In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a gene...In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a generalised Hellinger-Reissner(HR)variational principle,creating an implicit PFEM formulation.To mitigate the volumetric locking issue in low-order elements,we employ a node-based strain smoothing technique.By discretising field variables at the centre of smoothing cells,we achieve nodal integration over cells,eliminating the need for sophisticated mapping operations after re-meshing in the PFEM.We express the discretised governing equations as a min-max optimisation problem,which is further reformulated as a standard second-order cone programming(SOCP)problem.Stresses,pore water pressure,and displacements are simultaneously determined using the advanced primal-dual interior point method.Consequently,our numerical model offers improved accuracy for stresses and pore water pressure compared to the displacement-based PFEM formulation.Numerical experiments demonstrate that the N-PFEM efficiently captures both transient and long-term hydro-mechanical behaviour of saturated soils with high accuracy,obviating the need for stabilisation or regularisation techniques commonly employed in other nodal integration-based PFEM approaches.This work holds significant implications for the development of robust and accurate numerical tools for studying saturated soil dynamics.展开更多
In this paper,the convergence of the split-step theta method for stochastic differential equations is analyzed using stochastic C-stability and stochastic B-consistency.The fact that the numerical scheme,which is both...In this paper,the convergence of the split-step theta method for stochastic differential equations is analyzed using stochastic C-stability and stochastic B-consistency.The fact that the numerical scheme,which is both stochastically C-stable and stochastically B-consistent,is convergent has been proved in a previous paper.In order to analyze the convergence of the split-step theta method(θ∈[1/2,1]),the stochastic C-stability and stochastic B-consistency under the condition of global monotonicity have been researched,and the rate of convergence 1/2 has been explored in this paper.It can be seen that the convergence does not require the drift function should satisfy the linear growth condition whenθ=1/2 Furthermore,the rate of the convergence of the split-step scheme for stochastic differential equations with additive noise has been researched and found to be 1.Finally,an example is given to illustrate the convergence with the theoretical results.展开更多
Integrated-energy systems(IESs)are key to advancing renewable-energy utilization and addressing environmental challenges.Key components of IESs include low-carbon,economic dispatch and demand response,for maximizing r...Integrated-energy systems(IESs)are key to advancing renewable-energy utilization and addressing environmental challenges.Key components of IESs include low-carbon,economic dispatch and demand response,for maximizing renewable-energy consumption and supporting sustainable-energy systems.User participation is central to demand response;however,many users are not inclined to engage actively;therefore,the full potential of demand response remains unrealized.User satisfaction must be prioritized in demand-response assessments.This study proposed a two-stage,capacity-optimization configuration method for user-level energy systems con-sidering thermal inertia and user satisfaction.This method addresses load coordination and complementary issues within the IES and seeks to minimize the annual,total cost for determining equipment capacity configurations while introducing models for system thermal inertia and user satisfaction.Indoor heating is adjusted,for optimizing device output and load profiles,with a focus on typical,daily,economic,and environmental objectives.The studyfindings indicate that the system thermal inertia optimizes energy-system scheduling considering user satisfaction.This optimization mitigates environmental concerns and enhances clean-energy integration.展开更多
Data-driven research on recycled aggregate concrete(RAC)has long faced the challenge of lacking a unified testing standard dataset,hindering accurate model evaluation and trust in predictive outcomes.This paper review...Data-driven research on recycled aggregate concrete(RAC)has long faced the challenge of lacking a unified testing standard dataset,hindering accurate model evaluation and trust in predictive outcomes.This paper reviews critical parameters influencing mechanical properties in 35 RAC studies,compiles four datasets encompassing these parameters,and compiles the performance and key findings of 77 published data-driven models.Baseline capability tests are conducted on the nine most used models.The paper also outlines advanced methodological frameworks for future RAC research,examining the principles and challenges of physics-informed neural networks(PINNs)and generative adversarial networks(GANs),and employs SHAP and PDP tools to interpret model behaviour and enhance transparency.Findings indicate a clear trend toward integrated systems,hybrid models,and advanced optimization strategies,with integrated tree-based models showing superior performance across various prediction tasks.Based on this comprehensive review,we offer a recommendation for future research on how AI can be effectively oriented in RAC studies to support practical deployment and build confidence in data-driven approaches.展开更多
The main purpose of this paper is to use the Chelyshkov-collocation spectral method for solving nonlinear Quadratic integral equations of Volterra type.The method is based on the approximate solutions in terms of Chel...The main purpose of this paper is to use the Chelyshkov-collocation spectral method for solving nonlinear Quadratic integral equations of Volterra type.The method is based on the approximate solutions in terms of Chelyshkov polynomials with unknown coefficients.The Chelyshkov polynomials and their properties are employed to derive the operational matrices of integral and product.The application of these operational matrices for solving the mentioned problem is explained.The error analysis of the proposed method is investigated.Finally,some numerical examples are provided to demonstrate the efficiency of the method.展开更多
Fatigue analysis of engine turbine blade is an essential issue.Due to various uncertainties during the manufacture and operation,the fatigue damage and life of turbine blade present randomness.In this study,the random...Fatigue analysis of engine turbine blade is an essential issue.Due to various uncertainties during the manufacture and operation,the fatigue damage and life of turbine blade present randomness.In this study,the randomness of structural parameters,working condition and vibration environment are considered for fatigue life predication and reliability assessment.First,the lowcycle fatigue problem is modelled as stochastic static system with random parameters,while the high-cycle fatigue problem is considered as stochastic dynamic system under random excitations.Then,to deal with the two failure modes,the novel Direct Probability Integral Method(DPIM)is proposed,which is efficient and accurate for solving stochastic static and dynamic systems.The probability density functions of accumulated damage and fatigue life of turbine blade for low-cycle and high-cycle fatigue problems are achieved,respectively.Furthermore,the time–frequency hybrid method is advanced to enhance the computational efficiency for governing equation of system.Finally,the results of typical examples demonstrate high accuracy and efficiency of the proposed method by comparison with Monte Carlo simulation and other methods.It is indicated that the DPIM is a unified method for predication of random fatigue life for low-cycle and highcycle fatigue problems.The rotational speed,density,fatigue strength coefficient,and fatigue plasticity index have a high sensitivity to fatigue reliability of engine turbine blade.展开更多
This study examines the degree of urban‒rural integrated development(URID)and its determinants across 41 cities within the YRDR during the period spanning from 2012 to 2021 by employing the entropy weighting method an...This study examines the degree of urban‒rural integrated development(URID)and its determinants across 41 cities within the YRDR during the period spanning from 2012 to 2021 by employing the entropy weighting method and geodetic detector model.The results reveal the following.First,the overall URID in the Yangtze River Delta region(YRDR)accelerated.Cities in the central and eastern parts exhibit a greater URID,which decreases toward the west,north,and south,highlighting prominent developmental imbalances between cities.Second,integrated economic development between urban and rural areas(URAs)has consistently demonstrated superior performance.Social integration in URA has exhibited a steady upward trajectory,whereas the integration and improvement of urban and rural residents'quality of life have advanced at a comparatively modest pace.Third,the factors that significantly influence the URID within the YRDR include per capita GDP,postal and telecommunication services per capita,and the proportion of private car ownership.Conversely,the impact of governmental intervention and agricultural security appears to be comparatively diminished.Moreover,the combined influence of interacting dual factors surpasses that of individual elements,with the influence gradually stabilizing over time.Ultimately,this study provides policy suggestions to foster integrated urban and rural development in the Yangtze River Delta(YRD)with a focus on regional collaboration and development strategies.展开更多
The Laguerre polynomial method has been successfully used to investigate the dynamic responses of a half-space.However,it fails to obtain the correct stress at the interfaces in a layered half-space,especially when th...The Laguerre polynomial method has been successfully used to investigate the dynamic responses of a half-space.However,it fails to obtain the correct stress at the interfaces in a layered half-space,especially when there are significant differences in material properties.Therefore,a coupled Legendre-Laguerre polynomial method with analytical integration is proposed.The Rayleigh waves in a one-dimensional(1D)hexagonal quasicrystal(QC)layered half-space with an imperfect interface are investigated.The correctness is validated by comparison with available results.Its computation efficiency is analyzed.The dispersion curves of the phase velocity,displacement distributions,and stress distributions are illustrated.The effects of the phonon-phason coupling and imperfect interface coefficients on the wave characteristics are investigated.Some novel findings reveal that the proposed method is highly efficient for addressing the Rayleigh waves in a QC layered half-space.It can save over 99%of the computation time.This method can be expanded to investigate waves in various layered half-spaces,including earth-layered media and surface acoustic wave(SAW)devices.展开更多
This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solve...This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solved from a nonhomogeneous linear system obtained by reducing the number of eigen-equation one less,where one of the nonzero components of the eigenvector is normalized to the unit and moves the column containing that component to the right-hand side as a nonzero input vector.1D and 2D golden section search algorithms are employed to minimize the merit functions to locate real and complex eigenvalues.Simultaneously,the real and complex eigenvectors can be computed very accurately.A simpler approach to the nonlinear eigenvalue problems is proposed,which implements a normalization condition for the uniqueness of the eigenvector into the eigenequation directly.The real eigenvalues can be computed by the fictitious time integration method(FTIM),which saves computational costs compared to the one-dimensional golden section search algorithm(1D GSSA).The simpler method is also combined with the Newton iterationmethod,which is convergent very fast.All the proposed methods are easily programmed to compute the eigenvalue and eigenvector with high accuracy and efficiency.展开更多
Classical Chinese characters,presented through calligraphy,seal engraving,or painting,can exhibit different aesthetics and essences of Chinese characters,making them the most important asset of the Chinese people.Call...Classical Chinese characters,presented through calligraphy,seal engraving,or painting,can exhibit different aesthetics and essences of Chinese characters,making them the most important asset of the Chinese people.Calligraphy and seal engraving,as two closely related systems in traditional Chinese art,have developed through the ages.Due to changes in lifestyle and advancements in modern technology,their original functions of daily writing and verification have gradually diminished.Instead,they have increasingly played a significant role in commercial art.This study utilizes the Evaluation Grid Method(EGM)and the Analytic Hierarchy Process(AHP)to research the key preference factors in the application of calligraphy and seal engraving imagery.Different from the traditional 5-point equal interval semantic questionnaire,this study employs a non-equal interval semantic questionnaire with a golden ratio scale,distinguishing the importance ratio of adjacent semantic meanings and highlighting the weighted emphasis on visual aesthetics.Additionally,the study uses Importance-Performance Analysis(IPA)and Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)to obtain the key preference sequence of calligraphy and seal engraving culture.Plus,the Choquet integral comprehensive evaluation is used as a reference for IPA comparison.It is hoped that this study can provide cultural imagery references and research methods,injecting further creativity into industrial design.展开更多
This study examines the performance of integration methods for hybrid simulation of large and complex structural systems in the context of structural collapse due to seismic excitations. The target application is not ...This study examines the performance of integration methods for hybrid simulation of large and complex structural systems in the context of structural collapse due to seismic excitations. The target application is not necessarily for real-time testing, but rather for models that involve large-scale physical sub-structures and highly nonlinear numerical models. Four case studies are presented and discussed. In the first case study, the accuracy of integration schemes including two widely used methods, namely, modified version of the implicit Newmark with fixed-number of iteration (iterative) and the operator-splitting (non-iterative) is examined through pure numerical simulations. The second case study presents the results of 10 hybrid simulations repeated with the two aforementioned integration methods considering various time steps and fixed-number of iterations for the iterative integration method. The physical sub-structure in these tests consists of a single-degree-of-freedom (SDOF) cantilever column with replaceable steel coupons that provides repeatable highly- nonlinear behavior including fracture-type strength and stiffness degradations. In case study three, the implicit Newmark with fixed-number of iterations is applied for hybrid simulations of a 1:2 scale steel moment frame that includes a relatively complex nonlinear numerical substructure. Lastly, a more complex numerical substructure is considered by constructing a nonlinear computational model of a moment frame coupled to a hybrid model ofa 1:2 scale steel gravity frame. The last two case studies are conducted on the same porotype structure and the selection of time steps and fixed number of iterations are closely examined in pre-test simulations. The generated unbalance forces is used as an index to track the equilibrium error and predict the accuracy and stability of the simulations.展开更多
Numerical properties of the time integration method proposed by the first author of this paper in 2007 are the same as those of the constant average acceleration method (AAM) for linear elastic systems, except that ...Numerical properties of the time integration method proposed by the first author of this paper in 2007 are the same as those of the constant average acceleration method (AAM) for linear elastic systems, except that the capability to capture dynamic loading was not explored. It was found that there were different quadrature equations to predict the next step displacement increment. A modified quadrature equation of this method was derived so that the equation to determine the next step displacement was numerically equivalent to the equation used in the constant AAM. It was verified that the original form of this method, in general, had a better capability to capture dynamic loadings than the constant AAM. This excellent property, in addition to computational efficiency, will help to make this method competitive with general secondorder accurate integration methods.展开更多
This paper introduces two new types of precise integration methods based on Chebyshev polynomial of the first kind for dynamic response analysis of structures, namely the integral formula method (IFM) and the homoge...This paper introduces two new types of precise integration methods based on Chebyshev polynomial of the first kind for dynamic response analysis of structures, namely the integral formula method (IFM) and the homogenized initial system method (HISM). In both methods, nonlinear variable loadings within time intervals are simulated using Chebyshev polynomials of the first kind before a direct integration is performed. Developed on the basis of the integral formula, the recurrence relationship of the integral computation suggested in this paper is combined with the Crout decomposed method to solve linear algebraic equations. In this way, the IFM based on Chebyshev polynomial of the first kind is constructed. Transforming the non-homogenous initial system to the homogeneous dynamic system, and developing a special scheme without dimensional expansion, the HISM based on Chebyshev polynomial of the first kind is able to avoid the matrix inversion operation. The accuracy of the time integration schemes is examined and compared with other commonly used schemes, and it is shown that a greater accuracy as well as less time consuming can be achieved. Two numerical examples are presented to demonstrate the applicability of these new methods.展开更多
The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF me...The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF method to some complex-valued nonlinear evolutionary equations such as the nonlinear SchrSdinger (NLS) equation and the complex Ginzburg-Landau (GL) equation. Detailed algorithm formulation and practical implementation of cIIF method are performed. The numerical results indicate that this method is very accurate and efficient.展开更多
The paper applied the isogeometric boundary element method(IGABEM)to thermoelastic problems.The Non-Uniform Rational B-splines(NURBS)used to construct geometric models are employed to discretize the boundary integral ...The paper applied the isogeometric boundary element method(IGABEM)to thermoelastic problems.The Non-Uniform Rational B-splines(NURBS)used to construct geometric models are employed to discretize the boundary integral formulation of the governing equation.Due to the existence of thermal stress,the domain integral term appears in the boundary integral equation.We resolve this problem by incorporating radial integration method into IGABEM which converts the domain integral to the boundary integral.In this way,IGABEM can maintain its advantages in dimensionality reduction and more importantly,seamless integration of CAD and numerical analysis based on boundary representation.The algorithm is verified by numerical examples.展开更多
A comparison of direct integration methods is madeand their efficiency is investigated for impact problems.New-mark,Wilson-θ,Central Difference and Houbolt Methodsare used as direct integration methods.Impact analysi...A comparison of direct integration methods is madeand their efficiency is investigated for impact problems.New-mark,Wilson-θ,Central Difference and Houbolt Methodsare used as direct integration methods.Impact analysisincludes that of elastic and large deformation based uponupdated Lagrangian including buckling check.The resultsshow that the direct integration methods give differentresults in different contact-impact cases.展开更多
We propose two error control techniques for numerical integrations in fast multiscale collocation methods for solving Fredholm integral equations of the second kind with weakly singular kernels. Both techniques utiliz...We propose two error control techniques for numerical integrations in fast multiscale collocation methods for solving Fredholm integral equations of the second kind with weakly singular kernels. Both techniques utilize quadratures for singular integrals using graded points. One has a polynomial order of accuracy if the integrand has a polynomial order of smoothness except at the singular point and the other has exponential order of accuracy if the integrand has an infinite order of smoothness except at the singular point. We estimate the order of convergence and computational complexity of the corresponding approximate solutions of the equation. We prove that the second technique preserves the order of convergence and computational complexity of the original collocation method. Numerical experiments are presented to illustrate the theoretical estimates.展开更多
The purpose of this paper is to propose and study local spline approximation methods for singular product integration,for which;i)the precision degree is the highest possible using splint approximation; ii) the nodes ...The purpose of this paper is to propose and study local spline approximation methods for singular product integration,for which;i)the precision degree is the highest possible using splint approximation; ii) the nodes fan be assumed equal to arbitrary points,where the integrand function f is known; iii) the number of the requested evaluations of f at the nodes is low,iv) a satisfactory convergence theory can be proved.展开更多
In this article,the mode superposition method is combined with a time integration method like the trapezoidal rule to improve solution accuracy for linear dynamic systems.In this combination strategy,the essential thi...In this article,the mode superposition method is combined with a time integration method like the trapezoidal rule to improve solution accuracy for linear dynamic systems.In this combination strategy,the essential thing is to decompose a dynamic system into two sub-systems,a small-scale low-frequency system and a high-frequency system.The former can be analytically and efficiently solved with the mode superposition method,and the latter is dealt with through a time integration method such as the Newmark method.The summation of the responses of these two sub-systems is the responses of the original dynamic system.It is concluded that,with little sacrifice of efficiency,the combination method based on the strategy is more accurate than the combined time integration method,but it has the same accuracy order as that of the combined method.Numerical experiments validate the effectiveness of the proposed strategy.展开更多
With the rapid development of the social economy,the pace of urban-rural integration construction has been accelerating continuously.From the actual situation at this stage,it is necessary to maintain the sound relati...With the rapid development of the social economy,the pace of urban-rural integration construction has been accelerating continuously.From the actual situation at this stage,it is necessary to maintain the sound relationship of coordination,interaction and mutual advance between the city and the village.In the process of building urban-rural integration,we should focus on strengthening the development of land management,so as to improve the rationality of land development and utilization,and maximize the value of land while protecting rural farmland resources.The author explores and analyzes the problems existing in the land management work in the urban-rural integration construction.An effective way is put forward to carry out land management work in urban and rural integration construction,which contributes to the improvement of the quality of land management work.展开更多
基金supported by the Swiss National Science Foundation(Grant No.189882)the National Natural Science Foundation of China(Grant No.41961134032)support provided by the New Investigator Award grant from the UK Engineering and Physical Sciences Research Council(Grant No.EP/V012169/1).
文摘In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a generalised Hellinger-Reissner(HR)variational principle,creating an implicit PFEM formulation.To mitigate the volumetric locking issue in low-order elements,we employ a node-based strain smoothing technique.By discretising field variables at the centre of smoothing cells,we achieve nodal integration over cells,eliminating the need for sophisticated mapping operations after re-meshing in the PFEM.We express the discretised governing equations as a min-max optimisation problem,which is further reformulated as a standard second-order cone programming(SOCP)problem.Stresses,pore water pressure,and displacements are simultaneously determined using the advanced primal-dual interior point method.Consequently,our numerical model offers improved accuracy for stresses and pore water pressure compared to the displacement-based PFEM formulation.Numerical experiments demonstrate that the N-PFEM efficiently captures both transient and long-term hydro-mechanical behaviour of saturated soils with high accuracy,obviating the need for stabilisation or regularisation techniques commonly employed in other nodal integration-based PFEM approaches.This work holds significant implications for the development of robust and accurate numerical tools for studying saturated soil dynamics.
基金Supported by the National Natural Science Foundation of China (Grant No. 12301521)the Natural Science Foundation of Shanxi Province (Grant No. 20210302124081)。
文摘In this paper,the convergence of the split-step theta method for stochastic differential equations is analyzed using stochastic C-stability and stochastic B-consistency.The fact that the numerical scheme,which is both stochastically C-stable and stochastically B-consistent,is convergent has been proved in a previous paper.In order to analyze the convergence of the split-step theta method(θ∈[1/2,1]),the stochastic C-stability and stochastic B-consistency under the condition of global monotonicity have been researched,and the rate of convergence 1/2 has been explored in this paper.It can be seen that the convergence does not require the drift function should satisfy the linear growth condition whenθ=1/2 Furthermore,the rate of the convergence of the split-step scheme for stochastic differential equations with additive noise has been researched and found to be 1.Finally,an example is given to illustrate the convergence with the theoretical results.
基金supported by the science and technology foundation of Guizhou province[2022]general 013the science and technology foundation of Guizhou province[2022]general 014+1 种基金the science and technology foundation of Guizhou province GCC[2022]016-1the educational technology foundation of Guizhou province[2022]043.
文摘Integrated-energy systems(IESs)are key to advancing renewable-energy utilization and addressing environmental challenges.Key components of IESs include low-carbon,economic dispatch and demand response,for maximizing renewable-energy consumption and supporting sustainable-energy systems.User participation is central to demand response;however,many users are not inclined to engage actively;therefore,the full potential of demand response remains unrealized.User satisfaction must be prioritized in demand-response assessments.This study proposed a two-stage,capacity-optimization configuration method for user-level energy systems con-sidering thermal inertia and user satisfaction.This method addresses load coordination and complementary issues within the IES and seeks to minimize the annual,total cost for determining equipment capacity configurations while introducing models for system thermal inertia and user satisfaction.Indoor heating is adjusted,for optimizing device output and load profiles,with a focus on typical,daily,economic,and environmental objectives.The studyfindings indicate that the system thermal inertia optimizes energy-system scheduling considering user satisfaction.This optimization mitigates environmental concerns and enhances clean-energy integration.
文摘Data-driven research on recycled aggregate concrete(RAC)has long faced the challenge of lacking a unified testing standard dataset,hindering accurate model evaluation and trust in predictive outcomes.This paper reviews critical parameters influencing mechanical properties in 35 RAC studies,compiles four datasets encompassing these parameters,and compiles the performance and key findings of 77 published data-driven models.Baseline capability tests are conducted on the nine most used models.The paper also outlines advanced methodological frameworks for future RAC research,examining the principles and challenges of physics-informed neural networks(PINNs)and generative adversarial networks(GANs),and employs SHAP and PDP tools to interpret model behaviour and enhance transparency.Findings indicate a clear trend toward integrated systems,hybrid models,and advanced optimization strategies,with integrated tree-based models showing superior performance across various prediction tasks.Based on this comprehensive review,we offer a recommendation for future research on how AI can be effectively oriented in RAC studies to support practical deployment and build confidence in data-driven approaches.
文摘The main purpose of this paper is to use the Chelyshkov-collocation spectral method for solving nonlinear Quadratic integral equations of Volterra type.The method is based on the approximate solutions in terms of Chelyshkov polynomials with unknown coefficients.The Chelyshkov polynomials and their properties are employed to derive the operational matrices of integral and product.The application of these operational matrices for solving the mentioned problem is explained.The error analysis of the proposed method is investigated.Finally,some numerical examples are provided to demonstrate the efficiency of the method.
基金supports of the National Natural Science Foundation of China(Nos.12032008,12102080)the Fundamental Research Funds for the Central Universities,China(No.DUT23RC(3)038)are much appreciated。
文摘Fatigue analysis of engine turbine blade is an essential issue.Due to various uncertainties during the manufacture and operation,the fatigue damage and life of turbine blade present randomness.In this study,the randomness of structural parameters,working condition and vibration environment are considered for fatigue life predication and reliability assessment.First,the lowcycle fatigue problem is modelled as stochastic static system with random parameters,while the high-cycle fatigue problem is considered as stochastic dynamic system under random excitations.Then,to deal with the two failure modes,the novel Direct Probability Integral Method(DPIM)is proposed,which is efficient and accurate for solving stochastic static and dynamic systems.The probability density functions of accumulated damage and fatigue life of turbine blade for low-cycle and high-cycle fatigue problems are achieved,respectively.Furthermore,the time–frequency hybrid method is advanced to enhance the computational efficiency for governing equation of system.Finally,the results of typical examples demonstrate high accuracy and efficiency of the proposed method by comparison with Monte Carlo simulation and other methods.It is indicated that the DPIM is a unified method for predication of random fatigue life for low-cycle and highcycle fatigue problems.The rotational speed,density,fatigue strength coefficient,and fatigue plasticity index have a high sensitivity to fatigue reliability of engine turbine blade.
基金supported by the Anhui University Philosophy and Social Science Research Major Project[grant numbers:2023AH040033]the Anhui Housing Urban and Rural Construction Science and Technology Plan Project[grant number:2023-RK059]the Anhui Jianzhu University quality engineering project,economic management innovation team construction project[grant number:LJ22087].
文摘This study examines the degree of urban‒rural integrated development(URID)and its determinants across 41 cities within the YRDR during the period spanning from 2012 to 2021 by employing the entropy weighting method and geodetic detector model.The results reveal the following.First,the overall URID in the Yangtze River Delta region(YRDR)accelerated.Cities in the central and eastern parts exhibit a greater URID,which decreases toward the west,north,and south,highlighting prominent developmental imbalances between cities.Second,integrated economic development between urban and rural areas(URAs)has consistently demonstrated superior performance.Social integration in URA has exhibited a steady upward trajectory,whereas the integration and improvement of urban and rural residents'quality of life have advanced at a comparatively modest pace.Third,the factors that significantly influence the URID within the YRDR include per capita GDP,postal and telecommunication services per capita,and the proportion of private car ownership.Conversely,the impact of governmental intervention and agricultural security appears to be comparatively diminished.Moreover,the combined influence of interacting dual factors surpasses that of individual elements,with the influence gradually stabilizing over time.Ultimately,this study provides policy suggestions to foster integrated urban and rural development in the Yangtze River Delta(YRD)with a focus on regional collaboration and development strategies.
基金Project supported by the National Natural Science Foundation of China(No.12102131)the Natural Science Foundation of Henan Province of China(No.242300420248)the International Science and Technology Cooperation Project of Henan Province of China(No.242102521010)。
文摘The Laguerre polynomial method has been successfully used to investigate the dynamic responses of a half-space.However,it fails to obtain the correct stress at the interfaces in a layered half-space,especially when there are significant differences in material properties.Therefore,a coupled Legendre-Laguerre polynomial method with analytical integration is proposed.The Rayleigh waves in a one-dimensional(1D)hexagonal quasicrystal(QC)layered half-space with an imperfect interface are investigated.The correctness is validated by comparison with available results.Its computation efficiency is analyzed.The dispersion curves of the phase velocity,displacement distributions,and stress distributions are illustrated.The effects of the phonon-phason coupling and imperfect interface coefficients on the wave characteristics are investigated.Some novel findings reveal that the proposed method is highly efficient for addressing the Rayleigh waves in a QC layered half-space.It can save over 99%of the computation time.This method can be expanded to investigate waves in various layered half-spaces,including earth-layered media and surface acoustic wave(SAW)devices.
基金the National Science and Tech-nology Council,Taiwan for their financial support(Grant Number NSTC 111-2221-E-019-048).
文摘This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solved from a nonhomogeneous linear system obtained by reducing the number of eigen-equation one less,where one of the nonzero components of the eigenvector is normalized to the unit and moves the column containing that component to the right-hand side as a nonzero input vector.1D and 2D golden section search algorithms are employed to minimize the merit functions to locate real and complex eigenvalues.Simultaneously,the real and complex eigenvectors can be computed very accurately.A simpler approach to the nonlinear eigenvalue problems is proposed,which implements a normalization condition for the uniqueness of the eigenvector into the eigenequation directly.The real eigenvalues can be computed by the fictitious time integration method(FTIM),which saves computational costs compared to the one-dimensional golden section search algorithm(1D GSSA).The simpler method is also combined with the Newton iterationmethod,which is convergent very fast.All the proposed methods are easily programmed to compute the eigenvalue and eigenvector with high accuracy and efficiency.
文摘Classical Chinese characters,presented through calligraphy,seal engraving,or painting,can exhibit different aesthetics and essences of Chinese characters,making them the most important asset of the Chinese people.Calligraphy and seal engraving,as two closely related systems in traditional Chinese art,have developed through the ages.Due to changes in lifestyle and advancements in modern technology,their original functions of daily writing and verification have gradually diminished.Instead,they have increasingly played a significant role in commercial art.This study utilizes the Evaluation Grid Method(EGM)and the Analytic Hierarchy Process(AHP)to research the key preference factors in the application of calligraphy and seal engraving imagery.Different from the traditional 5-point equal interval semantic questionnaire,this study employs a non-equal interval semantic questionnaire with a golden ratio scale,distinguishing the importance ratio of adjacent semantic meanings and highlighting the weighted emphasis on visual aesthetics.Additionally,the study uses Importance-Performance Analysis(IPA)and Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)to obtain the key preference sequence of calligraphy and seal engraving culture.Plus,the Choquet integral comprehensive evaluation is used as a reference for IPA comparison.It is hoped that this study can provide cultural imagery references and research methods,injecting further creativity into industrial design.
基金National Science Foundation(NSF)under grant No.CMMI-0748111
文摘This study examines the performance of integration methods for hybrid simulation of large and complex structural systems in the context of structural collapse due to seismic excitations. The target application is not necessarily for real-time testing, but rather for models that involve large-scale physical sub-structures and highly nonlinear numerical models. Four case studies are presented and discussed. In the first case study, the accuracy of integration schemes including two widely used methods, namely, modified version of the implicit Newmark with fixed-number of iteration (iterative) and the operator-splitting (non-iterative) is examined through pure numerical simulations. The second case study presents the results of 10 hybrid simulations repeated with the two aforementioned integration methods considering various time steps and fixed-number of iterations for the iterative integration method. The physical sub-structure in these tests consists of a single-degree-of-freedom (SDOF) cantilever column with replaceable steel coupons that provides repeatable highly- nonlinear behavior including fracture-type strength and stiffness degradations. In case study three, the implicit Newmark with fixed-number of iterations is applied for hybrid simulations of a 1:2 scale steel moment frame that includes a relatively complex nonlinear numerical substructure. Lastly, a more complex numerical substructure is considered by constructing a nonlinear computational model of a moment frame coupled to a hybrid model ofa 1:2 scale steel gravity frame. The last two case studies are conducted on the same porotype structure and the selection of time steps and fixed number of iterations are closely examined in pre-test simulations. The generated unbalance forces is used as an index to track the equilibrium error and predict the accuracy and stability of the simulations.
基金Science Council (NSC),Chinese Taipei Under Grant No.NSC-96-2221-E-027-030
文摘Numerical properties of the time integration method proposed by the first author of this paper in 2007 are the same as those of the constant average acceleration method (AAM) for linear elastic systems, except that the capability to capture dynamic loading was not explored. It was found that there were different quadrature equations to predict the next step displacement increment. A modified quadrature equation of this method was derived so that the equation to determine the next step displacement was numerically equivalent to the equation used in the constant AAM. It was verified that the original form of this method, in general, had a better capability to capture dynamic loadings than the constant AAM. This excellent property, in addition to computational efficiency, will help to make this method competitive with general secondorder accurate integration methods.
基金Hunan Provincial Natural Science Foundation Under Grant No.02JJY2085
文摘This paper introduces two new types of precise integration methods based on Chebyshev polynomial of the first kind for dynamic response analysis of structures, namely the integral formula method (IFM) and the homogenized initial system method (HISM). In both methods, nonlinear variable loadings within time intervals are simulated using Chebyshev polynomials of the first kind before a direct integration is performed. Developed on the basis of the integral formula, the recurrence relationship of the integral computation suggested in this paper is combined with the Crout decomposed method to solve linear algebraic equations. In this way, the IFM based on Chebyshev polynomial of the first kind is constructed. Transforming the non-homogenous initial system to the homogeneous dynamic system, and developing a special scheme without dimensional expansion, the HISM based on Chebyshev polynomial of the first kind is able to avoid the matrix inversion operation. The accuracy of the time integration schemes is examined and compared with other commonly used schemes, and it is shown that a greater accuracy as well as less time consuming can be achieved. Two numerical examples are presented to demonstrate the applicability of these new methods.
文摘The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF method to some complex-valued nonlinear evolutionary equations such as the nonlinear SchrSdinger (NLS) equation and the complex Ginzburg-Landau (GL) equation. Detailed algorithm formulation and practical implementation of cIIF method are performed. The numerical results indicate that this method is very accurate and efficient.
基金This study was funded by the National Natural Science Foundation of China(NSFC)(Grant Nos.11702238,51904202 and 11902212)and Nanhu Scholars Program for Young Scholars of XYNU.
文摘The paper applied the isogeometric boundary element method(IGABEM)to thermoelastic problems.The Non-Uniform Rational B-splines(NURBS)used to construct geometric models are employed to discretize the boundary integral formulation of the governing equation.Due to the existence of thermal stress,the domain integral term appears in the boundary integral equation.We resolve this problem by incorporating radial integration method into IGABEM which converts the domain integral to the boundary integral.In this way,IGABEM can maintain its advantages in dimensionality reduction and more importantly,seamless integration of CAD and numerical analysis based on boundary representation.The algorithm is verified by numerical examples.
文摘A comparison of direct integration methods is madeand their efficiency is investigated for impact problems.New-mark,Wilson-θ,Central Difference and Houbolt Methodsare used as direct integration methods.Impact analysisincludes that of elastic and large deformation based uponupdated Lagrangian including buckling check.The resultsshow that the direct integration methods give differentresults in different contact-impact cases.
基金The NNSF (10371137 and 10201034) of Chinathe Foundation (20030558008) of Doctoral Program of National Higher Education, Guangdong Provincial Natural Science Foundation (1011170) of China and the Advanced Research Foundation of Zhongshan UniversityThe US National Science Foundation (9973427 and 0312113)NSF (10371122) of China and the Chinese Academy of Sciences under the program of "Hundred Distinguished Young Chinese Scientists."
文摘We propose two error control techniques for numerical integrations in fast multiscale collocation methods for solving Fredholm integral equations of the second kind with weakly singular kernels. Both techniques utilize quadratures for singular integrals using graded points. One has a polynomial order of accuracy if the integrand has a polynomial order of smoothness except at the singular point and the other has exponential order of accuracy if the integrand has an infinite order of smoothness except at the singular point. We estimate the order of convergence and computational complexity of the corresponding approximate solutions of the equation. We prove that the second technique preserves the order of convergence and computational complexity of the original collocation method. Numerical experiments are presented to illustrate the theoretical estimates.
基金Work sponsored by"Ministero dell' University"CNR of Italy
文摘The purpose of this paper is to propose and study local spline approximation methods for singular product integration,for which;i)the precision degree is the highest possible using splint approximation; ii) the nodes fan be assumed equal to arbitrary points,where the integrand function f is known; iii) the number of the requested evaluations of f at the nodes is low,iv) a satisfactory convergence theory can be proved.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.11872090 and 12172023).
文摘In this article,the mode superposition method is combined with a time integration method like the trapezoidal rule to improve solution accuracy for linear dynamic systems.In this combination strategy,the essential thing is to decompose a dynamic system into two sub-systems,a small-scale low-frequency system and a high-frequency system.The former can be analytically and efficiently solved with the mode superposition method,and the latter is dealt with through a time integration method such as the Newmark method.The summation of the responses of these two sub-systems is the responses of the original dynamic system.It is concluded that,with little sacrifice of efficiency,the combination method based on the strategy is more accurate than the combined time integration method,but it has the same accuracy order as that of the combined method.Numerical experiments validate the effectiveness of the proposed strategy.
文摘With the rapid development of the social economy,the pace of urban-rural integration construction has been accelerating continuously.From the actual situation at this stage,it is necessary to maintain the sound relationship of coordination,interaction and mutual advance between the city and the village.In the process of building urban-rural integration,we should focus on strengthening the development of land management,so as to improve the rationality of land development and utilization,and maximize the value of land while protecting rural farmland resources.The author explores and analyzes the problems existing in the land management work in the urban-rural integration construction.An effective way is put forward to carry out land management work in urban and rural integration construction,which contributes to the improvement of the quality of land management work.