We propose a novel, lossless compression algorithm, based on the 2D Discrete Fast Fourier Transform, to approximate the Algorithmic (Kolmogorov) Complexity of Elementary Cellular Automata. Fast Fourier transforms are ...We propose a novel, lossless compression algorithm, based on the 2D Discrete Fast Fourier Transform, to approximate the Algorithmic (Kolmogorov) Complexity of Elementary Cellular Automata. Fast Fourier transforms are widely used in image compression but their lossy nature exclude them as viable candidates for Kolmogorov Complexity approximations. For the first time, we present a way to adapt fourier transforms for lossless image compression. The proposed method has a very strong Pearsons correlation to existing complexity metrics and we further establish its consistency as a complexity metric by confirming its measurements never exceed the complexity of nothingness and randomness (representing the lower and upper limits of complexity). Surprisingly, many of the other methods tested fail this simple sanity check. A final symmetry-based test also demonstrates our method’s superiority over existing lossless compression metrics. All complexity metrics tested, as well as the code used to generate and augment the original dataset, can be found in our github repository: ECA complexity metrics<sup>1</sup>.展开更多
On the basis of Hartmann Shack sensor imaging analysis, a new method is presented with which the wavefront slope can be obtained when the object is incoherent and extended. This method, which is demonstrated by both ...On the basis of Hartmann Shack sensor imaging analysis, a new method is presented with which the wavefront slope can be obtained when the object is incoherent and extended. This method, which is demonstrated by both theoretical interpreting and computer simulation, explains how to measure the wavefront slope difference between two sub apertures through the determination of image displacements on detector plane. It includes a fast and accurate digital algorithm for detecting wavefront disturbance, which is much suitable for realization in such electrical hardwares as digital signal processors.展开更多
Starting from an index mapping for one to multi-dimensions, a general in-placeand in-order prime factor FFT algorithm is proposed in this paper. In comparing with existingprime factor FFT algorithms, this algorithm sa...Starting from an index mapping for one to multi-dimensions, a general in-placeand in-order prime factor FFT algorithm is proposed in this paper. In comparing with existingprime factor FFT algorithms, this algorithm saves about half of the required storage capacityand possesses a higher efficiency. In addition, this algorithm can easily implement the DFT andIDFT in a single subroutine,展开更多
In nanoparticle sizing using the ultrafast image-based dynamic light scattering (UIDLS)method,larger impurities and dark noise from the complementary metal-oxide-semiconductor (CMOS)detector affect measurement accurac...In nanoparticle sizing using the ultrafast image-based dynamic light scattering (UIDLS)method,larger impurities and dark noise from the complementary metal-oxide-semiconductor (CMOS)detector affect measurement accuracy.To solve this problem,a two-dimensional self-adapting fast Fourier transform (2D-SAFFT)algorithm is proposed for UIDLS.Dynamic light scattering images of nanoparticles are processed using 2D fast Fourier transforms,and a high-frequency threshold and a low-frequency threshold are then set using the self-adapting algorithm to eliminate the effects of the dark noise of the CMOS detector and the impurities.The signals caused by the dark noise of the CMOS detector and the impurities are cut off using the high-frequency threshold and the low-frequency threshold.The signals without the high- and low-frequency components are then processed again using an inverse Fourier transform to obtain new images without the dark noise and impurities signals.The mean diameters of the measured nanoparticles can be obtained from images obtained using UIDLS.Five standard latex nanoparticles (46,100, 203,508,994nm)and commercial nanoparticles (antimony-doped tin oxide,indium tin oxide,TWEEN- 80,nano-Fe,and nano-Al2O3)were measured using this new method.Results show that 2D-SAFFT can effectively eliminate the effects of dark noise from the CMOS detector and the impurities.展开更多
In this article, two split-step finite difference methods for Schrodinger-KdV equations are formulated and investigated. The main features of our methods are based on:(i) The applications of split-step technique for S...In this article, two split-step finite difference methods for Schrodinger-KdV equations are formulated and investigated. The main features of our methods are based on:(i) The applications of split-step technique for Schrodingerlike equation in time.(ii) The utilizations of high-order finite difference method for KdV-like equation in spatial discretization.(iii) Our methods are of spectral-like accuracy in space and can be realized by fast Fourier transform efficiently. Numerical experiments are conducted to illustrate the efficiency and accuracy of our numerical methods.展开更多
DFT is widely applied in the field of signal process and others. Most present rapid ways of calculation are either based on paralleled computers connected by such particular systems like butterfly network, hypercube e...DFT is widely applied in the field of signal process and others. Most present rapid ways of calculation are either based on paralleled computers connected by such particular systems like butterfly network, hypercube etc; or based on the assumption of instant transportation, non-conflict communication, complete connection of paralleled processors and unlimited usable processors. However, the delay of communication in the system of information transmission cannot be ignored. This paper works on the following aspects: instant transmission, dispatching missions, and the path of information through the communication link in the computer cluster systems; layout of the dynamic FFT algorithm under the different structures of computer clusters.展开更多
The Fourier transform is very important to numerous applications in science and engineering. However, its usefulness is hampered by its computational expense. In this paper, in an attempt to develop a faster method fo...The Fourier transform is very important to numerous applications in science and engineering. However, its usefulness is hampered by its computational expense. In this paper, in an attempt to develop a faster method for computing Fourier transforms, the authors present parallel implementations of two new algorithms developed for the type IV Discrete Cosine Transform (DCT-IV) which support the new interleaved fast Fourier transform method. The authors discuss the realizations of their implementations using two paradigms. The first involved commodity equipment and the Message-Passing Interface (MPI) library. The second utilized the RapidMind development platform and the Cell Broadband Engine (BE) processor. These experiments indicate that the authors' rotation-based algorithm is preferable to their lifting-based algorithm on the platforms tested, with increased efficiency demonstrated by their MPI implementation for large data sets. Finally, the authors outline future work by discussing an architecture-oriented method for computing DCT-IVs which promises further optimization. The results indicate a promising fresh direction in the search for efficient ways to compute Fourier transforms.展开更多
基于快速傅里叶变换的快速迭代收缩阈值算法(fast iterative shrinkage threshold algorithm based on fast Fourier transform, FFT-FISTA)具有较高的计算效率,但其忽略点扩散函数的空间变化及卷绕误差,造成声源识别性能的损失,为此提...基于快速傅里叶变换的快速迭代收缩阈值算法(fast iterative shrinkage threshold algorithm based on fast Fourier transform, FFT-FISTA)具有较高的计算效率,但其忽略点扩散函数的空间变化及卷绕误差,造成声源识别性能的损失,为此提出基于函数波束形成的改进FFT-FISTA算法。改进算法以函数波束形成输出作为FFT-FISTA算法的迭代输入,建立函数波束形成、声源分布及升幂空间转移不变点扩散函数的线性方程组,基于周期边界条件下的快速傅里叶变换进行迭代求解,使被运算的非周期函数变为一个周期函数,解决补零边界带来的波数泄漏问题,可提高运算准确性,进一步提升成像性能;通过指数运算锐化点扩散函数主瓣,拓展点扩散函数空间转移不变性假设的适用性。仿真和试验结果表明,相较于常规FFT-FISTA算法,改进算法能提升成像空间分辨率及动态范围,扩大FFT-FISTA算法的有效成像区域,压缩气体泄漏试验结果验证了改进算法的有效性。展开更多
文摘We propose a novel, lossless compression algorithm, based on the 2D Discrete Fast Fourier Transform, to approximate the Algorithmic (Kolmogorov) Complexity of Elementary Cellular Automata. Fast Fourier transforms are widely used in image compression but their lossy nature exclude them as viable candidates for Kolmogorov Complexity approximations. For the first time, we present a way to adapt fourier transforms for lossless image compression. The proposed method has a very strong Pearsons correlation to existing complexity metrics and we further establish its consistency as a complexity metric by confirming its measurements never exceed the complexity of nothingness and randomness (representing the lower and upper limits of complexity). Surprisingly, many of the other methods tested fail this simple sanity check. A final symmetry-based test also demonstrates our method’s superiority over existing lossless compression metrics. All complexity metrics tested, as well as the code used to generate and augment the original dataset, can be found in our github repository: ECA complexity metrics<sup>1</sup>.
文摘On the basis of Hartmann Shack sensor imaging analysis, a new method is presented with which the wavefront slope can be obtained when the object is incoherent and extended. This method, which is demonstrated by both theoretical interpreting and computer simulation, explains how to measure the wavefront slope difference between two sub apertures through the determination of image displacements on detector plane. It includes a fast and accurate digital algorithm for detecting wavefront disturbance, which is much suitable for realization in such electrical hardwares as digital signal processors.
基金Supported by the National Natural Science Foundation of China
文摘Starting from an index mapping for one to multi-dimensions, a general in-placeand in-order prime factor FFT algorithm is proposed in this paper. In comparing with existingprime factor FFT algorithms, this algorithm saves about half of the required storage capacityand possesses a higher efficiency. In addition, this algorithm can easily implement the DFT andIDFT in a single subroutine,
基金National Natural Science Foundation of China (Grant No.51573093).
文摘In nanoparticle sizing using the ultrafast image-based dynamic light scattering (UIDLS)method,larger impurities and dark noise from the complementary metal-oxide-semiconductor (CMOS)detector affect measurement accuracy.To solve this problem,a two-dimensional self-adapting fast Fourier transform (2D-SAFFT)algorithm is proposed for UIDLS.Dynamic light scattering images of nanoparticles are processed using 2D fast Fourier transforms,and a high-frequency threshold and a low-frequency threshold are then set using the self-adapting algorithm to eliminate the effects of the dark noise of the CMOS detector and the impurities.The signals caused by the dark noise of the CMOS detector and the impurities are cut off using the high-frequency threshold and the low-frequency threshold.The signals without the high- and low-frequency components are then processed again using an inverse Fourier transform to obtain new images without the dark noise and impurities signals.The mean diameters of the measured nanoparticles can be obtained from images obtained using UIDLS.Five standard latex nanoparticles (46,100, 203,508,994nm)and commercial nanoparticles (antimony-doped tin oxide,indium tin oxide,TWEEN- 80,nano-Fe,and nano-Al2O3)were measured using this new method.Results show that 2D-SAFFT can effectively eliminate the effects of dark noise from the CMOS detector and the impurities.
基金Supported by the National Natural Science Foundation of China under Grant No.11571181
文摘In this article, two split-step finite difference methods for Schrodinger-KdV equations are formulated and investigated. The main features of our methods are based on:(i) The applications of split-step technique for Schrodingerlike equation in time.(ii) The utilizations of high-order finite difference method for KdV-like equation in spatial discretization.(iii) Our methods are of spectral-like accuracy in space and can be realized by fast Fourier transform efficiently. Numerical experiments are conducted to illustrate the efficiency and accuracy of our numerical methods.
文摘DFT is widely applied in the field of signal process and others. Most present rapid ways of calculation are either based on paralleled computers connected by such particular systems like butterfly network, hypercube etc; or based on the assumption of instant transportation, non-conflict communication, complete connection of paralleled processors and unlimited usable processors. However, the delay of communication in the system of information transmission cannot be ignored. This paper works on the following aspects: instant transmission, dispatching missions, and the path of information through the communication link in the computer cluster systems; layout of the dynamic FFT algorithm under the different structures of computer clusters.
文摘The Fourier transform is very important to numerous applications in science and engineering. However, its usefulness is hampered by its computational expense. In this paper, in an attempt to develop a faster method for computing Fourier transforms, the authors present parallel implementations of two new algorithms developed for the type IV Discrete Cosine Transform (DCT-IV) which support the new interleaved fast Fourier transform method. The authors discuss the realizations of their implementations using two paradigms. The first involved commodity equipment and the Message-Passing Interface (MPI) library. The second utilized the RapidMind development platform and the Cell Broadband Engine (BE) processor. These experiments indicate that the authors' rotation-based algorithm is preferable to their lifting-based algorithm on the platforms tested, with increased efficiency demonstrated by their MPI implementation for large data sets. Finally, the authors outline future work by discussing an architecture-oriented method for computing DCT-IVs which promises further optimization. The results indicate a promising fresh direction in the search for efficient ways to compute Fourier transforms.
文摘基于快速傅里叶变换的快速迭代收缩阈值算法(fast iterative shrinkage threshold algorithm based on fast Fourier transform, FFT-FISTA)具有较高的计算效率,但其忽略点扩散函数的空间变化及卷绕误差,造成声源识别性能的损失,为此提出基于函数波束形成的改进FFT-FISTA算法。改进算法以函数波束形成输出作为FFT-FISTA算法的迭代输入,建立函数波束形成、声源分布及升幂空间转移不变点扩散函数的线性方程组,基于周期边界条件下的快速傅里叶变换进行迭代求解,使被运算的非周期函数变为一个周期函数,解决补零边界带来的波数泄漏问题,可提高运算准确性,进一步提升成像性能;通过指数运算锐化点扩散函数主瓣,拓展点扩散函数空间转移不变性假设的适用性。仿真和试验结果表明,相较于常规FFT-FISTA算法,改进算法能提升成像空间分辨率及动态范围,扩大FFT-FISTA算法的有效成像区域,压缩气体泄漏试验结果验证了改进算法的有效性。