第4期1139-1143,共5页
In order to present basic guidance for system calibration of split Hopkinson pressure bar(SHPB) with the special shape striker,wave characteristics and dynamic responses of SHPB under striker impact were analyzed.Stre... In order to present basic guidance for system calibration of split Hopkinson pressure bar(SHPB) with the special shape striker,wave characteristics and dynamic responses of SHPB under striker impact were analyzed.Stress generated by the special shape striker tends to have a half-sine waveform and has little wave dispersion during its propagation.Impact velocities of the special shape striker and peak values of generated stress still have linear relation but with a different coefficient from that of cylindrical strikers.From stress histories on the surfaces of the input bar impacted by the special shape striker off-axially and obliquely,it is found that the misalignment impacts usually trigger wave distortion and amplitude decrease,which can be used to identify the poor system adjustment.Finally,the system calibration of SHPB with the special shape striker can be classified into four steps:system adjustment,wave distortion identification,measurement calibration and transmission calibration,where the measurement calibration factor and transmission calibration factor are elaborated and redefined. 展开更多
关键词 split Hopkinson pressure bar special shape striker system calibration misalignment impact
在线阅读 下载PDF
Approach to minish scattering of results for split Hopkinson pressure bar test 被引量:1
8
作者 李夕兵 周子龙 赵阳升 《Journal of Central South University of Technology》 EI 2007年第3期404-407,共4页
Split Hopkinson pressure bar(SHPB) apparatus, usually used for testing behavior of material in median and high strain-rate, is now widely used in the study of rock dynamic constitutive relation, damage evolvement me... Split Hopkinson pressure bar(SHPB) apparatus, usually used for testing behavior of material in median and high strain-rate, is now widely used in the study of rock dynamic constitutive relation, damage evolvement mechanism and energy consumption. However, the possible reasons of sampling disturbance, machining error and so on often lead to the scattering of test results, and bring ultimate difficulty for forming general test conclusion. Based on the stochastic finite element method, the uncertain parameters of specimen density ps, specimen radius Rs, specimen elastic modulus Es and specimen length Ls in the data processing of SHPB test were considered, and the correlation between the parameters and the test results was analyzed. The results show that the specimen radius Rs has direct correlation with the test result, improving the accuracy in preparing and measuring of specimen is an effective way to improve the accuracy of test and minish the scattering of results for SHPB test. 展开更多
关键词 split Hopkinson pressure bar test data scattering stochastic finite element method(SFEM)
在线阅读 下载PDF
Testing of High-Strength Zr-Based Bulk Metallic Glass with the Split Hopkinson Pressure Bar
9
作者 薛云飞 才鸿年 +2 位作者 王鲁 张海峰 程焕武 《Journal of Beijing Institute of Technology》 EI CAS 2008年第1期109-114,共6页
The split Hopkinson pressure bar (SHPB) was used to determine the dynamic compressive strength of the high-strength Zr38Ti17Cu10.5Co12Be22.5 bulk metallic glass at strain rate on the order of 102 s^-1. It is shown t... The split Hopkinson pressure bar (SHPB) was used to determine the dynamic compressive strength of the high-strength Zr38Ti17Cu10.5Co12Be22.5 bulk metallic glass at strain rate on the order of 102 s^-1. It is shown that at high strain rates beyond about 1 000 s^-1, uniform deformation within the metallic glass specimen could not be achieved and dispersion in the transmitted pulse can lead to discrepancies in measuring the dynamic failure strength of the present Zr-based bulk metallic glass. Based on these reasons, a copper insert was placed between the strike bar and the input bar to obtain reliable and consistent experimental data for testing of the Zr38Ti17Cu10.5Co12Be22.5 bulk metallic glass using the SHPB. Negative strain rate sensitivity was found in the present Zr-based bulk metallic glass. 展开更多
关键词 bulk metallic glasses split Hopkinson pressure bar (SHPB) dynamic compression strain rate
在线阅读 下载PDF
Tensile mechanical behavior of composite rocks under stress waves:A focus on strength variation between rock layers
10
作者 WEN Sen SONG Ruo-tong +2 位作者 ZHANG Chun-shun LI Sheng KONG Qing-mei 《Journal of Central South University》 2025年第11期4375-4396,共22页
Composite rock layers are widely present in mining and tunnel construction projects,and are prone to dynamic tensile failure along bedding planes under dynamic disturbances.To ensure engineering safety,it is necessary... Composite rock layers are widely present in mining and tunnel construction projects,and are prone to dynamic tensile failure along bedding planes under dynamic disturbances.To ensure engineering safety,it is necessary to conduct research on the dynamic tensile characteristics under different working conditions.Considering the difficulty of on-site sampling,composite rock samples were prepared with cement mortar,and dynamic Brazilian splitting tests were carried out using split Hopkinson pressure bar(SHPB)equipment,a high-speed camera,and PFC^(2D)numerical software to explore their dynamic tensile properties under dynamic disturbance under different strength ratios and other factors.The results show that the dynamic tensile strength of samples exhibits a rising trend with the strength ratio and strain rate growth.As the incident angle increases from 0°to 90°,the stress contour deflects transform from center-splitting failure to tension-shear combined failure and back again.The influence of the incident order in different lithology rocks on the dynamic tensile strength of composite samples is controlled by strain rate,and when the strain rate increases to 400 s^(-1),the difference in strength due to the sequence of incident stress waves is within 5%.Based on PFC^(2D),the strength ratio of composite samples has a certain influence on the distribution of microfractures.With strength ratios equaling 1.5 or 2.0,the cracks are mainly concentrated on the softer material side,while a large number of cracks are distributed on both sides of the bedding plane with a strength ratio equal to 1.2. 展开更多
关键词 rock dynamics strength ratio composite rock split Hopkinson pressure bar dynamic tension failure mechanism
在线阅读 下载PDF
Dynamic Compressive Behavior and Stress Wave Attenuation Characteristics of Ti-6Al-4V Lattice Structure
11
作者 Shuai Zhang Xin Lai +3 位作者 Haiyan Niu Lisheng Liu Shifu Wang Jinyong Zhang 《Computer Modeling in Engineering & Sciences》 2025年第7期739-762,共24页
This study investigates the dynamic compressive behavior of three periodic lattice structures fabricated from Ti-6Al-4V titanium alloy,each with distinct topologies:simple cubic(SC),body-centered cubic(BCC),and face-c... This study investigates the dynamic compressive behavior of three periodic lattice structures fabricated from Ti-6Al-4V titanium alloy,each with distinct topologies:simple cubic(SC),body-centered cubic(BCC),and face-centered cubic(FCC).Dynamic compression experiments were conducted using a Split Hopkinson Pressure Bar(SHPB)system,complemented by high-speed imaging to capture real-time deformation and failure mechanisms under impact loading.The influence of cell topology,relative density,and strain rate on dynamic mechanical properties,failure behavior,and stress wave propagation was systematically examined.Finite element modeling was performed,and the simulated results showed good agreement with experimental data.The findings reveal that the dynamic mechanical properties of the lattice structures are generally insensitive to strain rate variations,while failure behavior is predominantly governed by structural configuration.The SC structure exhibited strut buckling and instability-induced fracture,whereas the BCC and FCC structures displayed layer-by-layer crushing with lower strain rate sensitivity.Regarding stress wave propagation,all structures demonstrated significant attenuation capabilities,with the BCC structure achieving the greatest reduction in transmitted wave amplitude and energy.Across all configurations,wave reflection was identified as the primary energy dissipation mechanism.These results provide critical insights into the design of lattice structures for impact mitigation and energy absorption applications. 展开更多
关键词 Lattice structure energy dissipation Split Hopkinson pressure Bar dynamic mechanical behavior stress wave
在线阅读 下载PDF
Dynamic compressive strength optimization and stemming performance of self-swelling cartridge for rock blasting
12
作者 Runran Li Shuai Xu Kai Liu 《International Journal of Minerals,Metallurgy and Materials》 2025年第12期2880-2895,共16页
During rock drilling and blasting activities,stemming blast holes is to prevent high-pressure explosive gases from the holes,thereby enhancing the overall blasting effectiveness.Hence,it is imperative to investigate t... During rock drilling and blasting activities,stemming blast holes is to prevent high-pressure explosive gases from the holes,thereby enhancing the overall blasting effectiveness.Hence,it is imperative to investigate the dynamic mechanical properties of the stem-ming materials.In this study,impact compression tests were conducted on self-swelling cartridges(SSCs)using a split Hopkinson pres-sure bar(SHPB),aiming to evaluate dynamic performances across strain rate range of 20 to 65 s^(−1).Test results indicate that the dynamic compressive strength of SSCs exhibits the following trends:it increases with increasing density of SSC,decreases with an increase in insertion gap,and follows an initial rise and subsequent fall trend with an increase in water absorption.The order of significance among these factors is density>water absorption>insertion gaps.SSCs exhibit a pronounced strain-rate strengthening dependence in dynamic compressive strength.Furthermore,both the compressive peak stress and peak strain of SSCs follow a well-defined quadratic upward trend with increasing strain rates.As the strain rate increases,the degree of fragmentation,absorbed energy,and dynamic increase factor exhibit an upward trend.Model experimental results indicate that,compared to cementitious stemming materials,SSCs can prolong the duration of gas explosion action.Therefore,SSCs are more suitable for high strain-rate applications such as blasting stemming and rock burst control. 展开更多
关键词 blasting stemming self-swelling cartridge dynamic compressive strength split Hopkinson pressure bar dynamic increase factor
在线阅读 下载PDF
Dynamic compressive characteristics of a green sandstone under coupled hydraulic-mechanical loading: Experiments and theoretical modeling
13
作者 Bangbiao Wu Geli Zhao +1 位作者 Ying Xu Kaiwen Xia 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期126-138,共13页
Deep rock is under a complex geological environment with high geo-stress, high pore pressure, and strong dynamic disturbance. Understanding the dynamic response of rocks under coupled hydraulic-mechanical loading is t... Deep rock is under a complex geological environment with high geo-stress, high pore pressure, and strong dynamic disturbance. Understanding the dynamic response of rocks under coupled hydraulic-mechanical loading is thus essential in evaluating the stability and safety of subterranean engineering structures. Nevertheless, the constraints in experimental techniques have led to limited prior investigations into the dynamic compression behavior of rocks subjected to simultaneous high in-situ stress and pore pressure conditions. This study utilizes a triaxial split Hopkinson pressure bar (SHPB) system in conjunction with a pore pressure loading cell to conduct dynamic experiments on rocks subjected to hydraulic-mechanical loading. A porous green sandstone (GS) was adopted as the testing rock material. The findings reveal that the dynamic behavior of rock specimens is significantly influenced by multiple factors, including the loading rate, confining stress, and pore pressure. Specifically, the dynamic compressive strength of GS exhibits an increase with higher loading rates and greater confining pressures, while it decreases with elevated pore pressure. Moreover, the classical Ashby-Sammis micromechanical model was augmented to account for dynamic loading and pore pressure considerations. By deducing the connection between crack length and damage evolution, the resulting law of crack expansion rate is related to the strain rate. In addition, the influence of hydraulic factors on the stress intensity factor at the crack tip is introduced. Thereby, a dynamic constitutive model for deep rocks under coupled hydraulic-mechanical loading was established and then validated against the experimental results. Subsequently, the characteristics of introduced parameter for quantifying the water-induced effects were carefully discussed. 展开更多
关键词 Deep rock Split hopkinson pressure bar(SHPB) Compressive behavior Pore pressure Coupled hydraulic-mechanical loading
在线阅读 下载PDF
Exact solutions for the transcritical Riemann problem of two-parameter fluids
14
作者 Haotong BAI Yixin YANG +2 位作者 Wenjia XIE Dejian LI Mingbo SUN 《Applied Mathematics and Mechanics(English Edition)》 2025年第12期2385-2406,共22页
Transcritical and supercritical fluids widely exist in aerospace propulsion systems,such as the coolant flow in the regenerative cooling channels of scramjet engines.To numerically simulate the coolant flow,we must ad... Transcritical and supercritical fluids widely exist in aerospace propulsion systems,such as the coolant flow in the regenerative cooling channels of scramjet engines.To numerically simulate the coolant flow,we must address the challenges in solving Riemann problems(RPs)for real fluids under complex flow conditions.In this study,an exact numerical solution for the one-dimensional RP of two-parameter fluids is developed.Due to the comprehensive resolution of fluid thermodynamics,the proposed solution framework is suitable for all forms of the two-parameter equation of state(EoS).The pressure splitting method is introduced to enable parallel calculation of RPs across multiple grid points.Theoretical analysis demonstrates the isentropic nature of weak waves in two-parameter fluids,ensuring that the same mathematical properties as ideal gas could be applied in Newton's iteration.A series of numerical cases validate the effectiveness of the proposed method.A comparative analysis is conducted on the exact Riemann solutions for the real fluid EoS,the ideal gas EoS,and the improved ideal gas EoS under supercritical and transcritical conditions.The results indicate that the improved one produces smaller errors in the calculation of momentum and energy fluxes. 展开更多
关键词 two-parameter fluid Riemann problem(RP) exact solution supercritical fluid pressure splitting transcritical fluid
在线阅读 下载PDF
Evaluation of dynamic performance and ballistic behavior of Ti-5Al-5Mo-5V-3Cr-1Zr alloy 被引量:2
15
作者 王艳玲 惠松骁 +1 位作者 刘睿 叶文君 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第2期429-436,共8页
Terminal ballistic tests using 7.62 mm armor-piercing incendiary (API) projectiles were performed to evaluate the resistance to penetration of Ti-5Al-5Mo-5V-3Cr-IZr (Ti-55531) alloy. The dynamic properties were de... Terminal ballistic tests using 7.62 mm armor-piercing incendiary (API) projectiles were performed to evaluate the resistance to penetration of Ti-5Al-5Mo-5V-3Cr-IZr (Ti-55531) alloy. The dynamic properties were determined by a split Hopkinson pressure bar (SHPB) test system. Ti-55531 plates were subjected to two kinds of heat treatments, leading to the formation of high-strength and high-toughness plates. The results of SHPB test exhibit that the maximum impact absorbed energy of the high-strength plate at a strain rate of 2200 s^-1 is 270 MJ/m^3; however, the maximum value for the high-toughness plate at a strain rate of 4900 s^-1 is 710 MJ/m^3. The ballistic limit velocities for the high-strength and high-toughness plates with dimensions of 300 mm×300 mm×8 mm are 330 and 390 m/s, respectively. Excellent dynamic properties of Ti-55531 alloy correspond to good resistance to penetration. The microstructure evolution related to various impact velocities are observed to investigate the failure mechanism. 展开更多
关键词 Ti-5Al-5Mo-5V-3Cr-1Zr alloy dynamic property split Hopkinson pressure bar adiabatic shear band ballisticbehavior ballistic limit
在线阅读 下载PDF
不同含水率红陶土的SHPB动力学性能实验 被引量:1
16
作者 解北京 武博文 +3 位作者 刘天乐 栾铮 张景顺 于瑞星 《科学技术与工程》 北大核心 2024年第22期9529-9534,共6页
为研究动态加载下红陶土的动态力学特性,利用分离式霍普金森压杆系统,开展了含水率分别为5%、7%、9%、11%、13%和15%,冲击速度分别为6、8、10 m/s,分析了不同含水率和应变率条件下红陶土的动力学特性。结果表明:随着冲击速度的增大,红... 为研究动态加载下红陶土的动态力学特性,利用分离式霍普金森压杆系统,开展了含水率分别为5%、7%、9%、11%、13%和15%,冲击速度分别为6、8、10 m/s,分析了不同含水率和应变率条件下红陶土的动力学特性。结果表明:随着冲击速度的增大,红陶土应变率效应显著;在冲击荷载作用下,红陶土的动态应力-应变关系曲线随加载应变率提高呈现2种曲线类型,分别为脆-塑性破坏和脆性破坏,随着应变率的增加,红陶土破坏过程由塑-脆性破坏逐转变为脆性破坏;红陶土的抗压强度、动态弹性模量均随应变率的增大而增加,并随着含水率的增大先减小后增大。 展开更多
关键词 红陶土 动态力学特性 冲击荷载 SHPB(split Hopkinson pressure bar)
在线阅读 下载PDF
Dynamic mechanical properties and instability behavior of layered backfill under intermediate strain rates 被引量:24
17
作者 Yun-hai ZHANG Xin-min WANG +1 位作者 Chong WEI Qin-li ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第7期1608-1617,共10页
To obtain dynamic mechanical properties and failure rule of layered backfill under strain rates from10to80s-1,impactloading test on layered backfill specimens(LBS)was conducted by using split Hopkinson pressure bar sy... To obtain dynamic mechanical properties and failure rule of layered backfill under strain rates from10to80s-1,impactloading test on layered backfill specimens(LBS)was conducted by using split Hopkinson pressure bar system.The results indicatethat positive correlation can be found between dynamic compressive strength and strain rate,as well as between strength increasefactor and strain rate.Dynamic compressive strength of LBS gets higher as the arithmetic average cement-sand ratio increases.Compared with static compressive strength,dynamic compressive strength of LBS is enhanced by11%to163%.In addition,theenergy dissipating rate of LBS lies between that of corresponding single specimens,and it decreases as the average cement contentincreases.Deformation of LBS shows obvious discontinuity,deformation degree of lower strength part of LBS is generally higherthan that of higher strength part.A revised brittle fracture criterion based on the Stenerding-Lehnigk criterion is applied to analyzingthe fracture status of LBS,and the average relevant errors of the3groups between the test results and calculation results are4.80%,3.89%and4.66%,respectively. 展开更多
关键词 layered backfill specimen (LBS) split Hopkinson pressure bar (SHPB) dynamic mechanical properties damage characteristic failure criterion
在线阅读 下载PDF
Mechanical properties and failure behavior of rock with different flaw inclinations under coupled static and dynamic loads 被引量:31
18
作者 XIAO Peng LI Di-yuan +3 位作者 ZHAO Guo-yan ZHU Quan-qi LIU Huan-xin ZHANG Chun-shun 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第10期2945-2958,共14页
The deep fissured rock mass is affected by coupled effects of initial ground stress and external dynamic disturbance.In order to study the effect of internal flaw on pre-stressed rock mechanical responses and failure ... The deep fissured rock mass is affected by coupled effects of initial ground stress and external dynamic disturbance.In order to study the effect of internal flaw on pre-stressed rock mechanical responses and failure behavior under impact loading,intact granite specimens and specimens with different flaw inclinations are tested by a modified split Hopkinson pressure bar(SHPB)and digital image correlation(DIC)method.The results show that peak strain and dynamic strength of intact specimens and specimens with different flaw angles(α)decrease with the increase of axial static pressure.The 90°flaw has weak reduction effect on peak strain,dynamic strength and combined strength,while 45°and 0°flaws have remarkable reduction effect.Specimens with 90°flaw are suffered combined shear and tensile failure under middle and low axial static pre-stresses,and suffered shear failure under high axial static pre-stresses.Specimens with 45°and 0°flaws are suffered oblique shear failure caused by pre-existing flaw under different axial static pre-stresses.Besides,based on digital image correlation method,it is found that micro-cracks before formation of macro fractures(include shear and tensile fractures)belong to tensile cracks.Tensile and shear strain localizations at pre-existing flaw tip for specimen with 45°and 0°flaws are produced much earlier than that at other positions. 展开更多
关键词 split Hopkinson pressure bar(SHPB)system digital image correlation(DIC) coupled static and dynamic loads FLAW crack propagation
在线阅读 下载PDF
Effects of High Strain Rate on Properties and Microstructure Evolution of TWIP Steel Subjected to Impact Loading 被引量:15
19
作者 LI Da-zhao WEI Ying-hui +3 位作者 LIU Chun-yue HOU Li-feng LIU Dong-feng JIN Xian-zhe 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2010年第6期67-73,共7页
The mechanical properties of the TWIP steel subjected to impact loading at various strain rates were analyzed by the split Hopkinson pressure bar. Meanwhile the microstructure of the TWIP steel fore-and-aft dynamic de... The mechanical properties of the TWIP steel subjected to impact loading at various strain rates were analyzed by the split Hopkinson pressure bar. Meanwhile the microstructure of the TWIP steel fore-and-aft dynamic deformation was oberseved and analyzed by optical microscope (OM), X-ray diffraction (XRD), and transmission electron microscope (TEM). The results show that when the TWIP steel was deformed under dynamic condition, the stress, microhardness and work hardening rate increase with the increase of strain and strain rate; there is decline of work hardening rate for adiabatic temperature rising softening. There are many pin-like deformation twins in the microstructure of the TWIP steel subjected to impact loading, and the grain size after deformation is bigger than that before; the interaction of twins with dislocation and twins with twins, especially emergence of multiple deformation twins are the main strengthening mechanisms of the TWIP steel. The nucleation mechanism of deformation twins will be "rebound mechanism";the incomplete deformation twins can be observed when the strain rate is low; when strain rate increases, deformation twins unite together;and deformation twins become denser because the nucleation rate increases with increasing the strain rate. 展开更多
关键词 TWIP split Hopkinson pressure bar deformation twin strain rate work hardening
原文传递
Experimental and numerical study of failure behavior and mechanism of coal under dynamic compressive loads 被引量:16
20
作者 Junjun Feng Enyuan Wang +2 位作者 Qisong Huang Houcheng Ding Xiangyang Zhang 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第5期613-621,共9页
A comprehensive understanding of the failure behavior and mechanism of coal is a prerequisite for dealing with dynamic problems in mining space.In this study,the failure behavior and mechanism of coal under uniaxial d... A comprehensive understanding of the failure behavior and mechanism of coal is a prerequisite for dealing with dynamic problems in mining space.In this study,the failure behavior and mechanism of coal under uniaxial dynamic compressive loads were experimentally and numerically investigated.The experiments were conducted using a split Hopkinson pressure bar(SHPB)system.The results indicated that the typical failure of coal is lateral and axial at lower loading rates and totally smashed at higher loading rates.The further fractography analysis of lateral and axial fracture fragments indicated that the coal failure under dynamic compressive load is caused by tensile brittle fracture.In addition,the typical failure modes of coal under dynamic load were numerically reproduced.The numerical results indicated that the axial fracture is caused directly by the incident compressive stress wave and the lateral fracture is caused by the tensile stress wave reflected from the interface between coal specimen and transmitted bar.Potential application was further conducted to interpret dynamic problems in underground coal mine and it manifested that the lateral and axial fractures of coal constitute the parallel cracks in the coal mass under roof fall and blasting in mining space. 展开更多
关键词 Split Hopkinson pressure bar Stress wave Failure mode Fracture mechanism FRACTOGRAPHY
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部